高考物理重点难点复习1
高考物理必考知识难点总结

高考物理必考知识难点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考物理必考知识难点总结高考物理必考知识难点总结参考高考物理必考知识难点总结有哪些呢?物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。
高考物理二轮复习 难点突破1 杆绳或多物体的平衡问题分析

拾躲市安息阳光实验学校难点突破1杆、绳或多物体的平衡问题分析选取研究对象是解决物理问题的首要环节.若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体平衡问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便.隔离法的目的是将内力转换为外力以便于计算,因此涉及内力计算时一般使用隔离法.很多情况下,采用整体法和隔离法相结合的方法.1.“动杆”与“定杆”轻杆模型是物体间连接的一种典型方式.中学物理一般讨论杆与墙、铰链(动杆)和插入或固定(定杆)两种连接方式.“动杆”多是“二力杆”,轻杆两端所受弹力方向一定沿着杆的方向.“定杆”固定不能转动,轻杆两端所受弹力方向不一定沿着杆的方向.2.“活结”与“死结”轻绳两段分界处受力点不能移动(“死结”),相当于两根绳子,“死结”两侧的绳子弹力不一定等大.当轻绳跨过滑轮或光滑钩子时,绳上的着力点可以移动形成“活结”,“活结”两侧绳子的弹力一定等大,其合力一定沿着两段绳的夹角平分线.3.“轻绳”与“重绳”沿水平方向向两端反向拉“轻绳”,“轻绳”呈直线,“重绳”(质点串、链条等)两端悬挂呈曲线.均匀绳中各处张力均沿绳切线方向.【典例1】(多选)如图所示,甲、乙两个小球的质量均为m,两球间用细线连接,甲球用细线悬挂在天花板上.现分别用大小相等的力F水平向左、向右拉两球,平衡时细线都被拉紧.则平衡时两球的可能位置是下面的( )【解析】用整体法分析,把两个小球看作一个整体,此整体受到的外力为竖直向下的重力2mg、水平向左的力F(甲受到的)、水平向右的力F(乙受到的)和细线1的拉力,两水平力相互平衡,故细线1的拉力一定与重力2mg等大反向,即细线1一定竖直;再用隔离法,分析乙球受力的情况,乙球受到向下的重力mg,水平向右的拉力F,细线2的拉力F2.要使得乙球受力平衡,细线2必须向右倾斜.【答案】A【典例2】如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg的物体,∠ACB=30°;图乙中轻杆HP一端用铰链固定在竖直墙上,另一端P通过细绳EP拉住,EP与水平方向也成30°角,轻杆的P点用细绳PQ拉住一个质量也为10 kg的物体,g取10 m/s2.求:(1)轻绳AC段的张力F AC与细绳EP的张力F EP之比;(2)横梁BC对C端的支持力;(3)轻杆HP 对P 端的支持力.【解析】 图甲和图乙中的两个物体M 1、M 2都处于平衡状态,根据平衡条件可判断,与物体相连的竖直细绳拉力大小等于物体的重力,分别以C 点和P 点为研究对象,进行受力分析如图丙和丁所示.(1)图丙中轻绳AD 跨过定滑轮拉住质量为M 1的物体,物体处于平衡状态,绳AC 段的拉力F AC =F CD =M 1g ,图丁中由F EP sin30°=F PQ =M 2g得F EP =2M 2g ,所以F AC F EP =M 12M 2=12.(2)图丙中,根据几何关系得:F C =F AC =M 1g =100 N.方向和水平方向成30°角斜向右上方. (3)图丁中,根据平衡条件有F EP sin30°=M 2g ,F EP cos30°=F P所以F P =M 2g cot30°=3M 2g ≈173 N,方向水平向右. 【答案】 (1)12(2)100 N ,方向与水平方向成30°角斜向右上方 (3)173 N ,方向水平向右(多选)如图所示,粗糙水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的动摩擦因数均为μ,两木块与水平面间的动摩擦因数相同,认为最大静摩擦力大小等于滑动摩擦力.现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块一起匀速运动,则需要满足的条件是( )A .木块与水平面间的动摩擦因数最大为μ3B .木块与水平面间的动摩擦因数最大为2μ3C .水平拉力F 最大为2μmgD .水平拉力F 最大为3μmg解析:左边两个木块间达到最大静摩擦力μmg 时,质量为2m 的木块受到地面的滑动摩擦力为μ′×3mg =μmg ,所以木块与水平面间的动摩擦因数最大为μ3,以整体为研究对象,当μ′=μ3时,F 有最大值为2μmg .