【推荐】高三数学(理)优题精练:复数、推理与证明 Word版含答案[ 高考]
高考数学《复数》专项练习(含答案)

《复数》专项练习参考答案1.(2016全国Ⅰ卷,文2,5分)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a =( )(A )−3 (B )−2 (C)2 (D )3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由已知,得a a 212+=-,解得3-=a ,选A .2.(2016全国Ⅰ卷,理2,5分)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B)2 (C )3 (D )2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |2,x x y x y x x y +==+=所以故故选B .3.(2016全国Ⅱ卷,文2,5分)设复数z 满足i 3i z +=-,则z =( ) (A )12i -+ (B )12i - (C)32i + (D )32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,故选C . 4.(2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B)(13)-, (C )(1,)∞+ (D )(3)∞--,5.(2016全国Ⅲ卷,文2,5分)若43i z =+,则||zz =( )(A)1 (B)1- (C )43i 55+ (D )43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.则2243i 43i ||5543z z -==-+,故选D .6.(2016全国Ⅲ卷,理2,5分)若z =1+2i ,则4i1zz =-( ) (A )1 (B )−1 (C)i (D)−i【答案】C【解析】∵z =1+2i ,∴z =1-2i ,则4i 4ii (12i)(12i)11zz ==+---,故选C . 7.(2015全国Ⅰ卷,文3,5分)已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i 【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z ===2-i .故选C .【解析二】(z -1)i =1+i ⇒ z -1=⇒ z =+1 ⇒z =+1=2-i .故选C.8.(2015全国Ⅰ卷,理1,5分)设复数z满足1+z1z-=i,则|z|=()(A)1(B)2(C)3(D)2 【答案】A【解析一】1+z1z-=i⇒1+z=i(1-z)⇒1+z=i-zi⇒z+zi=-1+i ⇒(1+i)z=-1+i⇒9.(2015全国Ⅱ卷,文2,5分)若a为实数,且=3+i,则a=()A.-4B.-3C.3D.4【答案】D【解析】由已知得2+ai=(1+i)(3+i)=2+4i,所以a=4,故选D.10.(2015全国Ⅱ卷,理2,5分)若a为实数,且(2+ai)(a-2i)=-4i,则a=()A.-1B.0C.1D.2【答案】B【解析】(2+ai)(a-2i)=-4i⇒2a-4i+a2i+2a=-4i⇒2a-4i+a2i+2a+4i =0⇒4a+a2i=0⇒a=0.11.(2014全国Ⅰ卷,文3,5分)设z=+i,则|z|=()A.B.C.D.2【答案】B【解析】z=+i=+i=i,因此|z|=,故选B.12.=()A.1+i B.1-i C.-1+i D.-1-i【答案】D【解析】·====-(1+i)=-1-i,故选D.13.(2014全国Ⅱ卷,文2,5分)=()A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】B【解析】==-1+2i,故选B.14.(2014全国Ⅱ卷,理2,5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A .-5B .5C .-4+iD .-4-i 【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i )=-5,故选A .15.(2013全国Ⅰ卷,文2,5分)=( )A .-1-B .-1+C .1+D .1-i【答案】B 【解析】=-1+i ,故选B .16.(2013全国Ⅰ卷,理2,5分)若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A .-4B .-C .4D . 【答案】D【解析】∵|4+3i |==5,∴(3-4i )z =5,∴z =i ,虚部为,故选D .17.(2013全国Ⅱ卷,文2,5分)=( )A .2B .2C .D .1 【答案】C【解析】=|1-i|=22)1(1-+=.选C .18(2013全国Ⅱ卷,理2,5分)设复数z 满足(1-i )z =2i,则z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =====-1+i ,故选A .19.(2012全国卷,文2,5分)复数z =的共轭复数是( ) A .2+i B .2-I C .-1+i D .-1-i【答案】D【解析】z ==-1+i ,∴=-1-i ,故选D .20.(2011全国卷,文2,5分)复数=( )A .2-iB .1-2iC .-2+iD .-1+2i 【答案】C【解析】=-2+i ,故选C .21.(2016北京,文2,5分)复数12i=2i+-( )(A)i (B )1+i (C )i - (D )1i - 【答案】A 【解析】12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+,故选A .22.(2016北京,理9,5分)设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_____________. 【答案】-1【解析】(1+i )(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a )=0,解得a =-1. 23.(2016江苏,文/理2,5分)复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是____.【答案】524.(2016山东,文2,5分)若复数21i z =-,其中i 为虚数单位,则z =( ) (A )1+i(B )1−i(C )−1+i (D )−1−i【答案】B25.(2016山东,理1,5分)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =( )(A)1+2i (B)1-2i (C )12i -+ (D )12i -- 【答案】B26.(2016上海,文/理2,5分)设32iiz +=,其中i 为虚数单位,则z 的虚部等于_______. 【答案】-3【解析】32i 23i,iz +==-故z 的虚部等于−3.27.(2016四川,文1,5分)设i 为虚数单位,则复数(1+i)2=( )(A) 0 (B )2 (C)2i (D )2+2i 【答案】C 【解析】22(1i)12i i 2i +=++=,故选C .28.(2016天津,文9,5分)i 是虚数单位,复数z 满足(1i)2z +=,则z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.(2016天津,理9,5分)已知,a b ∈R ,i 是虚数单位,若(1+i)(1-b i )=a ,则ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)

2023届高考复习数学专项(复数及推理与证明)好题练习1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()A.二的实部是2B.=的虚部是2iC.乞=1-2i2.已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD.z在复平而上对应点在第四象限3.下面四个命题中的真命题为()1A.若复数z满足-ER,则zERB.若复数z满足/ER,则zERC.若复数Z1,Z2满足z亿2ER,则z1=D.若复数zE R,则豆ER Z2D.lzl=✓S4.已知复数二满足i2k+1z=2+i,-(kE z), 则z在复平面内对应的点可能位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设z是复数,则下列命题中的真命题是()A.若z2�o.则z是实数B.若z2<o,则z是虚数C.若z是虚数,则z2�oo.若z是纯虚数,则z2<o6.已知Z1与Z-2是共枙虚数,以下四个命题一定正确的是()2 2A. Z l <i z2B. zi z2=z Z2C.z1+z2E Rz+l.7设复数z满足——=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为一-i2C.在复平而内,z对应的点位千第二象限D.z=-—ZtD .• —ERZ28.某大学进行自主招生测试,盂要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 9.在0,0a b >>的条件下,下列四个结论正确的是( ) A .22a b aba b+≥+B .2a b +≤C .22a b a b b a+≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快参考答案1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()D.lzl=✓S A. 二的实部是2 B.=的虚部是2i C.乞=1-2i【参考答案】CD3 +i(3 +i)(l +i) 2 + 4i—= = = 1+2i,【答宋解析】z=l—1 2 2即二的实部是1,虚部是2'故A错误,B铅误,又亏=1—2i,121 =✓1三了-= Js'故C,D均正确故选CD2. 已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD. z在复平面上对应点在第四象限【参考答案】ABD【答案解析】:;=3-4i, 则仁l=F五二正=5.故A正确;�=3+4i, 故B正确;二的虚部为4,故C铅误;二在复平面上对应点的坐标为(3,-4), 在第四象限,故D正确.:.命题中正确的个数为3.故选ABD.3.下而四个命题中的真命题为()1A. 若复数z满足-E R,则zE RB.若复数z满足/E R,则zE RC. 若复数Z1,Z2满足z亿2R,则z=22D.若复数zE R,则�E R【参考答案】AD1【答案解析】若复数二满足-E R,则二E R,故命题A为真命题;复数z =i 满足z 2=﹣1∈R ,则z ∉R ,故命题B 为假命题; 若复数z 1=i ,z 2=2i 满足z 1z 2∈R ,但z 1≠,故命题C 为假命题;若复数z ∈R ,则=z ∈R ,故命题D 为真命题. 故选:AD .4.