第五章相交线与平行线复习课件
合集下载
第五章 相交线与平行线全章课件(共32份)-30

三根木条相交,把它们 想象成无限延长的直线, 固定木条b、c,转动木 条a,观察木条a、b的位 置关系。
c
a
一、平行线的定义: 在同一平面内,不相交的两条直线叫 做平行线。 平行线有什么特征? 1、在同 一平面内
2、不相交
需要更完整的资源请到 新世纪教 育网 -
数学来源于生活
需要更完整的资源请到 新世纪教 育网 -
1、①如图,长方体的各棱中,请 找出与 AA 平行的条数有( C ) 1
A、1 B、2 C、3 D、4
D1
C1 B1
A1
D
DC AA ②如图, 1 与 1 1 相交吗? 平行吗? 平行线定义
C B
A
2、判断正误 (1)永不相交的两条直线叫做平行线. × (2)在同一平面内的两条直线叫做平行线. × (3)在同一平面内的两条直线,如果不相交,就一定 互相平行. √ (4)在同一平面内,不相交的两条直线叫做平行线. √ 需要更完整的资源请到 新世纪教 育网 - (5)没有公共点的两条直线是平行线 . ×
需要更完整的资源请到 新世纪教 育网 -
1、下列语句中,正确的个数是 ( ) (1)不相交的两条直线是平行线 (2)同一平面内,两直线的位置关系有两种,即相交或平 行 (3)若线段AB与CD没有交点则AB//CD (4)若a//b,b//c,则a 与c不相交 (A)1个 (B)2个 (C)3个 (D)4个 2、已知直线L1与L2都经过点P,并且L1//L3, L2//L3,那么L1与L2必须重合,这是因为
b c
d
∴ a ∥c ( 如果两条直线都与第三条直线平行,那么 ) 这两条直线互相平行
∵ c∥d, ∴ a ∥d 如果两条直线都与第三条直线平行,那么这 ( ) 两条直线互相平行
人教版七年级下册第五章相交线与平行线复习课件

∵CF∥AB,CF∥DE
如右图,若∠A+∠C=∠E,证明AB∥CD
经过直线外对一点顶,角有且:只位有一置条关直线系与:已知两直个线平角行有(需公熟共记)顶点,且角的两边互为反向延长线 3简个称:同旁内角D互. 补,两数直线量平关行 系:对顶角相等
∴a∥b(同旁内角互补,例两直如线:平行∠)1和∠2;∠3和∠4
简称:同位角相等,两直线平行 写法:∵∠1=∠2
∴a∥b(同位角相等,两直线平行)
如果∠2=∠3是否可以判定两直线平行?
证明:∵∠1=∠3(对顶角相等) ∠2=∠3
∴∠1=∠2(等量代换) ∴a∥b(同位角相等,两直线平行)
总结: 判定定理二:两条直线被第三条直线所截,如果内错角相等,那 么这两条直线平行
垂线段最短
;
(2)直线MN上取一点D,使得线段AD+BD最短,依据是: 两点之间,线段最短
;
A
M
N
B
练习题:
点B到AC的距离是: 线段BD的长度
;
点A到BD的距离是: 线段AD的长度
;
A D
线段BC的长度是 C 点到 直线AB
的距离,
也可以看到是 点B到点C
的距离
线段AB的长度是 A 点到 直线BC 的距离,
相交线与平行线
5.1 相交线 5.2 平行线与判定 5.3 平行线的性质 5.4 平移
5.1相交线 一、相交线的定义
A
相交线:如果两条直线只有一个公共点,就说这两条直线相交 这个公共点叫做两条直线相交的交点
如右图,我们称为直线AB与直线CD相交于点O,或点O为直线AB、CD
的交点
C
两直线相交的夹角:∠AOC(≤90°的角)
如右图,若∠A+∠C=∠E,证明AB∥CD
经过直线外对一点顶,角有且:只位有一置条关直线系与:已知两直个线平角行有(需公熟共记)顶点,且角的两边互为反向延长线 3简个称:同旁内角D互. 补,两数直线量平关行 系:对顶角相等
∴a∥b(同旁内角互补,例两直如线:平行∠)1和∠2;∠3和∠4
简称:同位角相等,两直线平行 写法:∵∠1=∠2
∴a∥b(同位角相等,两直线平行)
如果∠2=∠3是否可以判定两直线平行?
