感测技术基础第4章习题解答

合集下载

传感器技术后部分习题解答

传感器技术后部分习题解答

传感器技术后部分习题解答潘光勇0909111621 物联⽹1102班《传感器技术》作业第⼀章习题⼀1-1衡量传感器静态特性的主要指标。

说明含义。

1、线性度——表征传感器输出-输⼊校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、回差(滞后)—反应传感器在正(输⼊量增⼤)反(输⼊量减⼩)⾏程过程中输出-输⼊曲线的不重合程度。

3、重复性——衡量传感器在同⼀⼯作条件下,输⼊量按同⼀⽅向作全量程连续多次变动时,所得特性曲线间⼀致程度。

各条特性曲线越靠近,重复性越好。

4、灵敏度——传感器输出量增量与被测输⼊量增量之⽐。

5、分辨⼒——传感器在规定测量范围内所能检测出的被测输⼊量的最⼩变化量。

6、阀值——使传感器输出端产⽣可测变化量的最⼩被测输⼊量值,即零位附近的分辨⼒。

7、稳定性——即传感器在相当长时间内仍保持其性能的能⼒。

8、漂移——在⼀定时间间隔内,传感器输出量存在着与被测输⼊量⽆关的、不需要的变化。

9、静态误差(精度)——传感器在满量程内任⼀点输出值相对理论值的可能偏离(逼近)程度。

1-2计算传感器线性度的⽅法,差别。

1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值⽆关。

2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反⾏程校准曲线对它的正负偏差相等并且最⼩。

这种⽅法的拟合精度最⾼。

4、最⼩⼆乘法:按最⼩⼆乘原理求取拟合直线,该直线能保证传感器校准数据的残差平⽅和最⼩。

1—4 传感器有哪些组成部分?在检测过程中各起什么作⽤?答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。

各部分在检测过程中所起作⽤是:敏感元件是在传感器中直接感受被测量,并输出与被测量成⼀定联系的另⼀物理量的元件,如电阻式传感器中的弹性敏感元件可将⼒转换为位移。

传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变⽚可将应变转换为电阻量。

《感测技术基础》孙传友(第4版)习题解答

《感测技术基础》孙传友(第4版)习题解答

《感测技术基础》孙传友(第4版)习题解答长江大学孙传友编绪论1、什么是感测技术?为什么说它是信息的源头技术?答:传感器原理、非电量测量、电量测量这三部分内容合称为传感器与检测技术,简称感测技术。

现代信息技术主要有三大支柱:一是信息的采集技术(感测技术),二是信息的传输技术(通信技术),三是信息的处理技术(计算机技术)。

所谓信息的采集是指从自然界中、生产过程中或科学实验中获取人们需要的信息。

信息的采集是通过感测技术实现的,因此感测技术实质上也就是信号采集技术。

显而易见,在现代信息技术的三大环节中,“采集”是首要的基础的一环,没有“采集”到的信息,通信“传输”就是“无源之水”,计算机“处理”更是“无米之炊”。

因此,可以说,感测技术是信息的源头技术。

2、非电量电测法有哪些优越性。

答:电测法就是把非电量转换为电量来测量,同非电的方法相比,电测法具有无可比拟的优越性:1、便于采用电子技术,用放大和衰减的办法灵活地改变测量仪器的灵敏度,从而大大扩展仪器的测量幅值范围(量程)。