已知复数z 满足212k i z i +=+,()k z ∈,则z 在复平面内对应的点可能位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【参考答案】BD【答案解析】212k i z i +=+ ,212k iz i ++∴=15i i i === ,37i i i ===-当k 为奇数时 ()2122212k i ii i z i i i i i++++∴====-+--⨯ 在复平面上对应的点为()1,2-位于第二象限; 当k 为偶数时 ()2122212k i ii i z i i i i i++++∴====-⨯ 在复平面上对应的点为()1,2-位于第四象限;故复数z 在复平面内对应的点位于第二象限或第四象限. 故选BD5.设z 是复数,则下列命题中的真命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【参考答案】ABD【答案解析】设z =a +bi ,a ,b ∈R ,z 2=a 2﹣b 2+2abi , 对于A ,z 2≥0,则b =0,所以z 是实数,真命题;对于B ,z 2<0,则a =0,且b ≠0,⇒z 是虚数;所以B 为真命题; 对于C ,z 是虚数,则b ≠0,所以z 2≥0是假命题.对于D ,z 是纯虚数,则a =0,b ≠0,所以z 2<0是真命题;故选ABD.6.已知z1与z2是共轭虚数,以下四个命题一定正确的是( )A.z12<|z2|2B.z1z2=|z1z2| C.z1+z2∈R D.∈R【参考答案】BC【答案解析】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此A不正确;z1z2=|z1z2|=a2+b2,B正确;z1+z2=2a∈R,C正确;===+i不一定是实数,因此D不一定正确.故选:BC.7.设复数z满足,则下列说法错误的是( )A.z为纯虚数B.z的虚部为C.在复平面内,z对应的点位于第二象限D.|z|=【参考答案】ABC【答案解析】∵z+1=zi,设z=a+bi,则(a+1)+bi=﹣b+ai,∴,解得.∴z=.∴|z|=,复数z的虚部为,8.某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【参考答案】AC【答案解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后.故选AC.9.在0,0a b >>的条件下,下列四个结论正确的是( )A .22a b aba b+≥+ B .2a b +≤C .22a b a b b a +≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 【参考答案】ABD 【答案解析】选项A:222()4()22022()2()220,0a b ab a b ab a b a b ab a b aba b a b a b a b a b a b++--++-==∴-≥∴≥+++>+>+ ,故本选项是正确的;选项B:因为0,0a b >>,22222222()()02244a b a b a b ab a b ++++--=-=≥,所以2a b +≤,因此本选项是正确的; 选项C:222233222()()()()()a b a b ab a b a b a b a b a b b a a b b a ab ab ab +---+-+-+-+===-,因为0,0a b >>,所以22222()()()0a b b a b a a b a b a b b a ab b a+-+-+=-≤⇒+≥+,因此本选项是不正确的;选项D:根据本选项特征,用反证法来解答.假设三个数111,,a b c b c a+++至少有一个不小于2不成立,则三个数111,,a b c b c a+++都小于2,所以这三个数的和小于6,而111111()(()6a b c a b cb c a a b c+++++=+++++≥++=(当且仅当1a b c===时取等号),显然与这三个数的和小于6矛盾,故假设不成立,即三个数111,,a b cb c a+++至少有一个不小于2,故本选项是正确的.故选:ABD10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【参考答案】ABD【答案解析】对于选项A,从图可以看出同比涨跌幅均为正数,故A正确;对于选项B,从图可以看出环比涨跌幅有正数有负数,故B正确;对于选项C,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C错误;对于选项D,从图可以看出2019年3月全国居民消费价格环比变化最快,故D正确.故选ABD.。
高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
复数、推理与证明新高考多项选择题及答案

复数、推理与证明多项选择题(请将答案填写在各试题的答题区内)1.(2020春•滕州市校级月考)已知集合{|n M m m i ==,}n N ∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .(1)(1)i i -+B .11ii-+ C .11ii+- D .2(1)i -2.(2019秋•日照期末)若复数z 满足(1)3i z i -=+(其中i 是虚数单位),则( ) A .z 的实部是2B .z 的虚部是2iC .12z i =-D.||z =3.设1z ,2z 是复数,则下列命题中的真命题是( ) A .若12||0z z -=,则12z z = B .若12z z =,则12z z =C .若12||||z z =,则1122z z z z =D .若12||||z z =,则2212z z =4.已知复数1z i =+,则下列命题中正确的为( ) A.||z = B .1z i =- C .z 的虚部为iD .z 在复平面上对应点在第一象限5.已知1z 与2z 是共轭虚数,以下4个命题一定正确的是( ) A .2212||z z <B .1212||z z z z =C .12z z R +∈D .12z R z ∈ 6.复数z 的共轭复数记为z ,复数z 、z 分别对应点Z 、Z .设A 是一些复数对应的点组成的集合,若对任意的Z A ∈,都有Z A ∈,就称A 为“共轭点集”.下列点集中是“共轭点集”的有( )A .{(x ,22)|(1)1}y x y +-B .24{(,)|24}0y x x y y x x >-⎧⎪<-+⎨⎪>⎩C .22{(,)|1}2x x y y -=D .{(,)|2}x x y y =7.以下四个命题中正确的为( )A .若x ,y R ∈,i 为虚数单位,且(2)1x i y i --=-+,则(1)x y i ++的值为4-B .将函数()cos(2)13f x x π=++的图象向左平移6π个单位后,对应的函数是偶函数C .若直线4ax by +=与圆224x y +=没有交点,则过点(,)a b 的直线与椭圆22194x y +=有两个交点D .在做回归分析时,残差图中残差点分布的带状区域的宽度越窄相关指数越小 8.下面四个命题中的真命题为( ) A .若复数z 满足1R z∈,则z R ∈B .若复数z 满足2z R ∈,则z R ∈C .若复数1z ,2z 满足12z z R ∈,则12z z =D .若复数z R ∈,则z R ∈9.(2019秋•琼山区校级期末)已知复数(,)z x yi x y R =+∈,则( ) A .20z B .z 的虚部是yiC .若12z i =+,则1x =,2y =D .||z10.(2020•海南模拟)如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是( )A .1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B .1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率11.(2020•淄博一模)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了如图的折线图.根据该折线图,下列结论正确的是()A.年接待游客量逐年增加B.各年的月接待游客量高峰期大致在8月C.2017年1月至12月接待游客量的中位数为30D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳12.(2020•山东模拟)如图是某公司2018年1月至12月空调销售任务及完成情况的统计图,如10月份销售任务是400台,完成率为90%,下列叙述正确的是()A.2018年3月的销售任务是400台B.2018年月销售任务的平均值不超过600台C.2018年总销售量为4870台D.2018年月销售量最大的是6月份13.(2020•临朐县模拟)某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2019年1月至2019年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论错误的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳14.(2019秋•福州期末)某学校规定同时满足以下两个条件的同学有资格参选学生会主席:①团员或班干部;②体育成绩达标.若小明有资格参选学生会主席,则小明的情况有可能为()A.是团员,且体育成绩达标B.是团员,且体育成绩不达标C.不是团员,且体育成绩达标D.不是团员,且体育成绩不达标15.(2019秋•日照期末)某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A.甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B.乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前16.(2020•潍坊模拟)将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0)m >.已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .1(31)(31)4n S n n =+-17.某学员在网上进行驾照模拟测试,在测试过程中,每答完一道题,屏幕上都会自动计算并显示当前答对题数、答错题数及正确率,若他共答了10道题,记每答完一道题,屏幕上自动显示的正确率分别为1a ,2a ,10a ⋯,以下四个判断中正确的是( )A .若1210a a a <<⋯<,则必是第一题答错,其余题均答对B .若1210a a a =>⋯>,则必是第一、第二题均答对,其余题均答错C .有可能89a a <且910a a >D .满足方程5102a a =的序数对5(a ,10)a ,不可能超过5对复数、推理与证明多项选择题1.(2020春•滕州市校级月考)已知集合{|n M m m i ==,}n N ∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .(1)(1)i i -+B .11ii-+ C .11ii+- D .2(1)i -【分析】对n 分类求解m 值,可得集合M ,然后逐一核对四个选项得答案. 【解答】解:根据题意,{|n M m m i ==,}n N ∈中, 4()n k k N =∈时,1n i =; 41()n k k N =+∈时,n i i =; 42()n k k N =+∈时,1n i =-; 43()n k k N =+∈时,n i i =-, {1M ∴=-,1,i ,}i -.