证明:∵∠1=∠3(对顶角相等) ∠2=∠3
∴∠1=∠2(等量代换) ∴a∥b(同位角相等,两直线平行)
总结: 判定定理二:两条直线被第三条直线所截,如果内错角相等,那 么这两条直线平行
垂线段最短
;
(2)直线MN上取一点D,使得线段AD+BD最短,依据是: 两点之间,线段最短
;
A
M
N
B
练习题:
点B到AC的距离是: 线段BD的长度
;
点A到BD的距离是: 线段AD的长度
;
A D
线段BC的长度是 C 点到 直线AB
的距离,
也可以看到是 点B到点C
的距离
线段AB的长度是 A 点到 直线BC 的距离,
相交线与平行线
5.1 相交线 5.2 平行线与判定 5.3 平行线的性质 5.4 平移
5.1相交线 一、相交线的定义
A
相交线:如果两条直线只有一个公共点,就说这两条直线相交 这个公共点叫做两条直线相交的交点
如右图,我们称为直线AB与直线CD相交于点O,或点O为直线AB、CD
的交点
C
两直线相交的夹角:∠AOC(≤90°的角)
第五章相交线与平行线复习课件(共37张ppt)

如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入
射到а上,经两次反射后的反射光线 O' B 平行于а,则角
θ=__6_0__0度
分析 : 依题意有OA // ,O ' B // ,
а
B 且1 2,3 4,
O1 2
由OA // 得1 A 由O ' B //得4 ,5 2
2. 对顶角: (1)两条直线相交所构成的四个角中,
有公共顶点但没有公共边的两个角是对顶角。
如图(2). 1与2, 3与4是对顶角。
21
(1)
(2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。
3. 邻补角的性质: 同角的补角相等。
1与3互补,2与3互补
3 12
4
种:(1)相交; (2)平行。 3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
经过直线外一点,有且只有一条直线与已知直线平行。 (2) 推论(平行线的传递性) 如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 4.同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,不共顶点的角之间的特殊位置关系。 它们与对顶角、邻补角一样,总是成对存在着的。
内错角相等,两直线平行。 同旁内角互补,两直线平行。 在这五种方法中,定义一般不常用。
读下列语句,并画出图形
• 点p是直线AB外的一点, 直线CD经过点P,且与直 线AB平行;
• 直线AB、CD是相交直线, 点P是直线AB外的一点, 直线EF经过点P与直线 AB平行,与直线CD交于E.
A
P.
A
D
.P
人教版七年级数学下册 第五章相交线与平行线单元复习 (共44张ppt)

四、平行线的判定与性质
平行线的性质: 1.两直线平行,同位角相等 . 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补.
平
条件
行
线
的 性 两直线平 行
质
性质
线的关系
平 行
同位角相等
线
的
内错角相等
判 定 同旁内角互补
判定
角的关系
结论 同位角相 等
内错角相等
同旁内角互补
角的关系
两直线平行
线的关系
C
H
D
F
F 形模式
同位角
Z 形模式
内错角
U 形模式
同旁内角
四、平行线的判定与性质
判定两条直线是否平行的方法有:
1.同位角相等, 两直线平行. 2.内错角相等, 两直线平行. 3.同旁内角互补, 两直线平行. 4.平行于同一直线的两直线平行. 5.同一平面内, 垂直于同一直线的两直线平行. 6.平行线的定义.
C
A
1
O
B
2D E
解: ∵∠1=35°,∠2=55°(已知)
∴ ∠AOE=180°-∠1-∠2 = 180°-35°-55° =90°
∴OE⊥AB (垂直的定义)
5.如图,直线AD、BE、CF相交于O,OG⊥AD, 且∠BOC = 35°,∠FOG = 30°,求DOE的度数。
∵OG⊥AD, ∴∠GOD=90°, ∵∠BOC=35°, ∴∠FOE=∠BOC=35°, 又∵∠GOD=∠GOF+∠FOE+∠DOE=90°, ∵∠FOG=30°, ∴∠DOE=∠GOD-∠FOE-∠GOF=90°-35°-30°=25°.