答案:AC如图所示,质量为m 的匀质细绳,一端系在天花板上的A 点,另一端系在竖直墙壁上的B 点,平衡后最低点为C 点.现测得AC 段绳长是BC 段绳长的n 倍,且绳子B 端的切线与墙壁的夹角为α.试求绳子在C 处和在A 处的弹力分别为多大?(重力加速度为g )解析:以BC 段绳子为研究对象,设绳子B 端所受弹力为T B ,C 处所受弹力为T C,如图甲所示T B cosα=1n+1mg,T B sinα=T C联立解得T C=1n+1mg tanα以AC段绳子为研究对象,设绳子A端所受弹力为T A,T A与水平方向的夹角为β,C处所受弹力为T C′,如图乙所示T A sinβ=nn+1mg,T A cosβ=T C′,T C=T C′联立解得T A=1n+1mg n2+tan2α.答案:1n+1mg tanα1n+1mg n2+tan2α。
物理课件 人教版 高考一轮复习 第1章知识点复习

用其解决实际问题,体会科学思维中的抽象方法和物理问题研究中的极限
方法。
4.通过实验,认识自由落体运动规律。结合物理学史的相关内容,认识物理
实验与科学推理在物理学研究中的作用。
备考指导
1.本章公式、规律较多,熟练记忆匀变速直线运动的基本公式及其适用条
第一环节
必备知识落实
02
第二环节
关键能力形成
第一环节
必备知识落实
知识点一
质点
参考系
坐标系
1.质点
(1)定义:用来代替物体的有质量的点。
(2)把物体看作质点的条件:物体的大小和形状对研究问题的影响可以忽
略不计。
2.参考系
(1)定义:在描述物体运动时,用来作参考的物体。
(2)选取:参考系可任意选取,但对同一物体的运动,所选的参考系不同,运
24 h 37 min 22.6 s。火星上的一昼夜比地球上的一昼夜稍长一点。火星公
转一周约为687天,火星的一年约等于地球的两年。下列说法正确的是
( D )
A.“24 h 37 min 22.6 s”是指时刻
B.研究火星自转时可以将其看作质点
C.火星公转一周的位移要比地球公转一周的位移大
D.比较火星、地球公转速度的大小,应当以太阳为参考系
C.加速度的大小为14 m/s2,方向与初速度的方向相同
D.加速度的大小为14 m/s2,方向与初速度的方向相反
思维点拨题目中所给出的初、末速度大小分别是4 m/s和10 m/s,因方向
未知,因此速度可能为±4 m/s和±10 m/s,由此可求得不同加速度。
-0
解析:选初速度方向为正方向,若初、末速度方向相同,a=
高考物理重点难点例析专题1共点力作用下物体的平衡

专题一共点力作用下物体的平衡重点难点1.动态平衡:若物体在共点力作用下状态缓慢转变,其进程可近似以为是平衡进程,其中每一个状态均为平衡状态,这时都可用平衡来处置.2.弹力和摩擦力:平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过接触点的曲面的切面;绳索产生的弹力的方向沿绳指向绳收缩的方向,且绳中弹力处处相等(轻绳);杆中产生的弹力不必然沿杆方向,因为杆不仅可以产生沿杆方向的拉、压形变,也可以产生微小的弯曲形变.分析摩擦力时,先应按照物体的状态分清其性质是静摩擦力仍是滑动摩擦力,它们的方向都是与接触面相切,与物体相对运动或相对运动趋势方向相反.滑动摩擦力由F f = μF N公式计算,F N为物体间彼此挤压的弹力;静摩擦力等于使物体产生运动趋势的外力,由平衡方程或动力学方程进行计算.3.图解法:图解法可以定性地分析物体受力的转变,适用于三力作历时物体的平衡.此时有一个力(如重力)大小和方向都恒定,另一个力方向不变,第三个力大小和方向都改变,用图解法即可判断两力大小转变的情况.4.分析平衡问题的大体方式:①合成法或分解法:当物体只受三力作用途于平衡时,此三力必共面共点,将其中的任意两个力合成,合力一定与第三个力大小相等方向相反;或将其中某一个力(一般为已知力)沿另外两个力的反方向进行分解,两分力的大小与另两个力大小相等.②正交分解法:当物体受三个或多个力作用平衡时,一般用正交分解法进行计算.规律方式【例1】如图所示,轻绳的两头别离系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上现用水平力F拉着绳索上的一点O,使小球B从图示实线位置缓慢上升到虚线位置,但圆环A始终维持在原位置不动则在这一进程中,环对杆的摩擦力F f和环对杆的压力F N的转变情况( B )A.F f不变,F N不变B.F f增大,F N不变C.F f增大,F N减小D.F f不变,F N减小训练题如图所示,轻杆BC一端用铰链固定于墙上,另一端有一小滑轮C,重物系一绳经C固定在墙上的A点,滑轮与绳的质量及摩擦均不计若将绳一端从A点沿墙稍向上移,系统再次平衡后,则 ( C )A .轻杆与竖直墙壁的夹角减小B .绳的拉力增大,轻杆受到的压力减小C .绳的拉力不变,轻杆受的压力减小D .