选项A 中,(1)(1)2i i M -+=∉; 选项B 中,21(1)1(1)(1)i i i M i i i --==-∈++-;选项C 中,21(1)1(1)(1)i i i M i i i ++==∈--+;选项D 中,2(1)2i i M -=-∉. 故选:BC .2.(2019秋•日照期末)若复数z 满足(1)3i z i -=+(其中i 是虚数单位),则( )A .z 的实部是2B .z 的虚部是2iC .12z i =-D .||z =【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后逐一核对四个选项得答案. 【解答】解:3241212i iz i i ++===+-,∴12z i =-,||z =故A ,B 错误,C ,D 均正确. 故选:CD .3.设1z ,2z 是复数,则下列命题中的真命题是( ) A .若12||0z z -=,则12z z = B .若12z z =,则12z z =C .若12||||z z =,则1122z z z z =D .若12||||z z =,则2212z z =【分析】题目给出的是两个复数及其模的关系,两个复数与它们共轭复数的关系,要判断每一个命题的真假,只要依据课本基本概念逐一核对即可得到正确答案.【解答】解:对(A ),若12||0z z -=,则120z z -=,12z z =,所以12z z =为真; 对(B )若12z z =,则1z 和2z 互为共轭复数,所以12z z =为真;对(C )设111z a b i =+,222z a b i =+,若12||||z z =222211112222,z z a b z z a b =+=+,所以1122z z z z =为真;对(D )若11z =,2z i =,则12||||z z =为真,而22121,1z z ==-,所以2212z z =为假. 故选:ABC .4.已知复数1z i =+,则下列命题中正确的为( ) A .||z = B .1z i =- C .z 的虚部为iD .z 在复平面上对应点在第一象限【分析】利用复数的模、共轭复数、虚部及复数与平面内点的对应关系即可判断出正误.【解答】解:复数1z i =+,则||z =A 正确; 1z i =-,故B 正确; z 的虚部为1,故C 错误;z 在复平面上对应点的坐标为(1,1),在第一象限,故D 正确.∴命题中正确的个数为3.故选:ABD .5.已知1z 与2z 是共轭虚数,以下4个命题一定正确的是( ) A .2212||z z <B .1212||z z z z =C .12z z R +∈D .12z R z ∈ 【分析】1z 与2z 是共轭虚数,设1(,)z a bi a b R =+∈,2z a bi =-.利用复数的运算性质及其有关概念即可得出.【解答】解:1z 与2z 是共轭虚数,设1z a bi =+,2(,)z a bi a b R =-∈.2212||z z <;22212z a b abi =-+,复数不能比较大小,因此A 不正确; 221212||z z z z a b ==+,B 正确; 122z z a R +=∈,C 正确;222122222()2()()z a bi a bi a b ab i z a bi a bi a bi a b a b ++-===+--+++不一定是实数,因此D 不一定正确. 故选:BC .6.复数z 的共轭复数记为z ,复数z 、z 分别对应点Z 、Z .设A 是一些复数对应的点组成的集合,若对任意的Z A ∈,都有Z A ∈,就称A 为“共轭点集”.下列点集中是“共轭点集”的有( )A .{(x ,22)|(1)1}y x y +-B .24{(,)|24}0y x x y y x x >-⎧⎪<-+⎨⎪>⎩C .22{(,)|1}2x x y y -=D .{(,)|2}x x y y =【分析】利用已知条件然后判断选项图形的对称性即可.【解答】解:复数z 的共轭复数记为z ,复数z 、z 分别对应点Z 、Z .设A 是一些复数对应的点组成的集合,若对任意的Z A ∈,都有Z A ∈,就称A 为“共轭点集”.可知满足性质:复数z 、z 分别对应点Z 、Z .对称点关于y 轴对称,图形关于x 轴对称. {(A x ,22)|(1)1}y x y +-表示的图形不关于x 轴对称;所以不是“共轭点集”. 24{(,)|24}0y x B x y y x x >-⎧⎪<-+⎨⎪>⎩的图象关于x 轴对称; 是“共轭点集”22{(,)|1}2x C x y y -=的图形关于x 轴对称;是“共轭点集”{(,)|2}x D x y y =的图象关于x 轴对称.不是“共轭点集” 故选:BC .7.以下四个命题中正确的为( )A .若x ,y R ∈,i 为虚数单位,且(2)1x i y i --=-+,则(1)x y i ++的值为4-B .将函数()cos(2)13f x x π=++的图象向左平移6π个单位后,对应的函数是偶函数C .若直线4ax by +=与圆224x y +=没有交点,则过点(,)a b 的直线与椭圆22194x y +=有两个交点D .在做回归分析时,残差图中残差点分布的带状区域的宽度越窄相关指数越小【分析】A 利用复数的四则运算进行求值.B 利用三角函数的图象和性质判断.C 利用直线与圆的位置关系判断.D 利用回归分析的知识进行判断.【解答】解:由(2)1x i y i --=-+,得21x -=且1y -=-,解得3x =,1y =.所以4x y +=,所以42(1)(1)(2)4x y i i i ++=+==-,所以A 正确. 将函数()cos(2)13f x x π=++的图象向左平移6π个单位后,得到函数为2cos[2()]1cos(2)1633y x x πππ=+++=++,此时函数不是偶函数,所以B 错误.因为直线4ax by +=与圆224x y +=没有交点,所以圆心到直线的距离2d >2,即点(,)P a b 到原点的距离||2OP <,因为由椭圆的方程可知,2a =,所以点(,)P a b 在椭圆的内部,所以过点(,)a b 的直线与椭圆22194x y +=有两个交点,所以C 正确.可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.则对应相关指数越大,所以D 错误. 故选:AC .8.下面四个命题中的真命题为( ) A .若复数z 满足1R z∈,则z R ∈B .若复数z 满足2z R ∈,则z R ∈C .若复数1z ,2z 满足12z z R ∈,则12z z =D .若复数z R ∈,则z R ∈【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案. 【解答】解:若复数z 满足1R z∈,则z R ∈,故命题A 为真命题;复数z i =满足21z R =-∈,则z R ∉,故命题B 为假命题;若复数1z i =,22z i =满足12z z R ∈,但12z z ≠,故命题C 为假命题; 若复数z R ∈,则z z R =∈,故命题D 为真命题. 故选:AD .9.(2019秋•琼山区校级期末)已知复数(,)z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .||z【分析】由复数(,)z x yi x y R =+∈利用复数的基本运算逐一核对四个选项得答案.【解答】解:复数(,)z x yi x y R=+∈,222()2z x yi x y xyi∴=+=-+,不能判断正负,故A错误;z的虚部是y,故B错误;若12z i=+,则1x=,2y=,故C正确;||z=,故D正确.故选:CD.10.(2020•海南模拟)如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是()A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了1 3B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率【分析】正确理解图象带来的信息逐一进行判断即可.【解答】解:对于:1A月31日陕西省新冠肺炎累计确诊病例中西安市占比为321873>,故A正确,对于:1B月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B正确,对于:2C月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了21311697-=例,故C正确,对于:2D月8日到2月10日西安市新冠肺炎累计确诊病例的增长率小于2月6日到2月8日的增长率,故D错误,故选:ABC.11.(2020•淄博一模)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了如图的折线图.根据该折线图,下列结论正确的是()A.年接待游客量逐年增加B.各年的月接待游客量高峰期大致在8月C.2017年1月至12月接待游客量的中位数为30D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【分析】根据2017年1月至2019年12月期间月接待游客量的折线图逐一判断.【解答】解:由2017年1月至2019年12月期间月接待游客量的折线图得:在A中,年接待游客量虽然逐月波动,但总体上逐年增加,故A正确;在B中,各年的月接待游客量高峰期都在8月,故B正确;在C中,2017年1月至12月月接待游客量的中位数小于30,故C错误;在D中,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确.故选:ABD.12.(2020•山东模拟)如图是某公司2018年1月至12月空调销售任务及完成情况的统计图,如10月份销售任务是400台,完成率为90%,下列叙述正确的是()A.2018年3月的销售任务是400台B.2018年月销售任务的平均值不超过600台C.2018年总销售量为4870台D.2018年月销售量最大的是6月份【分析】A.设2018年3月的销售任务是400台.B.由于2018年月销售任务高于600台的只有6,7,8,共3个月份,而其余都远小于600台,据此可以判断出2018年月销售任务的平均值.C年总销售量.2018.30050%200100%400120%500110%800100%100070%70080%40090%300150%40090%10080%30060%=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯D年月销售量5月份是800台,6月份是100070%700⨯=台,即可得出2018年月销售量最大的月份..2018【解答】解:A.设2018年3月的销售任务是400台,因此正确.B.由于2018年月销售任务高于600台的只有6,7,8,共3个月份,而其余都远小于600台,据此可以判断出2018年月销售任务的平均值不超过600台.C年总销售量.2018台,=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=30050%200100%400120%500110%800100%100070%70080%40090%300150%40090%10080%30060%4270⨯=台,因此2018年月销售量最大的是5月份..2018D年月销售量5月份是800台,6月份是100070%700故选:AB.13.