2. 垂线的性质 (1)在同一平面内,过一点有且只有一条直
人教版七年级数学下册第五章相交线与平行线课件(32张ppt)

F 5
C
3. 如图,已知:AC∥DE,∠1=∠2,试证明AB∥CD。
证明: ∵AC∥DE (已知)
∴ ∠ACD= ∠2 (两直线平行,内错角相等)
A
D
1
2
∵ ∠1=∠2(已知)
B
∴ ∠1=∠ACD(等量代换)
C
E
∴AB ∥ CD
(内错角相等,两直线平行)
当堂检测
1.如图 1,已知直线 AB 与 CD 相交于点 O,EO⊥CD,垂足为 O,则图中∠AOE
9.同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,不共顶点的角之间的特殊位置关系。 它们与对顶角、邻补角一样,总是成对存在着的。
平行线的性质与判定
间夹
平 行
条件
线
的 两直线平行 性
质
结论
同位距两 离平 。行
13.真命题和假命题: 命题是一个判断,这个判断可能是正确的, 也可以是错误的。由此可以把命题分成真命题和假命题。 真命题就是: 如果题设成立,那么结论一定成立的命题。 假命题就是: 如果题设成立时,不能保证结论总是成立的命题。
14. 平移变换的定义: 把一个图形整体沿某一方向移动,会得到 一个新图形,这样的图形运动,叫做平移变换,简称平移。
例1.直线AB、CD相交于点O,OE AB,垂足为O,
且DOE 5COE。求AOD的度数。
CE
┓
AO
B
D 此题需要正确地
应用、对顶角、
邻补角、垂直的
概念和性质。
解 :由邻补角的定义知: COE+DOE=1800, 又由DOE 5COE COE 5COE 1800 COE 300 又 OE AB BOE 900 BOC BOE COE 1200 由对顶角相等得: AOD=BOC=1200
人教版数学七年级下册复习 第五章 相交线和平行线 总结课件(共20张PPT)

章末复习总结 相交线与平行线
知识点一 相交线及垂线 1.如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+ ∠2=80°,则∠3的度数为( D) A.40° B.50° C.60° D.70°
2.如图所示,下列结论中不正确的是( A ) A.∠1和∠2是同位角 B.∠2和∠3是同旁内角 C.∠1和∠4是同位角 D.∠2和∠4是内错角
5.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB, OF⊥CD.
(1)若∠AOD=50°,请求出∠DOP的度数; (2)OP平分∠EOF吗?为什么?
解:(1)∵直线 AB 与 CD 相交于点 O, ∴∠BOC=∠AOD=50°, ∵OP 是∠BOC 的平分线, ∴∠COP=12 ∠BOC=21 ×50°=25°, ∴∠DOP=∠COD-∠COP=180°-25°=155°
∠COE=41 ∠AOC=14 ×80°=20°,∴∠OEC=180°-∠C-∠COE =180°-100°-20°=60°,故存在使∠OEC=∠OBA 情况,此时 ∠OEC=∠OBA一条直线上. (1)请从三个论断:①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条 件,另一个作为结论构成一个真命题: 条件:____①__A_D_∥__B__E_;__②__∠__1_=__∠__2___. 结论:_____③__∠__A_=__∠__E__________;
知识点三 命题、定理与证明
11.下列命题中是真命题的是( C )
A.两个锐角之和为钝角 B.两个锐角之和为锐角
C.钝角大于它的邻补角 D.锐角小于它的余角
12.(宁波中考改编)能说明命题“对于任何数 a,|a|>-a”是假命
题的一个反例可以是( A )
知识点一 相交线及垂线 1.如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+ ∠2=80°,则∠3的度数为( D) A.40° B.50° C.60° D.70°
2.如图所示,下列结论中不正确的是( A ) A.∠1和∠2是同位角 B.∠2和∠3是同旁内角 C.∠1和∠4是同位角 D.∠2和∠4是内错角
5.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB, OF⊥CD.
(1)若∠AOD=50°,请求出∠DOP的度数; (2)OP平分∠EOF吗?为什么?