绳的拉力不变,轻杆受的压力不变【例2】如图所示,在倾角为θ的滑腻斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量别离为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板.系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .(重力加速度为g )【解】系统静止时,弹簧处于紧缩状态,分析A 物体受力可知:F 1 = m A g sin θ,F 1为此时弹簧弹力,设此时弹簧紧缩量为x 1,则F 1 = kx 1,得x 1 = k g m Asin在恒力作用下,A 向上加速运动,弹簧由紧缩状态逐渐变成伸长状态.当B 刚要离开C 时,弹簧的伸长量设为x 2,分析B 的受力有:kx 2 = m B g sin θ,得x 2 = m B g sin θk设此时A 的加速度为a ,由牛顿第二定律有:F -m A g sin θ-kx 2 = m A a ,得a = F -(m A +m B )g sin θm AA 与弹簧是连在一路的,弹簧长度的改变量即A 上移的位移,故有d = x 1+x 2,即:d = (m A +m B )g sinθk训练题 如图所示,劲度系数为k 2的轻质弹簧竖直放在桌面上,其上端压一质量为m 的物块,另一劲度系数为k 1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一路要想使物块在静止时,下面簧产生的弹力为物体重力的23,应将上面弹簧的上端A 竖直向上提高多少距离?答案:d = 5(k 1+k 2) mg/3k 1k 2【例3】如图所示,一个重为G 的小球套在竖直放置的半径为R 的滑腻圆环上,一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.【解析】小球受力如图所示,有竖直向下的重力G ,弹簧的弹力F ,圆环的弹力N ,N 沿半径方向背离圆心O .利用合成法,将重力G 和弹力N 合成,合力F 合应与弹簧弹力F 平衡观察发现,图中力的三角形△BCD 与△AOB 相似,设AB 长度为l 由三角形相似有:mg F = ABAO = R l ,即得F = mgl R 另外由胡克定律有F = k (l -L ),而l = 2R cos φ联立上述各式可得:cos φ = kL 2(kR -G ),φ = arcos kL2(kR -G )训练题如图所示,A 、B 两球用劲度系数为k 的轻弹簧相连,B 球用长为L 的细绳悬于0点,A 球固定在0点正下方,且O 、A 间的距离恰为L ,此时绳索所受的拉力为F 1,现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳索所受的拉力为F 2,则F 1与F 2大小之间的关系为 ( C )A .F 1<F 2B . F 1>F 2C .F 1=F 2D .无法肯定【例4】如图有一半径为r = 0.2m 的圆柱体绕竖直轴OO ′以ω = 9rad/s 的角速度匀速转动.今使劲F 将质量为1kg 的物体A 压在圆柱侧面,使其以v 0 = 2.4m/s的速度匀速下降.若物体A 与圆柱面的摩擦因数μ = ,求力F 的大小.(已知物体A 在水平方向受滑腻挡板的作用,不能随轴一路转动.)【解析】在水平方向圆柱体有垂直纸面向里的速度,A 相对圆柱体有纸垂直纸面向外的速度为υ′,υ′ = ωr = 1.8m/s ;在竖直方向有向下的速度υ0 = 2.4m/sA 相对于圆柱体的合速度为υ= υ20+υ′2 = 3m/s合速度与竖直方向的夹角为θ,则cosθ = υ0υ = 45A 做匀速运动,竖直方向平衡,有F f cos θ = mg ,得F f =mg cos θ = 另F f =μF N ,F N =F ,故F = fF = 50N训练题 质量为m 的物体,静止地放在倾角为θ的粗糙斜面上,现给物体一个大小为F 的横向恒力,如图所示,物体仍处于静止状态,这时物体受的摩擦力大小是多少?答案: f={F 2+(mgsin θ)2}1/2能力训练1.如图所示,在用横截面为椭圆形的墨水瓶演示坚硬物体微小弹性形变的演示实验中,能观察到的现象是( B )A.沿椭圆长轴方向压瓶壁,管中水面上升;沿椭圆短轴方向压瓶壁,管中水面下降B.沿椭圆长轴方向压瓶壁,管中水面下降;沿椭圆短轴方向压瓶壁,管中水面上升C.沿椭圆长轴或短轴方向压瓶壁,管中水面均上升D.沿椭圆长轴或短轴方向压瓶壁,管中水面均下降2.欲使在粗糙斜面上匀速下滑的物体静止,可采用的方式是( B )A.在物体上叠放一重物B.对物体施一垂直于斜面的力C.对物体施一竖直向下的力D.增大斜面倾角3.