(2020•临朐县模拟)某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2019年1月至2019年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论错误的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳【分析】由折线图的意义、及其统计量即可判断出正误.【解答】解:A.根据中位数的定义可得:月跑步平均里程的中位数为6月份对应的里程数,因此A正确.B.月跑步平均里程不是逐月增加,因此B不正确;C.月跑步平均里程高峰期大致在10月,因此不正确.D月至5月的跑步平均里程相对于6月至11月,波动性更小,变化比较平稳,正确..1故选:BC.14.(2019秋•福州期末)某学校规定同时满足以下两个条件的同学有资格参选学生会主席:①团员或班干部;②体育成绩达标.若小明有资格参选学生会主席,则小明的情况有可能为()A.是团员,且体育成绩达标B.是团员,且体育成绩不达标C.不是团员,且体育成绩达标D.不是团员,且体育成绩不达标【分析】由题意可得,同时满足以下两个条件,即这两个条件缺一不可,问题得以解决.【解答】解:由题意可得,同时满足以下两个条件,即这两个条件缺一不可,故是团员,且体育成绩达标,或不是团员,且体育成绩达标故选:AC.15.(2019秋•日照期末)某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A.甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B.乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C.甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D.甲同学的总成绩排名比丙同学的总成绩排名更靠前【分析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前.甲同学的阅读表达成绩排名靠后.【解答】解:根据图示,对于A ,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前,故A 正确;对于B ,乙同学的总排名比较靠前,但是他的逻辑思维排名比较靠后,说明他的阅读表达排名比逻辑排名成绩更靠前,故B 错误.对于C ,甲乙丙三位同学的逻辑思维排名顺序是甲,丙乙并列,故甲同学最靠前.故C 正确.对于D ,甲同学的逻辑思维成绩排名更靠前,总成绩排名靠后,即有阅读表达成绩排名比他的逻辑思维成绩排名更靠后,故D 错误. 故选:AC .16.(2020•潍坊模拟)将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0)m >.已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .1(31)(31)4n S n n =+-【分析】根据等差数列和等比数列的通项公式可求出a 的值,再结合题目条件可以算出il a ,再利用分组求和法求出S .【解答】解:112a =,13611a a =+,22251m m ∴=++,解得3m =或12m =-(舍去),11113[2(1)]3(31)3j j j ij i a a i m i ---∴==+-=-,667173a ∴=⨯,21112131212223213()()()n n n n n nn S a a a a a a a a a a a a ∴=+++⋯⋯+++++⋯⋯++⋯⋯++++⋯⋯+11121(13)(13)(13)131313n n n n a a a ---=++⋯⋯+--- 1(231)(31)22n n n+-=- 1(31)(31)4n n n =+- 故选:ACD .17.某学员在网上进行驾照模拟测试,在测试过程中,每答完一道题,屏幕上都会自动计算并显示当前答对题数、答错题数及正确率,若他共答了10道题,记每答完一道题,屏幕上自动显示的正确率分别为1a ,2a ,10a ⋯,以下四个判断中正确的是( )A .若1210a a a <<⋯<,则必是第一题答错,其余题均答对B .若1210a a a =>⋯>,则必是第一、第二题均答对,其余题均答错C .有可能89a a <且910a a >D .满足方程5102a a =的序数对5(a ,10)a ,不可能超过5对【分析】若1n n a a +<,则第1n +题一定答对,当1n =时,还可得到第一题一定答错,若1n n a a +>,则第1n +题一定答错,当1n =时,还可得到第一题一定答对,进而可判断四个结论的正误,得到答案. 【解答】解:若12a a <,则第一题一定答错,第二题一定答对, 若23a a <,则第三题一定答对,⋯故若1210a a a <<⋯<,则必是第一题答错,其余题均答对,即A 正确; 910a a >,则第十题一定答错,⋯123a a a =>,则第三题一定答错,第一、二题一定答对故若1210a a a =>⋯>,则必是第一、第二题均答对,其余题均答错,即B 正确; 当前八题存在答错的题且第九题答对,第十题答错时,89a a <且910a a >,即C 正确; 若51a =,由5102a a =得1012a =,此时有序数对为1(1,)2若545a =,由5102a a =得1025a =,此时有序数对为4(5,2)5 若535a =,由5102a a =得10310a =,此时有序数对为3(5,3)10 若525a =,由5102a a =得1015a =,此时有序数对为2(5,1)5若515a =,由5102a a =得10110a =,此时有序数对为1(5,1)10若50a =,由5102a a =得100a =,此时有序数对为(0,0) 故这样的有序数对为6对,故D 错误; 故选:ABC .。
高考数学复数习题及答案 百度文库

一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i + 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( )A .12BCD .23.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-4.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15i - 5.已知复数1z i i =+-(i 为虚数单位),则z =( )A .1B .iC iD i6.若复数z 满足()322i z i i -+=+,则复数z 的虚部为( ) A .35 B .35i - C .35 D .35i 7.若1m i i+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1 D8.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )A .1B C .2 D .4 9.复数12i z i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -11.已知i 为虚数单位,则43i i =-( )A .2655i +B .2655i -C .2655i -+D .2655i -- 12.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2D 13.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限14.设复数z 满足(1)2i z -=,则z =( )A .1B C D .2 15.若复数11i z i ,i 是虚数单位,则z =( ) A .0 B .12 C .1 D .2二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.若复数351i z i -=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限18.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 19.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =20.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 21.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限22.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限24.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =-D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数25.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =26.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限27.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=28.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】 先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.4.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部.【详解】因为,所以其虚部是.故选:A.解析:A【分析】 先由复数的除法运算化简复数23i i-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.5.D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =,故选:D 6.A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A. 7.C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题1m i i+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.8.B【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为的实部为,所以可设复数,则其共轭复数为,又,所以由,可得,即,因此.故选:B.解析:B【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B. 9.A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题 解析:A【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果.