解:(1)∵直线 AB 与 CD 相交于点 O, ∴∠BOC=∠AOD=50°, ∵OP 是∠BOC 的平分线, ∴∠COP=12 ∠BOC=21 ×50°=25°, ∴∠DOP=∠COD-∠COP=180°-25°=155°
∠COE=41 ∠AOC=14 ×80°=20°,∴∠OEC=180°-∠C-∠COE =180°-100°-20°=60°,故存在使∠OEC=∠OBA 情况,此时 ∠OEC=∠OBA一条直线上. (1)请从三个论断:①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条 件,另一个作为结论构成一个真命题: 条件:____①__A_D_∥__B__E_;__②__∠__1_=__∠__2___. 结论:_____③__∠__A_=__∠__E__________;
知识点三 命题、定理与证明
11.下列命题中是真命题的是( C )
A.两个锐角之和为钝角 B.两个锐角之和为锐角
C.钝角大于它的邻补角 D.锐角小于它的余角
12.(宁波中考改编)能说明命题“对于任何数 a,|a|>-a”是假命
题的一个反例可以是( A )
人教版七年级数学下册第五章相交线与平行线单元复习共44张课件
例2.如图AB∥CD,BE平分 A
B
∠ ABC,CE平分∠ BCD,
则∠ 1与∠ 2的关系是什么?
说明理由。
D
解:∠ 1与∠ 2互余
1
E2
C
∵AB ∥ CD(已知)
∴∠ABC+ ∠BCD=180O(两直线平行,同旁内角互补)
∵ BE平分∠ ABC,CE平分∠ BCD(已知)
∴ ∠1= 1 ∠ABC, ∠2= 1 ∠BCD(角平分线定义)
∵AB∥CD, ∴∠BMN=∠MNC, ∵MG、NH分别 平分∠BMN、∠CNM, ∴∠MNH=∠MNC, ∠NMG=∠BMN, ∴∠MNH=∠NMG, ∴NH∥MG。
延伸训练
如图所示,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD.试说 明AB∥CD.
证明:∵OF平分∠EOD, ∴∠FOD= ∠EOD; ∵∠FOD=25°, ∴∠EOD=50°; ∵∠OEB=130°, ∴∠OEB+∠EOD=180°, ∴AB∥CD(同旁内角互补,两直线平行).
∴ ∠1= 12∠ABC, ∠2= 12∠BCD(角平分线定义) ∴ ∠=1+∠12(∠2=AB12∠C+A∠BBCC+D)12=∠90B°CD(等式的性质 )
∵∠ 1+ ∠ 2+ ∠ E=180° (三角形的内角和等于 180°)
∴ ∠ E=90°(等式的性质)
• 1、通过复习你有何收获? • 要判定两条直线平行,可以运用哪些方法? • 要判定两个角相等或互补,可以运用方法?
两线四角
一般情况
邻补角 对顶角
邻补角互补 对顶角相等
相交线
特殊
垂直
存在性和唯一性
点到直
人教版相交线与平行线复习课件(2)
经过直线外一点,有且只有一条直线与已知直线平行。
(2) 推论(平行线的传递性) 如果两条直线都和第三条直线 平行,那么这两条直线也互相平行。
4.同位角、内错角、同旁内角的概念
同位角、内错角、同旁内角,指的是一条直线分别与两条 直线相交构成的八个角中,不共顶点的角之间的特殊位置 关系。它们与对顶角、邻补角一样,总是成对存在着的。
(2)有且只有一个公共点的两条直线是相交直线( √ )
(3)没有公共点的两条直线是平行线。( × ) (4)在同一平面内不相交的两条线段必平行。 (×)
(5)同一平面内的两条直线,必把这个平面分成四部分。
(×)
2、下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交、 垂直、平行三种
1、如图,已知AC⊥AE, BD⊥BF,∠1=35°, ∠2=35°,AC与BD平行吗? AE与BF平行吗?为什么?
2、如图,已知∠A=∠1,∠C=∠D,试 说明FD∥BC。
A
E
1 F
D 2
B
C
3、(2002.河南)如图所示,已知AB∥CD,A 直线EF分别交AB,CD于点E,点F,
EG平分∠BEF,若∠1=72°,则
应点,连接各组对应点的线
段平行且相等。
全章思维导图
基础大训练
1、在两同条一直线平的面位内置,关系有相交、平行。
C
12 B
4 O3
2、对顶角:顶点相同
A
角的两边互为反向延长线
D
3、邻补角:有一条公共边 另一边互为反向延长线
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
4、如图,直线AB,CD被直线EF所截,那么图中
方法2:内错角相等,两直线平行。
(2) 推论(平行线的传递性) 如果两条直线都和第三条直线 平行,那么这两条直线也互相平行。
4.同位角、内错角、同旁内角的概念
同位角、内错角、同旁内角,指的是一条直线分别与两条 直线相交构成的八个角中,不共顶点的角之间的特殊位置 关系。它们与对顶角、邻补角一样,总是成对存在着的。
(2)有且只有一个公共点的两条直线是相交直线( √ )
(3)没有公共点的两条直线是平行线。( × ) (4)在同一平面内不相交的两条线段必平行。 (×)
(5)同一平面内的两条直线,必把这个平面分成四部分。
(×)
2、下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交、 垂直、平行三种
1、如图,已知AC⊥AE, BD⊥BF,∠1=35°, ∠2=35°,AC与BD平行吗? AE与BF平行吗?为什么?