2、电子测量仪器具有极小的惯性,既能测量缓慢变化的量,也可测量快速变化的量,因此采用电测技术将具有很宽的测量频率范围(频带)。

3、把非电量变成电信号后,便于远距离传送和控制,这样就可实现远距离的自动测量。

4、把非电量转换为数字电信号,不仅能实现测量结果的数字显示,而且更重要的是能与计算机技术相结合,便于用计算机对测量数据进行处理,实现测量的微机化和智能化。

3、什么叫传感器?什么叫敏感器?二者有何异同?答:将非电量转换成与之有确定对应关系的电量的器件或装置叫做传感器。

能把被测非电量转换为传感器能够接受和转换的非电量(即可用非电量)的装置或器件,叫做敏感器。

如果把传感器称为变换器,那么敏感器则可称作预变换器。

敏感器与传感器虽然都是对被测非电量进行转换,但敏感器是把被测非电量转换为可用非电量,而不是象传感器那样把非电量转换成电量。

4、常见的检测仪表有哪几种类型?画出其框图。

感测技术基础第1-4章习题解答

感测技术基础第1-4章习题解答

第1章习题解答1、在图1-1-3(b )中,表头的满偏电流为0.1mA ,内阻等于4900Ω,为构成5mA 、50 mA 、500 mA 三挡量程的直流电流表,所需量程扩展电阻R 1 、R 2、R 3分别为多少? (1Ω、9Ω、90Ω)解:据公式(1-1-8)计算得Ω=-Ω=-=++10011.05490013321mAmAI I R R R R gg ,Ω=Ω+Ω⨯=+++=+10)1004900(501.0)(321221mAmAR R R R I I R R g g , Ω=Ω+Ω⨯=+++=1)1004900(5001.0)(32111mAmAR R R R I I R g g故Ω=Ω=90,932R R2、在图1-2-2中,电压表V 的“Ω/V ”数为20k Ω/V ,分别用5V 量程和25量程测量端电压U 0的读数值分别为多少?怎样从两次测量读数计算求出E 0的精确值?(2.50V ,4.17V ,5.01 V )解:5V 档量程内阻 ()Ω=⨯Ω=k Vk R V 1005201,25V 档量程内阻 ()Ω=⨯Ω=k Vk R V 50025202。

图1-2-2中 伏50=E ,Ω=k R 1000, 5V 档读数V E R R R V V V 5.25100100100001101=⋅+=⋅+=,25V 档读数V E R R R V V V 17.45100500500002202=⋅+=⋅+=。

552512===V V K ,代入公式(1-2-8)式得: ()()V U U K U K E 01.55.217.4517.4151010202'0≈-⨯-=--=。

3、模拟直流电流表与模拟直流电压表有何异同?为什么电流表的内阻很小,而电压表的内阻却很大?解:模拟直流电流表与模拟直流电压表的表头都是动圈式磁电系测量机构。

模拟直流电流表是由“表头”并联很小的分流电阻构成,指针的偏转角与被测直流电流成正比;模拟直流电压表是由“表头”串联很大的分压电阻构成,指针的偏转角与被测直流电压成正比。

《传感器与检测技术》课后习题:第四章(含答案)

《传感器与检测技术》课后习题:第四章(含答案)

第四章习题答案1.某电容传感器(平行极板电容器)的圆形极板半径)(4mm r =,工作初始极板间距离)(3.00mm =δ,介质为空气。

问:(1)如果极板间距离变化量)(1m μδ±=∆,电容的变化量C ∆是多少?(2)如果测量电路的灵敏度)(1001pF mV k =,读数仪表的灵敏度52=k (格/mV )在)(1m μδ±=∆时,读数仪表的变化量为多少?解:(1)根据公式SSSd C d d d d d dεεε∆∆=-=⋅-∆-∆ ,其中S=2r π (2)根据公式112k k δδ∆=∆ ,可得到112k k δδ⋅∆∆==31001100.025-⨯⨯= 2.寄生电容与电容传感器相关联影响传感器的灵敏度,它的变化为虚假信号影响传感器的精度。

试阐述消除和减小寄生电容影响的几种方法和原理。

解:电容式传感器内极板与其周围导体构成的“寄生电容”却较大,不仅降低了传感器的灵敏度,而且这些电容(如电缆电容)常常是随机变化的,将使仪器工作很不稳定,影响测量精度。

因此对电缆的选择、安装、接法都有要求。

若考虑电容传感器在高温、高湿及高频激励的条件下工作而不可忽视其附加损耗和电效应影响时,其等效电路如图4-8所示。

图中L 包括引线电缆电感和电容式传感器本身的电感;C 0为传感器本身的电容;C p 为引线电缆、所接测量电路及极板与外界所形成的总寄生电容,克服其影响,是提高电容传感器实用性能的关键之一;R g 为低频损耗并联电阻,它包含极板间漏电和介质损耗;R s 为高湿、高温、高频激励工作时的串联损耗电组,它包含导线、极板间和金属支座等损耗电阻。