【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫ ⎪⎝⎭位于第一象限, 故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A11.C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】 对43i i-的分子分母同乘以3i +,再化简整理即可求解. 【详解】 ()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C12.B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B首先求出3z i +,再根据复数的模的公式计算可得;【详解】解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B . 13.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.14.B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B .解析:B【分析】由复数除法求得z ,再由模的运算求得模.【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .15.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.20.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确;故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.21.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.22.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.23.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.24.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.25.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.26.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;2211112222122222ω----====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.27.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】 本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
高中数学复数专题 (含答案)

高考复数专题(1)姓名:1、若a 为实数且(2)(2)4ai a i i +-=-,则a = 02、设i 是虚数单位,则复数32i i-= i.3、若复数()32z i i =- ( i 是虚数单位 ),则z = 23i -4、设复数z 满足11zz+-=i ,则|z|= 15、若复数R ∈i1ai1+-,则实数a = -16、复数()i 2i -= 12i +7、 i 为虚数单位,607i 的共轭复数....为 i8、若复数z 满足1zi i =-,其中i 为虚数为单位,则z = 1i -9.设复数a +bi (a ,b ∈R,则(a +bi )(a -bi )=______3__.高考复数专题(1)作业 姓名:10.i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 2- .11.设复数z 满足234z i =+(i 是虚数单位),则z 的模为12.已知()211i i z-=+(i 为虚数单位),则复数z = 1i --13.若复数z 满足31z z i +=+,其中i 为虚数单位,则z12i + . 14、复数3+2i2-3i= i15、在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是 2+4i16、若复数(m 2-3m -4)+(m 2-5m -6)i 表示的点在虚轴上,则实数m 的值是 -1和417已知复数z =11+i,则z -·i 在复平面内对应的点位于第 二象限18、设i 是虚数单位,则复数21ii-在复平面内所对应的点位于第 二象限高考复数专题(2)姓名:1、复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内对应的点位于第 四 象限2、已知复数a =3+2i ,b =4+xi (其中i 为虚数单位),若复数a b ∈R ,则实数x 的值为 83 3、设z =1-i (i 是虚数单位),则z 2+2z = 1-i4、在复平面内,复数21-i对应的点到直线y =x +1的距离是 225、设复数z 满足关系式z +|z -|=2+i ,则z 等于 34+i6 、若复数z =a +i 1-2i(a ∈R ,i 是虚数单位)是纯虚数,则|a +2i |等于 227、若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值为 ________-18、若a 是复数z 1=1+i 2-i的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.-25 9、如果复数2-bi1+2i(i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________. -23高考复数专题(2)作业 姓名:10、已知a R ∈,若(1)(32)ai i -+为纯虚数,则a 的值为 32-11、复数(3i -1)i 的共轭复数....是 -3+i12、已知复数z 满足()()12z i i i -⋅+=-,则z z ⋅=213、已知复数z 满足()1i 2i z -=+,则z 的共轭复数在复平面内对应的点在. 第 四 象限14、设复数z 满足关系i i z 431+-=⋅,那么z =__34i +_______,|z|=___54_______.15、设i 是虚数单位,复数=++iii 123 116、若i x x x )23()1(22+++- 是纯虚数,则实数x 的值是 117、已知复数11z i i=+-,则复数z 的模|z |=218、复数201511i i +⎛⎫⎪-⎝⎭= -i高考复数专题(3)姓名:1、复数21ii-等于 -1+i 2、复数i215+的共轭复数为 1+2i3、已知i 是虚数单位,则复数3(12)z i i =⋅-+的虚部为4、设复数i z 431-=,i z 322+-=,则复数12z z -在复平面内对应的点位于第 二 象限5、若i 是虚数单位,则复数21i z i-=+的实部与虚部之积为 34-6、纯虚数z 满足23z -=,则z 为7、设m ∈R ,222(1)m m m i +-+-是纯虚数,其中i 是虚数单位,则m = 一28、复平面内,复数2)31(i +对应的点位于第 二 象限9、已知复数13i z =+,21i z =-,则复数12zz 在复平面内对应的点位于第 一 象限高考复数专题(3)作业 姓名:10、复数12z a i =+,22z i =-+,如果12||||z z <,则实数a 的取值范围是 11<<-a11、已知ni m i n m ni im+-=+则是虚数单位是实数其中,,,,11的虚部为 112、若)54(cos 53sin -+-=θθi z 是纯虚数,则θtan 的值为 43-13、设a 是实数,且211ii a +++是实数,则=a 114、200811i i +⎛⎫ ⎪-⎝⎭= 115、若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 -616、已知复数z = (1 – i )(2 – i ),则| z |的值是 . 1017、复数z 满足i i i z +=-2)(,则 z =i -118、复数z =-3+i2+i 的共轭复数是 -1-i高考复数专题(4)姓名:1、复数11i =+ 1122i -2、若复数i z +=1 (i 为虚数单位) z -是z 的共轭复数 , 则2z +z -²的虚部为 03、复数z = i (i+1)(i 为虚数单位)的共轭复数是 -1-i4、若i bi -+13= a+b i (a ,b 为实数,i 为虚数单位),则a+b =____________.35、设i 为虚数单位,则复数34ii+= 43i -6、复数(2+i )2等于 3+4i7、在复平面内,复数103ii+对应的点的坐标为 (1 ,3)8、i 是虚数单位,复数ii-+435= 1+i9、设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 8 .高考复数专题(4)作业 姓名:10、计算:31ii-=+ i 21-(i 为虚数单位)11、设1z i =+(i 是虚数单位),则22z z+= 1i +12、在复平面内,复数(12)z i i =+对应的点位于第 二象限13、复数31ii--等于 2i +14、复数8+15i 的模等于 1715、已知1iZ+=2+i,则复数z= 1-3i16、i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是 -317、i 是虚数单位,i(1+i)等于 -1+i18、若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为 1-高考复数专题(5)姓名:1、i 是虚数单位,52i i-= -1+2i2、复数 32(1)i i += 23、设a ∈R ,且2()a i i +为正实数,则a = 1-4、已知复数z=1-i, 则12-z z等于 25、若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b = 26、复数211i ii +-+的值是 07、i 是虚数单位,32i 1i=-( 1i - )8、已知复数11i z =-,121i z z =+,则复数2z = i .9、复数322ii +的虚部为____45__.