2、如图,已知∠A=∠1,∠C=∠D,试 说明FD∥BC。
A
E
1 F
D 2
B
C
3、(2002.河南)如图所示,已知AB∥CD,A 直线EF分别交AB,CD于点E,点F,
EG平分∠BEF,若∠1=72°,则
应点,连接各组对应点的线
段平行且相等。
全章思维导图
基础大训练
1、在两同条一直线平的面位内置,关系有相交、平行。
C
12 B
4 O3
2、对顶角:顶点相同
A
角的两边互为反向延长线
D
3、邻补角:有一条公共边 另一边互为反向延长线
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
4、如图,直线AB,CD被直线EF所截,那么图中
方法2:内错角相等,两直线平行。
人教版七年级数学下册 第五章 相交线与平行线复习(共70张ppt)
CD吗?
M
A
EBG来自CDF
N
H
变式1:若∠AEM= ∠DGN,EF、GH分别平分∠AEG和 ∠CGN,则图中还有平行线吗?
变式2:若∠AEM= ∠DGN,∠1=∠2,则图中还有平行线吗?
练习:
⒈ 如图⑴,已知 AB∥CD, ∠1=30°, ∠2=90°,则 ∠3=______°
A
B
130°
2
3?
C 图1
(√ )
1、如右图直线AB、CD交于点O,OE为射线,那么(C) A。∠AOC和∠BOE是对顶角;
B。∠COE和∠AOD是对顶角; C。∠BOC和∠AOD是对顶角;
A
D
D。∠AOE和∠DOE是对顶角。
O
2、如右图中直线AB、CD交于O,
OE是∠BOC的平分线且∠BOE=50度, C 那么∠AOE=( )度
m∥n
读作: “AB 平行于 CD”
m
n
读作: “ m平行于n ”
在同一平面内,两条直线有几
种位置关系呢?
同一平面内的两条不重合的直 线的位置关系只有两种:
相交或平行
3、平行线的画法:
一放
二靠
·
三移(推) 四画
动手实践
过直线AB外一点P作直线AB的平行线, 看看你能作出吗?能作出几条?
·P
通过画图,你
65
D
C 78
D
F
斜交
垂直
三线八角
C
2
B
1
3
O4 A
D
如图,直线AB与CD相交,∠1和∠2有一
条公共边,它们的另一条边互为反向延长
线,具有这种关系的两个角叫做互为邻补
第五章相交线与平行线复习(公开课)ppt课件
2.垂线的性质:
过一点有且只有一条直线与已知直线垂直.
3.垂线段:垂线段最短.
4.直线外一点到这条直线的垂线段的长度.叫做这点到这条直 线的距离。
精品课件
4
练一练
已知P是直线l外一点,A、B、C是直线l上一点, 且PA=5,PB=3,PC=2,那么点P到直线l的距离 为( C ) A .等于2
B.大于2
2.题设、结论:
将命题写成“如果……那么……”的形式,“如果”后
面的是题设,“那么”后面的是结论.
3.真命题、假命题:
若题设成立,则结论也一定成立的命题,是真命题.
若题设成立,则结论不一定成立的命题,是假命题.
4.定理:
有些命题的正确性是经过推理证实的,这样得到的真命
题叫做定理.
精品课件
15
说出下列命题的题设与结论: (1)同角的补角相等;(1)题设:两个角是同一个角的补角;
结论:这两个角相等.
(2)等角的余角相等;(2)题设:两个角相等;
结论:它们的余角也相等.
(3)互补的角是邻补角;(3)题设:两个角互补;
结论:它们是邻补角.