弹性轻绳的一端固定在O点,另一端拴一个物体,物体静止在水平地面上的B点,并对水平地面有压力,O点的正下方A处有一垂直于纸面的滑腻杆,如图所示,OA为弹性轻绳的自然长度此刻用水平力使物体沿水平面运动,在这一进程中,物体所受水平面的摩擦力的大小的转变情况是( C )A.先变大后变小B.先变小后变大C.维持不变D.条件不够充分,无法肯定4.在水平天花板下用绳AC和BC悬挂着物体m,绳与竖直方向的夹角别离为α = 37°和β = 53°,且∠ACB为90°,如图1-1-13所示.绳AC能经受的最大拉力为100N,绳BC 能经受的最大拉力为180N.重物质量过大时会使绳索拉断.现悬挂物的质量m为14kg.(g = 10m/s2,sin37° = ,sin53° = )则有)( C )A.AC绳断,BC不断B.AC不断,BC绳断C.AC和BC绳都会断D.AC和BC绳都不会断5.如图所示在倾角为37°的斜面上,用沿斜面向上的5N的力拉着重3N的木块向上做匀速运动,则斜面对木块的总作使劲的方向是( A )A.水平向左B.垂直斜面向上C.沿斜面向下D.竖直向上6.当物体从高空下落时,所受阻力会随物体的速度增大而增大,因此通过下落一段距离后将匀速下落,这个速度称为此物体下落的扫尾速度。
高中物理最难的知识点是哪些

⾼中物理最难的知识点是哪些 对于好多⼩伙伴来说,物理属于较难学的科⽬。
物理的规律和公式⼀般⽐较简单,但就是应⽤起来难。
这让物理成了不少⾼中⽣⼼中抹不去的痛。
下⾯是⼩编为⼤家整理的关于⾼中物理最难的知识点是哪些,希望对您有所帮助。
欢迎⼤家阅读参考学习! ⾼中物理最难的知识点 1.电磁感应 从应试⽽⾔,应是带电粒⼦在电磁场中的运动(⼒,运动轨迹,⼏何特别是圆),电磁感应综合(电磁感应,安培⼒,⾮匀变速运动,微元累加,含n递推,功与热)最难,位处压轴之列。
当然,⽜顿⼒学是基本功。
⼩编推荐:⾼中物理最难的部分是什么 2.动⼒学 分析纵观整个⾼中物理,最难的地⽅还是在于⼒学。
如果你是⼀位⼗年教龄的⽼师,相信您绝对认可我的这句话。
貌似有不少的⽼师总是把“⼒学是物理的基础”挂在嘴边(咦,好像我也是这个样⼦的),这也是⼀个⼤实话;但这总是被学⽣误解,他们会认为物理中的⼒学问题都很基本的、简单的。
3.电学实验 1.关于实验要注意: 描图要时分析点的⾛势,确定直线或曲线;⽤直线或圆滑曲线连线,点不⼀定都在线上; 反⽐关系常画成⼀个量与另⼀个量倒数成正⽐ ⽤多次测量求平均值的⽅法能减⼩偶然误差 2.测量仪器的读数⽅法 需要估读的仪器:在常⽤的测量仪器中,刻度尺、螺旋测微器、电流表、电压表、天平、弹簧秤等读数时都需要估读。
学习物理的思路 1、见物思理,多观察,多思考,做⼀个⽣活的有⼼⼈! 物理讲的是“万物之理”,在我们⾝边到处都蕴含着丰富的、取之不尽⽤之不竭的物理知识。
只要我们保持⼀颗好奇之⼼,注意观察各种⾃然现象和⽣活现象。
多抬头看看天空,你就会发现物理中的“⼒、热、电、光、原”知识在⽣活当中处处都有。
⼀旦养成⽤物理知识解决⾝边⽣活中的各种物理现象的习惯,你就会发现原来物理这么有魅⼒,这么有趣。
2、学会从“定义”去寻找错因 对于基本公式,规律,概念要特别重视。
“死记知识永远学不好物理!”最聪明的学⽣都会从基本公式和概念上去寻找错误的根源,并且能够做到从⼀个错题能复习⼀⼤⽚知识——这是⼀个学⽣学习物理是否开窍的最重要的标志! 3、把“陌⽣”变成“透彻” 遇到陌⽣的概念,⽐如“势能”“电势”“电势差”等等先不要排斥,要先去真⼼接纳它,再通过听⽼师讲解、对⽐、应⽤理解它。
河南省郑州市高考物理复习 难点1 弹簧问题练习-人教版高三全册物理试题

难点1 弹簧问题弹簧分为轻弹簧〔m=0〕和重弹簧(m ≠0),轻弹簧所受合外力一定为零,各匝之间弹力一样,重弹簧放在光滑的水平面上处于平衡状态时各匝之间的相互作用力才相等;轻弹簧两端连有物体时弹力不突变,假设其中一端突然与物体脱离或弹簧断开,如此弹力突变为零,物体碰撞轻弹簧没有机械能的损失,碰撞与弹簧相连的轻质物体也不会有机械能的损失。
一般的弹簧都可认为是软弹簧,是否轻弹簧题目中会说明。
脱离问题中弹簧的状态:〔1〕物体与弹簧脱离时弹簧一定处于原长,〔2〕仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的;〔3〕除了弹簧弹力,还有其它外力作用而使相互接触的两物体别离,那么两个物体别离时弹簧不一定是原长。