高考复数专题(5)姓名:10、31i i -的共轭复数是 3322i --11、复数1ii+在复平面中所对应的点到原点的距离为 2212、复数()2化简得到的结果是 -l13、若a 为实数,i iai 2212-=++,则a 等于 2 214、若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是 2π15、若i R b a i b i i a ,)2(∈+=+、,其中是虚数单位,则a+b = -116、2(1)i i += -217、设i 为虚数单位,则=⎪⎭⎫⎝⎛+20081i i 2100418、若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a = 4高考复数专题(6)姓名:1、复数312i i ⎛⎫+ ⎪⎝⎭的虚部为________. -12、若复数()2i bi ⋅+是纯虚数,则实数b = 03、i i -210= -2+4i4、复数3223ii+=- i5、若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 36、已知x ,y ∈R ,i 是虚数单位,且(x -1)i -y =2+i ,则(1+i )x -y 的值为 -47、若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 3+5i8、已知i 是虚数单位,则31ii+-= 1+2i9、在复平面内,复数z=sin2+icos2对应的点位于第 四 象限10、 若复数12,z z 在复平面内对应的点关于y 轴对称,且i z -=21,则复数21z z = i 5453+-高考复数专题(6)姓名:11、已知复数z 满足28z z i +=+,其中i 为虚数单位,则z = 1712、设a ∈R ,且(a +i )2i 为正实数,则a 等于 -113、若i3i34m m +-(m ∈R )为纯虚数,则)i 2i 2(m m -+ 2 008的值为 114、设复数z 1=1-2i, z 2=1+i, 则复数z =21z z 在复平面内对应的点位于第 三象限15、若(a -2i)i = b -i ,其中a 、b ∈R ,i 是虚数单位,则a 2+b 2等于 516、 |1|11|1|i ii i +++++= 217、设复数z 1=1+i, z 2=x -i(x ∈R ),若z 1·z 2为实数,则x 等于 118、若复数z 满足 Z =i (2-z )(i 是虚数单位),则z = . 1+i19、复数3ii)2i)(1(+--的共轭复数是 . -3+i20、若复数()()i 2ai 1++的实部和虚部相等,则实数a 等于 21。
高考数学试题解析分项 专题14 复数、推理与证明 理 试题
2021年高考试题解析数学〔理科〕分项版14 复数、推理与证明制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题:1. (2021年高考卷理科2)复数z=22i i-+(i 为虚数单位)在复平面内对应的点所在象限为 〔A 〕第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.(2021年高考卷理科2)把复数z 的一共轭复数记作z ,假设1z i =+,i 为虚数单位,那么(1)z z +=〔A 〕3i - 〔B 〕3i + 〔C 〕13i +〔D 〕3【答案】 A【解析】(1)1(1)(1)123z z z zz i i i i i +=+=-++-=-+=- 应选A5.(2021年高考卷理科1)设复数z 满足(1+i)z=2,其中i 为虚数单位,那么Z=〔 〕A .1+iB .1-iC .2+2iD .2-2ii i i z -=-=+=1)1(2212所以选B. 6.(2021年高考卷理科1)a 为正实数,i 为虚数单位,2a i i+=,那么a=〔 〕〔A 〕2 〔B (D)1答案: B解析:|1|2a i ai i+=-==,a>0,故. 7. (2021年高考全国新课标卷理科1)复数i i 212-+的一共轭复数是〔 〕 A i 53- B i 53C i -D i ; 解析:C ,因为i i 212-+=i ii i =--21)21(,所以,一共轭复数为i -,选C 点评:此题考察复数的概念和运算,先化简后写出一共轭复数即可。
8.(2021年高考卷理科1)假设i z i1+2=,那么复数z = A. i -2- B. i -2+ C. i 2- D. i 2+【答案】D【解析】因为i z i 1+2==()()i i i 1+2-=2-,所以复数z =i 2+,选D. 9. (2021年高考卷理科7)观察以下各式:55=3125,65=15625,75=78125,…,那么20115的末四位数字为A .3125B .5625C .0625D .8125【答案】D【解析】观察发现幂指数是奇数的,结果后三位数字为125,故排除B 、C 选项;而201153125>,故A 也不正确, 所以选D.10.(2021年高考卷理科10)如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是12.(2021年高考卷理科1)i 为虚数单位,那么20111()1i i+-=A.-iB.-1答案:A 解析:因为11i i i +=-,故2011201125051()(),1i i i i i i +==⋅=--所以选A.13.(2021年高考卷理科7)设集合{}22||cos sin |,M y y x x x R ==-∈, 1{|||N x x i =-<}i x R ∈为虚数单位,那么M N 为〔A 〕(0,1) 〔B 〕(0,1] 〔C 〕[0,1) 〔D 〕[0,1]【答案】C【解析】:由22|cos sin ||cos 2|[0,1]y x x x =-=∈即M =[0,1]由1||x i -<||11x i x +=<⇒-<<即N =(1,1)-[0,1)M N =应选C14.(2021年高考卷理科1)复数2341i i i i++=- 〔A 〕1122i -- (B) 1122i -+ (C) 1122i - (D) 1122i + 解析:选B. ()()()234111111112i i i i i i i i i i i -+++--+-===---+。
高考数学专题《复数》练习
专题10.2 复数1.(2020·全国高考真题(理))复数113i -的虚部是( ) A .310- B .110- C .110 D .3102.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4iD .4i3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( ) A .1i -- B .1i -+ C .1i - D .1i + 4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i + 5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i --B .312i -+C .32i -+D .32i -- 6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i - 7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i -+C .34i -D .34i + 8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( ) A .1- B .1 C .3- D .39.(2019·北京高考真题(文))已知复数z =2+i ,则( )A B C .3 D .510.(2019·全国高考真题(文))设,则=( ) A .2 B C D .11.(2010·山东高考真题(文))已知,,其中 为虚数单位,则=( )A .-1B .1C .2D .3z z ⋅=3i 12i z -=+z 2a i b i i +=+,a b ∈R i +a b 练提升练基础2.(全国高考真题(理))复数的共轭复数是( ) A . B .i C . D . 3.(2018·全国高考真题(理))设,则( ) A . B . C . D4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( ) A . B . C . D.5.(2017·山东高考真题(理))已知,是虚数单位,若,,则( )A .1或 B或 C .D6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i -+C .2i +D .2i --7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限 8.【多选题】(2021·全国·模拟预测)已知复数z =i 为虚数单位),则下列说法正确的是( )A .复数z 在复平面内对应的点坐标为()sin3cos3,sin3cos3+-B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数 9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=212i i+-i -35i -35i 1i 2i 1iz -=++||z =0121z 1-5i z 2i -2i +2i --2i -+R a ∈i z a =+4z z ⋅=a =1-B .1z z+为实数 C .若83πθ=,则复数z 在复平面上对应的点落在第一象限 D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ (O 为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4 B .2 C .-2 D .-4 2.(2021·全国·高考真题)复数2i 13i --在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1CD .24.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .25.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.z z i 12i z ⋅=+z 练真题。
高考数学专题《复数》习题含答案解析
专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D 【解析】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.2.(2020·全国高考真题(文))(1–i )4=( ) A .–4 B .4 C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( ) A .1i -- B .1i -+C .1i -D .1i +【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果. 【详解】 由题意可得:()()()()2121211112i i z i i i i ++====+--+. 故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( ) A .62i - B .42i -C .62i +D .42i +【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果. 【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --【答案】B 【分析】 由已知得322iz i+=-,根据复数除法运算法则,即可求解. 【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅. 故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i - B .12i +C .1i +D .1i -【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z . 