(4)对顶角相等;
(4)题设:两个角是对顶角;
结论:这两个角相等.
精品课件
16
四、平移
1.把一个图形整体沿某一直线方向移动,会得 到一个新的图形,新图形与原图形的形状和大 小完全相同.
2.新图形中的每一点,都是由原图形中的某一 点移动后得到的,这两个点是对应点.连接各 组对应点的线段平行且相等.
3.图形的这种移动,叫做平移变换,简称平移.
精品课件
17
平移的基本性质: ①对应线段平行(或在同一直线上)且相等;
②对应角相等;
过一点有且只有一条直线与已知直线垂直.
3.垂线段:垂线段最短.
4.直线外一点到这条直线的垂线段的长度.叫做这点到这条直 线的距离。
精品课件
4
练一练
已知P是直线l外一点,A、B、C是直线l上一点, 且PA=5,PB=3,PC=2,那么点P到直线l的距离 为( C ) A .等于2
B.大于2
2.题设、结论:
将命题写成“如果……那么……”的形式,“如果”后
面的是题设,“那么”后面的是结论.
3.真命题、假命题:
若题设成立,则结论也一定成立的命题,是真命题.
若题设成立,则结论不一定成立的命题,是假命题.
4.定理:
有些命题的正确性是经过推理证实的,这样得到的真命
题叫做定理.
精品课件
15
说出下列命题的题设与结论: (1)同角的补角相等;(1)题设:两个角是同一个角的补角;
结论:这两个角相等.
(2)等角的余角相等;(2)题设:两个角相等;
结论:它们的余角也相等.
(3)互补的角是邻补角;(3)题设:两个角互补;
结论:它们是邻补角.
(4)对顶角相等;
(4)题设:两个角是对顶角;
结论:这两个角相等.
精品课件
16
四、平移
1.把一个图形整体沿某一直线方向移动,会得 到一个新的图形,新图形与原图形的形状和大 小完全相同.
2.新图形中的每一点,都是由原图形中的某一 点移动后得到的,这两个点是对应点.连接各 组对应点的线段平行且相等.
3.图形的这种移动,叫做平移变换,简称平移.
精品课件
17
平移的基本性质: ①对应线段平行(或在同一直线上)且相等;
②对应角相等;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D O A
设AOB 32 x,则BOC=13x 列方程:32x+13x=900 x 20 BOC 13 20 260 又 OB OD BOD 900 COD 900 260 640
由垂直先找到 900 的 角,再根据角之间 的关系求解。
综合应用:
1、填空: (1)、∵ ∠4 (已知) ∠A=____,
判定
F E
4 2 1 3
5
同位角相等,两直线平行。 ∴ AC∥ED ,(_____________________)
DF (2)、 ∵AB ∥______, (已知)
B
D
性质
C
两直线平行, 内错角相等。 ∴ ∠2= ∠4,(______________________)
C 5 6 8 7 B
(3)∠4和 ∠6是由直线 CD 、
EF 被直线 AB 所截成的 同旁内 角 ; 在判断两个角时一 定要先知道由哪两 条直线被哪条直线 所截呦!
(4)由直线AB、CD被直线EF 所截成的同位角有 ;
∠1 和∠9、 ∠4和 ∠12、∠2和 ∠10、 ∠3 和∠11 (5)∠7和 ∠12是 同旁内 角 ;
4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与
直线垂直时,特指它们所在的直线互相垂直。 5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指 垂线段的长度,是指一个数量,是有单位的。
你能量出C到AB的距离,B到AC的距 离,A到BC的距离吗?