此时电容传感器的等效灵敏度为2200220/(1)(1)g e e k C C LC k d d LC ωω∆∆-===∆∆- (4-28)当电容式传感器的供电电源频率较高时,传感器的灵敏度由k g 变为k e ,k e 与传感器的固有电感(包括电缆电感)有关,且随ω变化而变化。

测试技术基础课后习题答案

测试技术基础课后习题答案

第2章习题及解答1.判断正误(1)凡频谱是离散的信号必然是周期信号。

( × )准周期信号(2)任何周期信号都由频率不同,但成整倍数比的离散的谐波叠加而成。

( × )(3)周期信号的频谱是离散的,非周期信号的频谱也是离散的。

( × )(4)周期单位脉冲序列的频谱仍为周期单位脉冲序列。

( √ )(5)非周期变化的信号就是随机信号。

( × )准周期信号(6)非周期信号的幅值谱表示的是其幅值谱密度与时间的函数关系。

( × )(7)信号在时域上波形有所变化,必然引起频谱的相应变化。

( × )(8)各态历经随机过程是平稳随机过程。

( √ )(9)平稳随机过程的时间平均统计特征等于该过程的集合平均统计特征。

( √ )(10)非周期信号的频谱都是连续的。

( × ) 准周期信号(11)单位脉冲信号的频谱是无限带宽谱(√)(12)直流信号的频谱是冲击谱(√)2.选择正确答案填空(1)描述周期信号的数学工具是(B )。

A.相关函数B. 傅里叶级数C. 拉普拉斯变换D. 傅里叶变换(2)描述非周期信号的数学工具是( C )。

A.三角函数B. 拉普拉斯变换C. 傅里叶变换D. 傅里叶级数(3)将时域信号进行时移,则频域信号将会( D )A.扩展B. 压缩C. 不变D. 仅有相移(4)瞬变信号的傅里叶变换的模的平方的意义为( C )A.信号的一个频率分量的能量B. 在f处的微笑频宽内,频率分量的能量与频宽之比C. 在f处单位频宽中所具有的功率(5)概率密度函数是在(C)域,相关函数是在(A)域,功率谱密度函数是在(D)域描述随机信号。

A.时间B. 空间C. 幅值D. 频率 (6) 白噪声信号的自相关函数是(C )A.相关函数B. 奇函数C. 偶函数D. 不存在3.已知方波信号傅里叶级数,请描述式中各常数相的物理意义,并绘出频谱图。

见书中例题4.已知锯齿波信号傅里叶级数,请描述式中各常数相的物理意义,并绘出频谱图。

传感器与检测技术智慧树知到课后章节答案2023年下咸阳职业技术学院

传感器与检测技术智慧树知到课后章节答案2023年下咸阳职业技术学院

传感器与检测技术智慧树知到课后章节答案2023年下咸阳职业技术学院咸阳职业技术学院第一章测试1.下列指标中,描述传感器静态特性的是()。

答案:线性度2.传感器的分辨力越高,表示传感器()。

答案:能感知的输入变化量越小3.在传感器及检测系统的静态指标中,表达其对输入量变化的反应能力的是()。

答案:灵敏度4.属于传感器动态特性指标的是()。

答案:固有频率5.提高灵敏度,可得到较高测量精度,所以说不用考虑其他因素,灵敏度越高越好。

()答案:错第二章测试1.用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小,需保证()。

答案:两个桥臂应当分别用应变量变化相反的工作应变片2.应变片测量测量电路中四臂电桥工作方式输出电压是单臂电桥工作方式输出电压的()。

答案:4倍3.半导体应变片的灵敏系数比电阻应变片的灵敏系数大()。

答案:(50~70)倍4.半导体应变片的工作原理是基于()。

答案:压阻效应5.半导体应变片电阻变化的原因,主要是应变片几何尺寸的变化。

()答案:错第三章测试1.下列哪些是电感式传感器?()答案:感应同步器;差动式;压磁式;变压式2.变间隙式电感传感器的测量范围增大时,其灵敏度 ,非线性误差。

()答案:1降低,2增大3.差动变压器式传感器的输出是交流电压,只能反映衔铁位移的大小,不能反映位移的方向,利用能达到辨别移动方向的目的。

()答案:相敏检波电路4.零点残余电压产生的原因是()。

答案:磁性材料磁化曲线的非线性;传感器的两次级绕组的几何尺寸不对称;传感器的两次级绕组的电气参数不同;环境温度的升高5.电涡流接近开关可以利用电涡流原理检测出()的靠近程度。