〔弹簧和所连接的物体质量不计别离时是弹簧的原长,但质量考虑时一定不是弹簧的原长,〕可看成连接体.弹性势能的表达式221kx E P =不要求应用,牵涉到弹性势能的问题时,往往是第一种情景弹簧形变量与第二种情景形变量一样,或者用变力做功的方法求出221kx E P = 一.轻弹簧和重弹簧1. 如下列图,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧与挂钩质量不计,施水平方向的力F 1和称外壳上的力F 2,且F 1>F 2,如此弹簧秤沿水平方向的加速度为________ ,弹簧秤的读数为 _______2.如下列图,一质量为M 、长为L 的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各局部的受力情况.二.静力学中的弹簧3.如下列图,质量为m 的质点与三根一样的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,弹簧a b 、对质点的作用力均为F ,如此弹簧c 对质点作用力的大小可能为 ( )A .FB .F+mgC .F-mgD .F+2mgFm N f m 4.如下列图,两个劲度系数分别为k1和k2的轻质弹簧竖直悬挂,弹簧下端用光滑细绳连接,并有一光滑的轻滑轮放在细绳上.当滑轮下端挂一重为G 的物体时,滑轮下滑一段距离,如此如下结论正确的有〔 〕A .两弹簧的伸长量相等B .两弹簧的弹力不一定相等B .C .重物下降的距离为D .重物下降的距离为 5.如下列图,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了_________________ ,物块1的重力势能增加了________________.6.如下列图,用完全一样的轻弹簧A 、B 、C 将两个一样的小球连接并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o ,弹簧C 水平,如此弹簧A 、C 的伸长量之比为A .4:3 B.3:4 C. 1:2 D. 2:17.如下列图,质量分别为12m m 、两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动〔1m 在地面,2m 在空中〕,力F 与水平方向成θ角.如此1m 所受支持力N 和摩擦力f 正确的答案是〔 〕A. 12sin N m g m g F θ=+-B. 12cos N m g m g F θ=+-C. cos f F θ=D. sin f F θ=.三.动力学中的弹簧问题8.如下列图,一轻质弹簧竖直立在水平地面上,弹簧一端固定在地面上。
验证机械能守恒定律-2024年高考物理一轮复习热点重点难点(解析版)

验证机械能守恒定律特训目标特训内容目标1利用打点计时器验证机械能守恒定律(1T -4T )目标2利用光电门验证机械能守恒定律(5T -8T )目标3利用单摆验证机械能守恒定律(9T -12T )目标4利用竖直面内圆周运动验证机械能守恒定律(13T -16T )【特训典例】一、利用打点计时器验证机械能守恒定律1某物理兴趣小组利用如图1所示装置验证机械能守恒定律,该小组让重物带动纸带从静止开始自由下落,按正确操作得到了一条完整的纸带如图2所示(在误差允许范围内,认为释放重锤的同时打出O 点)。
(1)下列关于该实验说法正确的是。
A.实验时应先释放重锤,后接通电源B.实验时应选择体积和密度较小、下端有胶垫的重锤C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上D.为准确测量打点计时器打下某点时重锤的速度v ,可测量该点到O 点的距离h ,利用v =2gh 计算(2)在纸带上选取三个连续打出的点A 、B 、C ,测得它们到起始点O 的距离分别为h A 、h B 、h C 。
已知当地重力加速度为g ,打点计时器所用交流电源的频率为f ,重物的质量为m 。
从打O 点到打B 点的过程中,重物动能变化量DE k =。
(3)该小组通过多次实验发现重力势能的减少量总是略大于动能的增加量,出现这种现象的原因可能是。
A.工作电压偏高B.由于有空气和摩擦阻力的存在C.重物质量测量得不准确D.重物释放时距打点计时器太远【答案】 C m (h C -h A )2f 28B【详解】(1)[1]A .为充分利用纸带,实验时应先接通电源,后释放重锤,故A 错误;B .为减小空气阻力的影响,实验时应选择体积小,密度较大、下端有胶垫的重锤,故B 错误;C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上,故C正确;D.为准确测量打点计时器打下某点时重锤的速度v,不能利用v=2gh计算,应用速度的定义式计算,故D错误。
四川高考物理必考知识点归纳总结

四川高考物理必考知识点归纳总结四川高考物理作为理科生的必考科目之一,对于考生来说是一个相对较难的科目。
为了帮助考生更好地备考,下面将对四川高考物理的必考知识点进行归纳总结,并以此为基础提供相应的复习建议。
一、力学1. 运动学:包括匀速直线运动、匀加速直线运动、抛体运动等。
2. 牛顿定律:包括牛顿第一定律、牛顿第二定律、牛顿第三定律。
3. 动力学:包括力的合成与分解、弹簧力、摩擦力等。