F
E
C
A
D
B
拓 展 应 用 如图:要把水渠中的水引到水池C中, 在渠岸的什么地方开沟,水沟的长度才 能最短?请画出图来,并说明理由。
2
1 4
n
3 5
a b a
n
m
l
4
2 3
b
1
平 条件 行 线 的 两直线平行 性 质 平 行 线 的 判 定 条件
同位角相等 内错角相等 同旁内角互补
结论
同位角相等 内错角相等 同旁内角互补
结论
两直线平行
间夹 的在 距两 离平 。行 线 间 的 垂 线 段 的 长 度 叫 做 两 平 行 线 ,
A
证明: ∵由AC∥DE (已知) A ∴ ∠ACD= ∠2 1 (两直线平行,内错角相等) B ∵ ∠1=∠2(已知) ∴ ∠1=∠ACD(等量代换) ∴AB ∥ CD
(内错角相等,两直线平行)
D 2 E
C
例3.已知 EF⊥AB,CD⊥AB,∠EFB=∠GDC, 求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC (垂直于同一条直线的两条直线互相平行) ∴ ∠EFB= ∠DCB D (两直线平行,同位角相等) E ∵ ∠EFB=∠GDC (已知) B ∴ ∠DCB=∠GDC (等量代换) ∴ DG∥BC (内错角相等,两直线平行) ∴ ∠AGD=∠ACB (两直线平行,同位角相等)
AB ED ∴ —— ∥—— ( 平行于同直线的两条直线互相平行。 )
例2. 已知∠DAC= ∠ACB, ∠D+∠DFE=1800,求 证:EF//BC D F
C
证明: ∵ ∠DAC= ∠ACB (已知) ∴ AD// BC (内错角相等,两直线平行) ∵ ∠D+∠DFE=1800(已知) A ∴ AD// EF (同旁内角互补,两直线平行) ∴ EF// BC (平行于同一条直线的两条直线互相平行)
1. 平行线的概念: 在同一平面内,不相交的两条直线叫做平行线。 2. 两直线的位置关系: 在同一平面内,两直线的位置关系只有两 种:(1)相交; (2)平行。 3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
经过直线外一点,有且只有一条直线与已知直线平行。
(2) 推论(平行线的传递性) 如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 4.同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,不共顶点的角之间的特殊位置关系。它 们与对顶角、邻补角一样,总是成对存在着的。
D 此题需要正确地 应用、对顶角、 邻补角、垂直的
概念和性质。
例2.已知OA OC,OB OD,AOB : BOC 32 :13, 求COD的度数。
C B
解由 . OA OC知 : AOC 900 即AOB BOC 90
0
由AOB : BOC 32 :13,
第五章相交线与平行线 复习
知识结构
两条
邻补角、对顶角
垂线及其性质
对顶角相等
直线
相 交 线
相交 两条
点到直线的距离
直线
被第 三条 直线 判定 性质 同位角、内错角、同旁内角
平 行 线
所截 平行公理 平移
1. 互为邻补角:两条直线相交所构成的四了角中,有公共顶点且 有一条公共边的两个角是邻补角。如图(1) 1与2是邻补角。
A
1 4
B 6 C
5
E
2
D
∴
∵ ∴
AF ∥—— BE —— ( 同位角相等,两直线平行。 )
∠5= ∠6 (已知)
BC EF —— ∥—— ( ) 内错角相等,两直线平行。
∵ ∠5+ ∠AFE=180 (已知)
AF ∥—— BE (同旁内角互补,两直线平行。) ∴ ——
∵ AB ∥பைடு நூலகம்C,
ED ∥FC (已知)
D A O B C
解.设AOC 2 X 0,则AOD=3X 0 根据邻补角的定义可得方程: 2X+3X=180 解得X=360 AOC 2 X 720 BOD AOC 720
0
在解 0 答 : BOD 的度数为 72 决与角的计算有关 的问题时,经常用 到代数方法。
4. 对顶角性质:对顶角相等。 两个特征:(1) 具有公共顶点; 5. n条直线相交于一点,
就有n(n-1)对对顶角。
(2) 角的两边互为反向延长线。
※相交※
• 1.直线AB、CD相交与于O,图中有 几对对顶角?邻补角? • 当一个角确定了,另外三个角的大 小确定了吗?
A 1 C 2 O 4 3 B D
例1.
∠1与哪个角是内错角? 答:∠ DAB
∠1与哪个角是同旁内角?答:∠ BAC,∠BAE , ∠2
∠2与哪个角是内错角?
D
A E
答:∠ EAC
B
1
2
C
随堂练习
1、观察右图并填空: (1) ∠1 与 ∠4 是同位角; (2) ∠5 与 ∠3 是同旁内角; (3) ∠1 与 ∠2 是内错角; 2、 指出图中的同位角、内错 角、同旁内角 同位角:∠4与∠1 内错角:∠4与∠2 同旁内角:∠3与∠1 m
内错角相等,两直线平行。
同旁内角互补,两直线平行。
在这五种方法中,定义一般不常用。
读下列语句,并画出图形
• 点p是直线AB外的一点, 直线CD经过点P,且与直 线AB平行; • 直线AB、CD是相交直线, 点P是直线AB外的一点, 直线EF经过点P与直线 AB平行,与直线CD交于E.