答案:黑色金属零件第四章测试1.电容式传感器的结构形式有哪几种?()答案:变极距型;变介电常数型;变面积型2.下列不属于电容式传感器测量电路的是()。

答案:相敏检波电路3.当变间隙式电容传感器两极板间的初始距离d增加时,将引起传感器的()。

传感器技术习题解答(DOC)

传感器技术习题解答作者:黄小胜第一章传感器的一般特性1.1答传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性。

其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。

1.2答:1动态特性是指传感器对随时间变化的输入量的响应特性2 描述动态特性的指标对一阶传感器:时间常数对二阶传感器:固有频率、阻尼比。

1.3答传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即A=∆A/YFS*100%1.4答:1)传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度。

2)拟合直线的常用求法有:切线法、端基法和最小二乘法。

1.5答由一阶传感器频率传递函数w(jw)=K/(1+jωt),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωη)2)1/2,从而确定ω,进而求出f=ω/(2π).1-6答:若某传感器的位移特性曲线方程为y1=a0+a1x+a2x2+a3x3+……. 让另一传感器感受相反方向的位移,其特性曲线方程为y2=a0+a1x+a2x2+a3x3则Δy=y1-y2=2(a1x+a3x3+ a5x5……),这种方法称为差动测量法。

其特点:输出信号中没有偶次项、从而使线性范围增大、减小了非线性误差、灵敏度也提高了一倍、也消除了零点误差。

1-7解:YFS=200-0=200 由A=ΔA/YFS*100%有A=4/200*100%=2%;精度特级为2.5级。

1-8解根据精度定义表达式A=ΔA/AyFS*100%,由题意可知A=1.5%YFS=100 所以ΔA=1.5 因为 1.4<1.5 所以合格。

第二章应变式传感器2-1答:1)金属材料在受到外力作用时产生机械变形导致其阻值发生变化的现象叫金属材料的应变效应。

2)半导体材料在受到应力作用后其电阻率发生明显变化这种现象称为压阻效应。

相同点:它们都是在外界力作用下产生机械变形从而导致材料的电阻发生变化。

《传感器与智能检测技术》 第4章习题答案

第4章压电式传感器一、填空题1.压电元件一般有三类:第一类是石英晶体;第二类是压电陶瓷;第三类是高分子压电材料。

2.压电效应可分为正压电效应和逆压电效应。

3.将超声波(机械振动波)转换成电信号是利用压电材料的压电效应;蜂鸣器中发出“嘀…嘀…”声的压电片发声原理是利用压电材料的逆压电效应。

4.在实验室作检验标准用的压电仪表应采用sio2压电材料;能制成薄膜,粘贴在一个微小探头上、用于测量人的脉搏的压电材料应采用PVDF。

5.使用压电陶瓷制作的力或压力传感器可测量动态的力或压力。

6.动态力传感器中,两片压电片多采用并联接法,可增大输出电荷量;在电子打火机和煤气灶点火装置中,多片压电片采用串联接法,可使输出电压达上万伏,从而产生电火花。

7.用于厚度测量的压电陶瓷器件利用了逆压电效应原理。

二、综合题1.简述压电式加速度传感器的结构及原理。

压电式加速度传感器一般由壳体及装在壳体内的弹簧、质量块、压电元件和固定安装的基座组成。

压电元件一般由两片压电片组成,并在压电片的两个表面镀银,输出端由银层或两片银层之间所夹的金属块上引出,输出端的另一根引线就直接和传感器的基座相连。

在压电片上放置一个质量块,然后用硬弹簧对质量块预加载荷,然后将整个组件装在一个基座的金属壳体内。

为了隔离基座的应变传递到压电元件上去,避免产生假信号输出,增加传感器的抗干扰能力,基座一般要加厚或者采用刚度较大的材料制造。

使用时,将传感器基座与试件刚性固定在一起,当其感受振动时,由于弹簧的刚度相当大,质量块的质量相对较小,可以认为质量块的惯性很小。

因此可以认为质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力作用,这样,质量块就有一个正比于加速度的作用力作用在压电片上。