4. 万有引力与行星运动:包括万有引力定律、地球与月球的运动、行星运动规律等。
5. 物体静力学:包括平衡条件、平衡力等。
复习建议:重点掌握运动学中的运动方程和加速度的计算,理解牛顿定律的应用,熟悉力的合成与分解的方法,掌握行星运动的规律。
二、热学1. 温度与热量:包括温度计的使用、热传递与热平衡等。
2. 理想气体定律:包括等压变化、等温变化、等容变化等。
3. 热传导:包括导热系数、热传导定律等。
4. 热机与功率:包括热机效率、功率计算等。
5. 热量的传递与改变:包括传热方式、热量的传递、热容等。
复习建议:着重理解温度与热量的概念,掌握理想气体定律的应用,熟悉热传导的基本规律,理解热机效率的计算,熟悉热量的传递方式。
三、光学1. 光的反射与折射:包括光的反射定律、折射定律等。
2. 光的波动性:包括光的干涉、光的衍射等。
3. 光的光电效应:包括光电效应定律、光电倍增器等。
4. 光的颜色与光学仪器:包括光的颜色形成、单色仪、光的偏振等。
5. 光的物理现象与光学仪器:包括光的折射、透镜、显微镜等。
复习建议:熟悉光的反射与折射定律的应用,理解光的波动性的基本原理,掌握光的光电效应的定律,了解光的颜色形成的原理,熟悉光的折射、透镜等光学仪器的工作原理。
四、电学1. 电场与电势:包括电场强度、电势差等。
2. 电流与电阻:包括欧姆定律、电阻定律等。
3. 电路基本定律:包括基尔霍夫定律、电路分析等。
4. 电磁感应与电磁场:包括电磁感应定律、电磁场的产生等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理重点难点1 “追碰”问题与时空观“追碰”类问题以其复杂的物理情景,综合的知识内涵及广阔的思维空间,充分体现着考生的理解能力、分析综合能力、推理能力、空间想象能力及理论联系实际的创新能力,是考生应考的难点,也是历届高考常考常新的命题热点.●难点磁场1.(★★★★)(1999年全国)为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v =120 km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t =0.50 s,刹车时汽车受到阻力的大小f 为汽车重的0.40倍,该高速公路上汽车间的距离s 至少应为多少?(取重力加速度g =10 m/s 2)2.(★★★★★)(2000年全国)一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动.有一台发出细光束的激光器装在小转台M 上,到轨道的距离MN 为d =10 m ,如图1-1所示.转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T =60s.光束转动方向如图中箭头所示.当光束与MN 的夹角为45°时,光束正好射到小车上.如果再经过Δt =2.5 s,光束又射到小车上,则小车的速度为多少?(结果保留两位数字)3.(★★★★★)一段凹槽A 倒扣在水平长木板C 上,槽内有一小物块B ,它到槽内两侧的距离均为21,如图1-2所示.木板位于光滑水平的桌面上,槽与木板间的摩擦不计,小物块与木板间的动摩擦因数为μ.A 、B 、C 三者质量相等,原来都静止.现使槽A 以大小为v 0的初速向右运动,已知v 0<gl 2.当A 和B 发生碰撞时,两者的速度互换.求:(1)从A 、B 发生第一次碰撞到第二次碰撞的时间内,木板C 运动的路程.(2)在A 、B 刚要发生第四次碰撞时,A 、B 、C 三者速度的大小.●案例探究[例1](★★★★★)从离地面高度为h 处有自由下落的甲物体,同时在它正下方的地面上有乙物体以初速度v 0竖直上抛,要使两物体在空中相碰,则做竖直上抛运动物体的初速度v 0应满足什么条件?(不计空气阻力,两物体均看作质点).若要乙物体在下落过程中与甲物体相碰,则v 0应满足什么条件?命题意图:以自由下落与竖直上抛的两物体在空间相碰创设物理情景,考查理解能力、分析综合能力及空间想象能力.B 级要求.错解分析:考生思维缺乏灵活性,无法巧选参照物,不能达到快捷高效的求解效果. 解题方法与技巧:(巧选参照物法)选择乙物体为参照物,则甲物体相对乙物体的初速度:v 甲乙=0-v 0=-v 0甲物体相对乙物体的加速度a 甲乙=-g -(-g )=0图1-1图1-2由此可知甲物体相对乙物体做竖直向下,速度大小为v 0的匀速直线运动.所以,相遇时间为:t =0v h 对第一种情况,乙物体做竖直上抛运动,在空中的时间为:0≤t ≤g v 02 即:0≤0v h ≤g v 02 所以当v 0≥2gh ,两物体在空中相碰. 对第二种情况,乙物体做竖直上抛运动,下落过程的时间为:gv 0≤t ≤g v 02 即g v 0≤0v h ≤g v 02. 