【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( ) A .–34i - B .34i -+C .34i -D .34i +【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值. 【详解】由题意可得:()2434343341i i i i z i i i ++-====--. 故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( ) A .1- B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值. 【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-. 故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( ) ABC .3D .5【答案】D 【解析】∵ 故选D. 10.(2019·全国高考真题(文))设,则=( ) A .2 BCD .1【答案】C 【解析】 因为,所以,所以C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( ) A .-1 B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312i z i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,, 所以,则,故选B. 2.(全国高考真题(理))复数的共轭复数是( ) A . B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( ) A . B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( ) A . B .C .D .【答案】B 【解析】 由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,则( )22222a i ai iai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i -35i ()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i +2i --2i -+R a ∈i z a =+4z z ⋅=a =A .1或 B或 C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( ) A .2i - B .2i -+C .2i +D .2i --【答案】C 【分析】根据复数除法运算求出z ,即可得出答案. 【详解】()2i 34i 5z +=+=, ()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+. 故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】先由欧拉公式计算可得i312e π=,然后根据复数的几何意义作出判断即可. 【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝⎭,在第一象限. 故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =i 为虚数单位),则下列说法正确的是( )A .复数z 在复平面内对应的点坐标为()sin3cos3,sin3cos3+-1-,4z a z z =⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解. 【详解】 复数sin3cos3i sin3cos3z ==++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin3cos30->,所以原式()()sin3cos3i sin3cos3=-++-,所以选项A 错误;复数z ,所以选项B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确. 故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( ) A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限 D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】 对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确. 对选项B ,因为11cos isin cos isin z z θθθθ+=+++ ()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=, 所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>, 所以88cos isin 33z ππ=+在复平面对应的点落在第二象限. 故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ (O 为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______. 【答案】16 ()22cos sin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解:2(cossin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos6sin 61i ωθθ=+=,所以sin 60cos61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4 B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-. 【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-. 故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置. 【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限, 故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=. 故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】C 【解析】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C . 6.(2018·江苏高考真题)若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________. 【答案】2 【解析】因为i 12i z ⋅=+,则12i2i iz +==-,则z 的实部为2.。
人教版最新高考数学复数习题及答案Word版
高考复习试卷(附参考答案)、选择题(每小题只有一个选项是正确的,每小题 5分,共100分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)3 — i1 . (2013 •山东复数 等于1 — i A . 1 + 2i B . 1 — 2iC . 2 + iD . 2 — i答案:C 3 + 2i 3 — 2i2. (2013 •宁夏、海南)复数2—i —応 A. 0 B . 2C .— 2iD . 2i答案:D3+ 2i3 — 2i (3 + 2i)(2 + 3i) (3 — 2i)(2 — 3i) 13i — 13i 解析: — = — = — =i + i = 2i.2— 3i 2 + 3i (2 — 3i)(2 + 3i) (2 — 3i)(2 + 3i) 13 13z + 23. (2013 •陕西已知z 是纯虚数, 是实数,那么z 等于( )1 — i A . 2i B . iC . — iD . — 2i答案:D解析:由题意得 z = a i.(a € R 且a 丰0).z + 2 (2 + a i)(1 + i) 2 — a + (a + 2)i''1 — i = (1 — i)(1 + i) =2,则 a + 2 = 0 ,'a =— 2.有 z =— 2i ,故选 D.4 . (2013 •武汉市高三年级2月调研考试)若f (x )= x 3 — x 2 + x — 1,则f (i)= ( )A . 2iB . 0C . — 2iD . — 2答案:B解析:依题意,f (i) = i 3 — i 2 + i — 1 =— i + 1 + i — 1 = 0,选择 B.2 — i5 . (2013 •北京朝阳4月復数z = (i 是虚数单位)在复平面内对应的点位于 ( )1 + iA .第一象限B .第二象限C .第三象限D .第四象限答案:D2 — i 1 3解析:z = =一一「,它对应的点在第四象限,故选D.1 + i2 22 + i•北京东城3月)若将复数 表示为a + b i (a , b € R , i 是虚数单位)的形式,i( ) 1 D._ 2解析:百(3 — i)(1 + i)(1 — i)(1 + 4 + 2ih = 2 + L 故选 C.b则一的值为a6 . (2013答案:A2 + i b解析:=1 —2i,把它表示为a + b i(a, b € R, i是虚数单位)的形式,贝U的值为一2,故选A. iaA. bc + ad 丰 0 C. bc —ad = 0答案:Ca +b i (a + b i)(c —d i) 解析:因为石ac + bd bc —adL +右i,所以由题意有7 . (2013 -北京西城4月)设i是虚数单位,复数z = tan45i • sin60z2等于则( )A.] 3iC・4+ . 3i答案:B解析:z= 8 . (2013J3 1厂i • sin6—1°戸z2= —- 3i,故选 B.2 4 v•黄冈中学一模)过原点和“ 3 —i在复平面内对应的直线的倾斜角为tan45n A.—62 C. —n 35 D.—n 6答案:解析: -3 —i对应的点为C 3 , —1),所求直线的斜率为一5,则倾斜角为一冗,6故选D.9 •设a、b、c、d € R,若a + b i财为实数,则110 .已知复数z= 1 —2i,那么 ==z■525 B.—51 2C.— +_ i5 _1 2D.——i5 5答案:解析:1z= 1 —2i知z= 1+ 2i,于是;=1 + 2i 1 + 41 1 —2i 1 2—_i.故选D.5Z111 .已知复数Z1 = 3 —b i, Z2 = 1 —2i,若—是实数,则实数Z2的值为C. 0 1D.—6答案:解析: Z1 3 —b i (3 —b i)(1 + 2i)Z2 1 —2i (1 —2i)(1 + 2i)(3 + 2b)+ (6 —b)i是实数,则实数b的值为6 , 故选A.bc —ad 工0bc + ad = 0c2+ d2bc —ad寸=0? bc - ad= °.5i, a(i) =12 . (2013 •广东设z是复数,a z)表示满足z n= 1的最小正整数n ,则对虚数单位C. 