通过压电片的压电效应,在压电片的表面上就会产生随振动加速度变化的电压,当振动频率远低于传感器的固有频率时,传感器输出的电压与作用力成正比,即与传感器感受到的加速度成正比。

(完整word版)第0-5章 传感器 习题答案

第0章作业答案0.1传感器的定义是什么?解:能感受规定的被测量并按一定的规律转换成可用输出信号的器件或装置。

从传感器输入端来看,一个指定的传感器只能感受或响应规定的物理量,即传感器对规定的被测量具有最大的灵敏度和最好的选择性。

从输出端看,传感器的输出信号为“可用信号”。

这意指传感器的输出信号中不但载运着待测的原始信息,而且是能够被远距离传送、后续测量环节便于接收和进一步处理的信号形式,最常见的是电信号。

从输入与输出关系来看,这种关系应具有“一定规律”。

其意指传感器的输入与输出应是相关的,而且这种规律是可复现的。

0.5 画出以下结构型传感器的组成框图与写出其输入、输出量的名称。

解:(3)电容式加速度传感器;中间变量0.7 将一热电偶与通用数字电压表组成测温系统与配用同类热电偶的专用测温仪相比较,有何主要的不同之处?解:前者输出为电压信号,后者输出为被测量的测量值。

0.12 智能传感器技术的主要特征是什么,从何时开始发展起来的?解:主要特征是:传感器与计算机或微处理器赋予智能的结合,从而兼有信息获取与信息处理双重功能的传感器系统。

20世纪80年代,随着微处理器迅速发展普及,智能传感器相继发展起来。

第1章作业答案1.1 传感器静态模型有哪几种常见形式。

解:1.列表形式将标定实验获得的一系列x i、y i离散值(i=1,2,…N)列成表来表征x-y关系。

2.曲线形式以输入量x(P)为横坐标,输出量y(U)为纵坐标,将标定实验获得的一系列x i、y i对应值在坐标平面上给出。

3.数学表达式形式根据标定实验得出的一系列x i、y i离散标定值可求出其拟合曲线的数学表达式。

对于实际的传感器系统,其输入与输出关系往往不是理想直线,故而静态特性也即静态模型常由多项式来表示:y(x)=S0+S1x+ S2x2+…S n x n1.2 测得某放大器的输入——输出关系的两对数据如下,试求其放大倍数K。

输入输出0.000mV -3.65mV0.500mV 63.25mV 解:第1章练习与实践1.6-1 已知某压力传感器的静态模型,由标定实验数据列表形式给出如下:要求“采用”远程网络测控实验室中的“线性拟合演示仪”与“多项式拟合演示仪”。

《传感器与检测技术》习题解答


º2 » »¼

«¬ª2 u 0.4 u
400 º 2 800 »¼
1.18
arctan
2[
¨¨©§
Z Z0
¸¸¹·
1
¨¨©§
Z Z0
¸¸¹· 2
2 u 0.4 u ¨§ 400 ¸·
arctan
© 800 ¹
1 ¨§ 400 ¸·2
© 800 ¹
arctan 0.5333 28.070
理论值
-2.7000 0.7300 4.1600 7.5900 11.0200 14.4500
端基法基准直线
误差Δ
非线性
正行程 反行程 误差Δ L
-0.0067 0.0067 0.0000
-0.1267 (0.0533) 0.0900
-0.1667 (0.0733) 0.1200
-0.1633 (0.0767) 0.1200
传感器与检测技术
习题解答
第二章
1.一应变片的电阻 R=120Ω,k=2.05,用作应变为 800μm/m 的传感元件。
(1)求ΔR 和ΔR/R;
(2)若电源电压 U=3V,求初始平衡时惠斯登电桥的输出电压。
解:
(1)电阻应变片的灵敏度定义为
k
'R RH
因此,
'R kH 2.05 u 800 u106 1.64 u103 R
该传感器的振幅相对误差为 相位误差为 28.07O。
k(Z) 1 u100% 18% 1
(2)当用 f0 1200 Hz 、[ 0.4 的传感器测量 f 400 Hz 的信号时,同理可得:
k(Z) 1.08 M(Z) 16.700
振幅相对误差为 8%。相位误差为 16.70O。 由此可见,应选用自振频率为 1200Hz 的传感器进行测量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章习题解答1、为什么线绕式电位器容易实现各种非线性特性而且分辨力比非线绕式电位器低? 答:线绕式电位器的电阻器是由电阻系数很高的极细的绝缘导线,整齐地绕在一个绝缘骨架上制成的。