所以当 2gh ≤v 0≤gh 时,乙物体在下落过程中与甲物体相碰. [例2](★★★★★)如图1-3所示,质量为m 的木块可视为质点,置于质量也为m 的木盒内,木盒底面水平,长l =0.8m,木块与木盒间的动摩擦因数μ=0.5,木盒放在光滑的地面上,木块A 以v 0=5 m/s 的初速度从木盒左边开始沿木盒底面向右运动,木盒原静止.当木块与木盒发生碰撞时无机械能损失,且不计碰撞时间,取g =10 m/s 2.问:(1)木块与木盒无相对运动时,木块停在木盒右边多远的地方?(2)在上述过程中,木盒与木块的运动位移大小分别为多少?命题意图:以木块与木盒的循环碰撞为背景,考查考生分析综合及严密的逻辑推理能力.B 级要求.错解分析:对隔离法不能熟练运用,不能将复杂的物理过程隔离化解为相关联的多个简单过程逐阶段分析,是该题出错的主要原因.解题方法与技巧:(1)木块相对木盒运动及与木盒碰撞的过程中,木块与木盒组成的系统动量守恒,最终两者获得相同的速度,设共同的速度为v ,木块通过的相对路程为s ,则有:mv 0=2mv ①μmgs =21mv 02-21·2mv 2② 由①②解得s =1.25 m设最终木块距木盒右边为d ,由几何关系可得:d =s -l=0.45 m图1-3(2)从木块开始运动到相对木盒静止的过程中,木盒的运动分三个阶段:第一阶段,木盒向右做初速度为零的匀加速运动;第二阶段,木块与木盒发生弹性碰撞,因两者质量相等,所以交换速度;第三阶段,木盒做匀减速运动,木盒的总位移等于一、三阶段的位移之和.为了求出木盒运动的位移,我们画出状态示意图,如图1-4所示.设第一阶段结束时,木块与木盒的速度分别为v 1、v 2,则:mv 0=mv 1+mv 2 ③μmgL =21mv 02-21m (v 12+v 22) ④因在第二阶段中,木块与木盒转换速度,故第三阶段开始时木盒的速度应为v 1,选木盒为研究对象对第一阶段:μmgs 1=21mv 22⑤ 对第三阶段:μmgs 2=21mv 12-21mv 2⑥从示意图得 s 盒=s 1+s 2⑦ s 块=s 盒+L -d ⑧解得 s 盒=1.075 m s 块=1.425 m●锦囊妙计一、高考走势“追碰”问题,包括单纯的“追及”类、“碰撞”类和“追及碰撞”类,处理该类问题,首先要求学生有正确的时间和空间观念(物体的运动过程总与时间的延续和空间位置的变化相对应).同时,要求考生必须理解掌握物体的运动性质及规律,具有较强的综合素质和能力.该类问题综合性强,思维容量大,且与生活实际联系密切,是高考选拔性考试不可或缺的命题素材,应引起广泛的关注.二、“追及”“碰撞”问题指要1.“追及”问题讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题.一定要抓住两个关系:即时间关系和位移关系.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点.2.“碰撞”问题碰撞过程作用时间短,相互作用力大的特点,决定了所有碰撞问题均遵守动量守恒定律.对正碰,根据碰撞前后系统的动能是否变化,又分为弹性碰撞和非弹性碰撞.弹性碰撞:系统的动量和动能均守恒,因而有:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①21m 1v 12+21m 2v 22=21m 1v 1′2+21m 2v 2′2②上式中v 1、v 1′分别是m 1碰前和碰后的速度,v 2、v 2′分别是m 2碰前和碰后的速度. 解①②式得图1-4v 1′=21221212)(m m v m v m m ++- ③ v 2′=21112122)(m m v m v m m ++- ④完全非弹性碰撞:m 1与m 2碰后速度相同,设为v ,则m 1v 1+m 2v 2=(m 1+m 2)v ,v =21211m m v m v m ++. 系统损失的最大动能ΔE k m =21m 1v 12+21m 2v 22-21 (m 1+m 2)v 2.非弹性碰撞损失的动能介于弹性碰撞和完全非弹性碰撞之间.在处理碰撞问题时,通常要抓住三项基本原则:(1)碰撞过程中动量守恒原则.(2)碰撞后系统动能不增原则.(3)碰撞后运动状态的合理性原则.碰撞过程的发生应遵循客观实际.如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或甲反向运动.三、处理“追碰”类问题思路方法解决“追碰”问题大致分两类方法,即数学法(如函数极值法、图象法等)和物理方法(参照物变换法、守恒法等). ●歼灭难点训练1.(★★★★)凸透镜的焦距为f,一个在透镜光轴上的物体,从距透镜3f 处,沿光轴逐渐移动到距离2f 处,在此过程中A.像不断变大B.像和物之间距离不断减小C.像和焦点的距离不断增大D.