65精品文档2答案:B解析: a(i )表示i n = 1的最小正整数 n ,因i 4k = 1( k € N ),显然n = 4,即a(i )= 4•故选B. 1 - 313 .若 z = 一+^—i ,且(x — z )4 = a o x 4+ a i x 3 + a 2X 2+ a 3x + a 4,贝U a 2等于 ( )2 2A . —2+ C . 6 + 33i答案:B 解析:••• T r +1 = C 4x 4—r( — z )r ,由 4 — r = 2 得 r = 2 ,2 B. — 3答案:C(2 — bi )(1 — 2i )(2 — 2b ) (— 4 — b )+ i 5 5 2 — 2b — 4 — b 由 =— 得b5 51也16 .设函数 f (x ) = — x 5 + 5x 4— 10x 5+ 10x 6— 5x + 1,贝U f (; + 2 i )的值为1五 A .— 一+一 i 22'3 1 B. —_ i2 2也1D .—门+」2 21 + 2i解析:6 bi1/a2= C 2(— Z )2= 6 X (—2=—3 + 3 3i .故选 B.14 .若△ABC 是锐角三角形,则复数 z = (cos B — si n A ) + i (si n B — cos A )对应的点位于( A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:B解析:•「△ABC 为锐角三角形,•••A + B > 90 °,B > 90 4,/• cos B v sin A , sin B > cos A ,• cos B — si n A v 0, sin B — cos A > 0 ,•••z 对应的点在第二象限.15 .如果复数 2 — bi土(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于)C .答案:C解析:「f(x) = —(x —1)521 - 3 1 - 3 •••f (2 +〒)=-(2 +〒-1)51乐=—35(其中 3=— 2+ _^i)1 - 3 1 - 3 =—3 =— (———i) = + ^- i. 2 2 2 217 .若i 是虚数单位,则满足(p + qi )2= q + pi 的实数p , q 一共有 A . 1对 B . 2对C . 3对D . 4对答案:D2 2p 2 — q 2= q ,解析:由(p + qi )2= q + pi 得(p 2— q 2) + 2pqi = q + pi ,所以2pq = p .因此满足条件的实数 p , q 一共有4对.总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特1别注意不要出现漏解现象,如由2pq = p 应得到p = 0或q = ~.2 x20618 .已知0)6的展开式中,不含x p 的项是一,那么正数p 的值是(A . 1B . 2C . 3D . 4答案: C解析: 由题意得1 20:C 6A 2=万,求得 p = 3.故选C.总结评述:本题考查二项式定理的展开式, 注意搭配展开式中不含 x 的项, 即找常数项19 . 复数z =- -lg( x 2 + 2) — (2x+ 2 — x—1)i (x € R)在复平面内对应的点位于 ( )A .第一象限B .第二象限C. 第三象限 D .第四象限答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是 -- 对应的关系,即 z = a + bi ,与复平面上的点 Z (a , b )对应,由 z = — lg(x 2 + 2) — (2x + 2—x — 1)i (x € R)知:a = — lg(x 2 + 2) v 0 ,又 2x + 2 — x — 1 >2 2x • — x — 1 = 1 > 0; •••—(2x + 2 — x — 1) v 0,即卩b v 0.・a ( b )应为第三象限的点,故选C.20 .设复数z + i (z € C)在映射f 下的象为复数z 的共轭复数与i 的积,若复数3在映射f 下的象为—1 + 2i ,则相应的3 为 () A . 2 B . 2 — 2i C .— 2 + i D . 2 + i答案:A解析:令 3 = a + bi , a , b € R ,贝U 3= [a + (b — 1)i ] + i , •映射 f 下 3 的象为[a — (b — 1)i ] i = (b — 1) + ai = — 1 + 2i .p = 0,p = 0,解得或q = 0, q = — 1 ,\3p=—2,第H卷(非选择题共50分)二、填空题(本大题共5小题,每小题4分,共20分,请将答案填在题中的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市2016届高三数学理优题精练
复数、推理与证明
一、复数
1、(2015年北京高考)复数=-)2(i i
A.i 21+
B.i 21-
C.i 21+-
D.i 21--
2、(2014年北京高考)复数211i i +⎛⎫= ⎪-⎝⎭
_______ 3、(2013年北京高考)在复平面内,复数(2-i)2对应的点位于( ).
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4、(朝阳区2015届高三一模)i 为虚数单位,计算=_______。
5、(房山区2015届高三一模)已知复数z 满足(1)1i z i +=-,则复数z =____
6、(丰台区2015届高三一模)在复平面内,复数
734i i ++对应的点的坐标为 (A) (1,1)- (B) (1,1)- (C) 17(,1)25
- (D) 17(,1)5- 7、(石景山区2015届高三一模)1z i =+,z 为复数z 的共轭复数,则1z z z ⋅+-=_______ 8、(西城区2015届高三一模)复数z 满足z ⋅ i = 3 − i ,则在复平面内,复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
9、(海淀区2015届高三上学期期末)如图所示,在复平面内,点A 对应的复数为z ,则复数2
z =( )
(A )34i -- (B )54i + (C )54i - (D )34i -
10、(东城区示范校2015届高三上学期综合能力测试)复数
i
i +-221的虚部为_________ 11、(朝阳区2015届高三上学期期末)设i 为虚数单位,则复数1i i z +=在复平面内对应的点所在的
象限是
A .第一象限
B .第二象限
C .第三象限
D .第四象限
12、(大兴区2015届高三上学期期末)如图,在复平面内,复数1z 和2z 对应的点分别是A 和B , 则21
z z 等于
(A )12i + (B )2i + (C )12i --
(D )2i -+
二、推理与证明
1、(2014年北京高考)有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )
(A )2 (B )3 (C )4 (D )5
2、(朝阳区2015届高三一模)将体积为1 的四面体第一次挖去以各棱中点为顶点构成的多面体,第二次再将剩余的每个四面体均挖去以各棱中点为顶点构成的多面体,如此下去,共进行了n (n ∈N * )次,则第一次挖去的几何
体的体积是______;这n 次共挖去的所有几何体的体积和是_____。
3、(东城区2015届高三二模)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加
入相关数据组成传输信息.设定原信息为012a a a ,其中{0,1}i a ∈(0,1,2i =),传输信息为00121h a a a h ,001h a a =⊕,102h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如原信息为111,则传输信息为01111.传播信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是
(A )11010 (B )01100
(C )10111 (D )00011
4、(昌平区2015届高三上学期期末)某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝. 甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷. 根据以上条件,可以判断偷珠宝的人是
A .甲 B. 乙 C .丙 D.丁
5、(朝阳区2015届高三上学期期末)有一口大钟每到整点就自动以响铃的方式报时,1点响1声,
2点响2声,3点响3声,……,12点响12声(12时制),且每次报时时相邻两次响铃之间的间隔均为1秒.在一次大钟报时时,某人从第一声铃响开始计时,如果此次是12点的报时,则此人至少需等待 秒才能确定时间;如果此次是11点的报时,则此人至少需等待 秒才能确定时间.
6、(石景山区2015届高三上学期末)对于数集}1
{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .
(Ⅰ)判断}2,1,1{-是否具有性质P ;
(Ⅱ)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;
(Ⅲ)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x .
参考答案
一、复数
1、A
详细分析:12)2(+=-i i i
2、1- 复数21i (1i)2i i 1i (1i)(1i)2
++===--+ 故221i ()i 11i
+==-- 3、答案:D
详细分析:∵(2-i)2=3-4i ,∴该复数对应的点位于第四象限,故选D.
4、答案:
5、i -
6、A
7、
8、答案:C
详细分析:
,所以对应点为(-1,-3),所以
位于第三象限.
9、D 10、-1 11、D 12、C
二、推理与证明
1、B
用ABC 分别表示优秀、及格和不及格。
显然语文成绩得A 的学生最多只有1个,语文成绩得B 的也最多只有1个,得C 的也最多只有1个,因此学生最多只有3个。
显然,(AC )(BB )(CA )满足条件,故学生最多3个
2、答案:
3、C
4、A
5、11;11
6、(Ⅰ)}2,1,1{-具有性质P . ……2分 (Ⅱ)选取1(,2)a x =,Y 中与1a 垂直的元素必有形式()1,b -.
所以=2x b ,从而=4x ……5分
(III )证明:取111(,)a x x Y =∈.设2(,)a s t Y =∈满足120a a ⋅=.
由()1+0s t x =得+0s t =,所以s 、t 异号.
因为1-是X 中唯一的负数,所以s 、t 中之一为1-,另一为1,
故1X ∈. ……8分
假设1k x =,其中1k n <<,则101n x x <<<.
选取11(,)n b x x Y =∈,并设2(,)b p q Y =∈满足120b b ⋅=,
即10n px qx +=,则p ,q 异号,从而p ,q 之中恰有一个为1-. ……10分 若1p =-,则1n x qx =,显然矛盾; 若1q =-,则1n n x px p x =<≤,矛盾. 所以1=1x . ……13分。