在电阻器与电刷相接触的部分,导线表面的绝缘层被去掉并抛光,使两者在相对滑动过程中保持可靠地接触和导电。

电刷滑过一匝线圈,电阻就增加或减小一匝线圈的电阻值。

因此电位器的电阻随电刷位移呈阶梯状变化。

只要按精确设计绝缘骨架尺寸按一定规律变化,就可使位移-电阻特性呈现所需要的非线性曲线形状。

只有当电刷的位移大于相邻两匝线圈的间距时,线绕式电位器的电阻才会变化一个台阶。

而非线绕式电位器电刷是在电阻膜上滑动,电阻呈连续变化,因此线绕式电位器分辨力比非线绕式电位器低。

2、电阻应变片的灵敏系数比应变电阻材料本身的灵敏系数小吗?为什么?答:应变片的灵敏系数k 是指应变片的阻值相对变化与试件表面上安装应变片区域的轴向应变之比称为,而应变电阻材料的应变灵敏系数k 0是指应变电阻材料的阻值的相对变化与应变电阻材料的应变之比。

实验表明:k <k 0,究其原因除了黏结层传递应变有损失外,另一重要原因是存在横向效应的缘故。

应变片的敏感栅通常由多条轴向纵栅和圆弧横栅组成。

当试件承受单向应力时,其表面处于平面应变状态,即轴向拉伸εx 和横向收缩εy 。

粘贴在试件表面的应变片,其纵栅承受εx 电阻增加,而横栅承受εy 电阻却减小。

由于存在这种横向效应,从而引起总的电阻变化为(1)x x y y x x R k k k H Rεεαε∆=+=+, 按照定义,应变片的灵敏系数为)1(/H k RR k x x αε+=∆=, 因0<=xy εεα,横向效应系数0>=x y k k H ,故0k k k x <<。

3、用应变片测量时,为什么必须采取温度补偿措施?把两个承受相同应变的应变片接入电桥的相对两臂,能补偿温度误差吗?为什么?答:温度变化时,电阻应变片的电阻也会变化,而且,由温度所引起的电阻变化与试件 应变所造成的电阻变化几乎具有相同数量级,如果不采取温度补偿措施,就会错误地把温度引起的电阻变化当作应变引起的电阻变化,即产生“虚假视应变”。

把两个承受相同应变的应变片接入电桥的相对两臂,并不能补偿温度误差。

将04422=∆=∆R R R R ,)(3311T T k RR R R R R R εε+=∆+∆=∆=∆代入公式(4-1-24)得电桥输出电压为,)(220T T k U R R R U U εε+=∆+∆⋅= 由此可见,温度引起的电阻变化T R ∆也影响电桥输出电压,此时,从电桥输出电压测出的应变并不是真实应变ε,而是)(T εε+,也就是说测量结果中包含有温度误差T ε。