像和透镜的距离不断减小2.(★★★★)两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v 0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中所行驶的距离为s ,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持距离至少应为多少?3.(★★★★)如图1-5所示,水平轨道上停放着一辆质量为5.0×102 kg 的小车A ,在A 的右方L =8.0 m处,另一辆小车B 正以速度v B =4.0 m/s 的速度向右做匀速直线运动远离A 车,为使A 车能经过t =10.0 s 时图1-5间追上B 车,立即给A 车适当施加向右的水平推力使小车做匀变速直线运动,设小车A 受到水平轨道的阻力是车重的0.1倍,试问:在此追及过程中,推力至少需要做多少功? 取g =10 m/s 2)4.(★★★★)如图1-6所示,在光滑的水平面上放置一质量为m 的小车,小车上有一半径为R 的41光滑的弧形轨道,设有一质量为m 的小球,以v 0的速度,方向水平向左沿圆弧轨道向上滑动,达到某一高度h 后,又沿轨道下滑,试求h 的大小及小球刚离开轨道时的速度. 5.(★★★★★)如图1-7所示,长为2L 的板面光滑且不导电的平板小车C 放在光滑水平面上,车的右端有块挡板,车的质量m C =4 m,绝缘小物块B 的质量m B =2 m.若B 以一定速度沿平板向右与C 车的挡板相碰,碰后小车的速度总等于碰前物块B 速度的一半.今在静止的平板车的左端放一个带电量为+q 、质量为m A =m 的小物块A ,将物块B 放在平板车的中央,在整个空间加上一个水平方向的匀强电场时,金属块A 由静止开始向右运动,当A 以速度v 0与B 发生碰撞,碰后A 以41v 0的速率反弹回来,B 向右运动. (1)求匀强电场的场强大小和方向.(2)若A 第二次和B 相碰,判断是在B 与C 相碰之前还是相碰之后?(3)A 从第一次与B 相碰到第二次与B 相碰这个过程中,电场力对A 做了多少功?6.(★★★★★)如图1-8所示,水平放置的导轨,其电阻、摩擦均不计,固定在竖直向下的匀强磁场中,磁感应强度为B ,左端间距为2L ,右端间距为L ,今在导轨上放ab 、cd 两杆,其质量分为2M 、M ,电阻分为2R 、R ,现让ab 杆以初速度v 0向右运动.求cd 棒的最终速度(两棒均在不同的导轨上).图1-6 图1-7图1-8参考答案[难点磁场]1.1.6×102 m2.提示:该题为一“追及”的问题,有两种可能解,第一次为物追光点,在相同时间内,汽车与光点扫描的位移相等,L 1=d (tan45°-tan30°),则v 1=vL ∆1=1.7 m/s,第二次为(光)点追物,时间相同,空间位移相同,L 2=d (tan60°-tan45°),可得v 2=t L ∆2=2.9 m/s. 3.(1)s =l -gv μ420 (2)v A =41v 0;v B =v C =83v 0 [歼灭难点训练]1.ABC2.2 s3.W min =2.8×104 J4.小球从进入轨道,到上升到h 高度时为过程第一阶段,这一阶段类似完全非弹性的碰撞,动能损失转化为重力势能(而不是热能).据此可列方程:mv 0=(m +m )v , ① 21mv 02=21(m +m )v 2+mg h ② 解得h =v 02/4g .小球从进入到离开,整个过程属弹性碰撞模型,又由于小球和车的等质量,由弹性碰撞规律可知,两物体速度交换,故小球离开轨道时速度为零.说明:广义上的碰撞,相互作用力可以是弹力、分子力、电磁力、核力等,因此,碰撞可以是宏观物体间的碰撞,也可以是微观粒子间的碰撞.拓宽后的碰撞,除例题代表的较长时间的碰撞题型外,还有非接触型碰撞和非弹力作用的碰撞.5.(1)对金属块A 用动能定理qEL =21mv 02 所以电场强度大小E =qLmv 220 方向水平向右 (2)A 、B 碰撞,由系统动量守恒定律得m A v 0=m A (-41v 0)+m B v B 用m B =2m 代入解得v B =85v 0 B 碰后做匀速运动,碰到挡板的时间t B =058v L v L B = A 的加速度a A =Lv 220 A 在t B 段时间的位移为s A =v a t B +21at B 2=-41v 0·21580 v L ·L v 220·(058v L )2=256L 因s A <L ,故A 第二次与B 相碰必在B 与C 相碰之后(3)B 与C 相碰,由动量守恒定律可得m B v B =m B v B ′+m C v C ′ v C ′=21v B v B ′=0 A 从第一次相碰到第二次与B 相碰的位移为L ,因此电场力做的功 W 电=qEL =21mv 02. 6.320v。