4、热电阻与热敏电阻的电阻—温度特性有什么不同?答:采用金属材料制作的电阻式温度传感器称为金属热电阻,简称热电阻。

一般说来, 金属的电阻率随温度的升高而升高,从而使金属的电阻也随温度的升高而升高。

因此金属热电阻的电阻温度系数为正值。

采用半导体材料制作的电阻式温度传感器称为半导体热敏电阻,简称热敏电阻。

按其电阻—温度特性,可分为三类:(1)负温度系数热敏电阻(NTC);(2)正温度系数热敏电阻(PTC);(3)临界温度系数热敏电阻(CTC)。

因为在温度测量中使用最多的是NTC 型热敏电阻,所以, 通常所说的热敏电阻一般指负温度系数热敏电阻。

5、为什么气敏电阻都附有加热器?答:气敏电阻是利用半导体陶瓷与气体接触而电阻发生变化的效应制成的气敏元件。

气敏电阻都附有加热器,以便烧掉附着在探测部位处的油雾、尘埃,同时加速气体的吸附,从而提高元件的灵敏度和响应速度。

半导瓷气敏电阻元件一般要加热到200℃~400℃,元件在加热开始时阻值急剧地下降,然后上升,一般经2~10分钟才达到稳定,称之为初始稳定状态,元件只有在达到初始稳定状态后才可用于气体检测。

6、试设计一个简易的家用有害气体报警电路。

答:下图为一个简易的家用有害气体报警电路。

图中变压器次级绕组为气敏电阻QM-N6提供加热器电源。

变压器初级中心抽头产生的110V 交流电压,加到由1k Ω电位器、气敏电阻和蜂鸣器串联组成的测量电路。

当CO 等还原性有害气体的浓度上升时,气敏电阻减小,流过蜂鸣器的电流增大,当有害气体的浓度使蜂鸣器的电流增大到一定值时,蜂鸣器就鸣叫报警。

调整电位器可调整蜂鸣器灵敏度,即产生报警的有害气体最低浓度。

图中氖灯LD 用作电源指示。

为防止意外短路,变压器初级安装了0.5A 的保险丝。

7、图4-1-19中电表指示减小表示湿度增大还是减小?为什么?怎样能调整该电路的测湿范围?解:图4-1-19中电表为电流表,其中电流X I 为:F XX I R R R V I ≤++=213 (F I 为电流表满量程) X R 为负特性湿敏电阻。

湿度↑→X R ↓→X I ↑。

湿度测量范围 min X %RH ~max X %RH ,R d 为湿度max X %RH 时R X 的值min X R ,因要求F X I I ≤即F I V R R R 3321≥++,所以增大1R 可减小min X R ,即扩大测湿量程max X %RH 。

8、测湿电路对供电电源有什么要求?为什么?答:测湿电路通常为湿敏电阻构成的电桥电路。

如果采用直流电源供电,湿敏电阻体在工作过程中会出现离子的定向迁移和积累,致使元件失效或性能降低,因此所有湿敏电阻的供电电源都必须是交流或换向直流(注意:不是脉动直流)。

9、为了减小变极距型电容传感器的极距,提高其灵敏度,经常在两极板间加一层云母或塑料膜来改善电容器的耐压性能,如图4-2-1(c )所示。

试推导这种双层介质差动式变极距型电容传感器的电容与动极板位移的关系式。

答:据公式(1-2-2)图4-2-1(c )所示电容传感器的初始电容为r r d d S d d SC εεεεε21002010+=+= 如果空气隙减小了d ∆,则电容值变为 rr r r r d d d C d d d d d S d d d S d d d SC εεεεεεεε2102121021021011+∆-=⎪⎪⎪⎪⎭⎫ ⎝⎛+∆-⎪⎪⎭⎫ ⎝⎛+=∆-+=+∆-= 双层介质差动式变极距型电容传感器的电容与动极板位移的关系式为。

rd d d C C C C ε212121+∆=+- 10、试证明图1所示传感器电容与介质块位移x 成线性关系。

图1答:图1所示为变介质式电容传感器,设极板宽为b ,长为l 。

极板间无介质块时的电容为2110d d blC +=ε,极板间有介质块时的电容为,2121210012122111)(εεεεεεε+-⋅+=+-++=+=d d l x C C d d x l b d d bx C C C B A 。

11、自感式传感器有哪些类型?各有何优缺点?答:自感传感器有三种类型:变气隙式、变面积式和螺管式。

变气隙式灵敏度最高,螺管式灵敏度最低。

变气隙式的主要缺点是:非线性严重,为了限制非线性误差,示值范围只能较小;它的自由行程受铁心限制,制造装配困难。

变面积式和螺管式的优点是具有较好的线性,因而示值范围可取大些,自由行程可按需要安排,制造装配也较方便。

此外,螺管式与变面积式相比,批量生产中的互换性好。

由于具备上述优点,而灵敏度低的问题可在放大电路方面加以解决,因此目前螺管型自感传感器的应用越来越多。

12、为什么更换自感传感器连接电缆需重新进行校正?答:由自感传感器的等效电路图4-3-3可见,自感传感器工作时,并不是一个理想的纯电感L,还存在线圈的匝间电容和电缆线分布电容组成的并联寄生电容C。

更换连接电缆后,连接电缆线分布电容的改变会引起并联寄生电容C的改变,从而导致自感传感器的等效电感改变,因此在更换连接电缆后应重新校正或采用并联电容加以调整。

13、试比较差动自感式传感器与差动变压器式传感器的异同?答:差动自感式传感器与差动变压器式传感器的相同点是都有一对对称的线圈铁心和一个共用的活动衔铁,而且也都有变气隙式、变面积式、螺管式三种类型。

不同点是,差动自感式传感器的一对对称线圈是作为一对差动自感接入交流电桥或差动脉冲调宽电路,将衔铁位移转换成电压。

而差动变压器式传感器的一对对称线圈是作为变压器的次级线圈,此外,差动变压器式传感器还有初级线圈(差动自感式传感器没有),初级线圈接激励电压,两次级线圈差动连接,将衔铁位移转换成差动输出电压。

14、试说明图4-3-9电路为什么能辨别衔铁移动方向和大小?为什么能调整零点输出电压?答:图(a)和图(b)的输出电流为I ab=I1-I2,图(c)和图(d)的输出电压为U ab=U ac-U bc。

当衔铁位于零位时,I1=I2,U ac=U bc,故I ab=0,U ab=0;当衔铁位于零位以上时,I1>I2,U ac>U bc,故I ab>0,U ab>0;当衔铁位于零位以下时,I1<I2,U ac<U bc,故I ab<0,U ab<0。

因此通过I ab和U ab 的正负可判别衔铁移动方向。

又因为I ab和U abde 大小与衔铁位移成正比,因此通过I ab和U ab的大小可判别衔铁位移的大小。

调整图中电位器滑动触点的位置,可以使差动变压器两个次级线圈的电路对称,在衔铁居中即位移为零时,图4-3-9电路输出电流或电压为零。

15、何谓压磁效应?试说明图4-3-13互感型压磁传感器工作原理。

答:铁磁物质在外界机械力(拉、压、扭)作用下,磁导率发生变化,外力取消后,磁导率复原,这种现象称为“压磁效应”。

图4-3-13为一种常用的互感型压磁传感器。

由硅钢片粘叠而成的压磁元件上冲有四个对称的孔,孔1、2的连线与孔3、4的连线相互垂直,孔1、2间绕有初级(激磁)绕组,孔3、4间绕有次级(输出)绕组,在不受力时,铁芯的磁阻在各个方向上是一致的,初级线圈的磁力线对称地分布,不与次级线圈发生交链,因而不能在次级线圈中产生感应电动势。

当传感器受压力F时,在平行于作用力方向上磁导率减小,磁阻增大,在垂直于作用力方向上磁导率增大,磁阻减小,初级线圈产生的磁力线将重新分布如图4-3-13(c)所示。

此时一部分磁力线与次级绕组交链,而产生感应电动势。

F的值越大,交链的磁通量越多,感应电压也越大。

感应电压经变换处理后,就可以用来表示被测力F的数值。

16、当采用涡流传感器测量金属板厚度时,需不需要恒温?为什么?答:温度变化时,金属的电阻率 会发生变化,据公式(4-3-44),将使涡流的渗透深度h随之变化,据公式(4-3-49)可知,这将使透射式涡流传感器接收线圈中U随温度变化。

为了防止温度变化产生的电压变化同金属板厚度变化产生的电的感应电压2压变化相混淆,采用涡流传感器测量金属板厚度时,需要采取恒温措施或考虑温度变化的影响。

相关文档
最新文档