A D C A
理由:垂线段最短
C
例1.直线AB、CD相交于点O,OE AB,垂足为O, 且DOE 5COE。求AOD的度数。
C E
解 :由邻补角的定义知: COE+DOE=1800, 又由DOE 5COE
B
┓
A
O
COE 5COE 1800 COE 300 又 OE AB BOE 900 BOC BOE COE 1200 由对顶角相等得: AOD=BOC=1200
例2.已知直线AB、CD、EF相交于点O,DOE 900,AOE 360
求BOE、BOC的度数。
解. AOB是直线
E O A C F B D
AOE与BOE是互为邻补角 AOE BOE 1800 又 AOE 360 BOE 1800 360 1440 又 DOE 900 AOD AOE DOE 1260 又 BOC与AOD是对顶角 BOC AOD 1260
A
G
F
C
例4. 两块平面镜的夹角应为多少度?
如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入
射到а上,经两次反射后的反射光线 O ' B 平行于а,则角
θ=_____ 60 度
0
分析 : 依题意有OA // ,O ' B // ,
B
A
а
O 1 2 5
且1 2,3 4, 由OA // 得1 由O ' B // 得4 ,5 2 于是3=4=5= 由于3+4+5=1800 3 600,即 =600
2. 对顶角: (1)两条直线相交所构成的四个角中, 有公共顶点但没有公共边的两个角是对顶角。 如图(2). 1与2, 3与4是对顶角。 (2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。 3. 邻补角的性质: 同角的补角相等。
2 1
(1)
3
1 4 2
(2)
1与3互补,2与3互补 1 2(同角的补角相等)
θ
3
O'
4
β
1. 命题的概念: 判断一件事情的句子,叫做命题。 命题必须是一个完整的句子; 这个句子必须对某件事情做出肯 定或者否定的判断。两者缺一不可。 2. 命题的组成: 每个命是由题设、结论两部分组成。
P .
D
B C
.
P
E
F
B
练 一 练
如图中的∠1和∠2是同位角吗? 为什么?
设AOB 32 x,则BOC=13x 列方程:32x+13x=900 x 20 BOC 13 20 260 又 OB OD BOD 900 COD 900 260 640
由垂直先找到 900 的 角,再根据角之间 的关系求解。
综合应用:
1、填空: (1)、∵ ∠4 (已知) ∠A=____,
判定
F E
4 2 1 3
5
同位角相等,两直线平行。 ∴ AC∥ED ,(_____________________)
DF (2)、 ∵AB ∥______, (已知)
B
D
性质
C
两直线平行, 内错角相等。 ∴ ∠2= ∠4,(______________________)
C 5 6 8 7 B
(3)∠4和 ∠6是由直线 CD 、
EF 被直线 AB 所截成的 同旁内 角 ; 在判断两个角时一 定要先知道由哪两 条直线被哪条直线 所截呦!
(4)由直线AB、CD被直线EF 所截成的同位角有 ;
∠1 和∠9、 ∠4和 ∠12、∠2和 ∠10、 ∠3 和∠11 (5)∠7和 ∠12是 同旁内 角 ;
4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与
直线垂直时,特指它们所在的直线互相垂直。 5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指 垂线段的长度,是指一个数量,是有单位的。
你能量出C到AB的距离,B到AC的距 离,A到BC的距离吗?
F
E
C
A
D
B
拓 展 应 用 如图:要把水渠中的水引到水池C中, 在渠岸的什么地方开沟,水沟的长度才 能最短?请画出图来,并说明理由。
2
1 4
n
3 5
a b a
n
m
l
4
2 3
b
1
平 条件 行 线 的 两直线平行 性 质 平 行 线 的 判 定 条件
同位角相等 内错角相等 同旁内角互补
结论
同位角相等 内错角相等 同旁内角互补
结论
两直线平行
间夹 的在 距两 离平 。行 线 间 的 垂 线 段 的 长 度 叫 做 两 平 行 线 ,
A
证明: ∵由AC∥DE (已知) A ∴ ∠ACD= ∠2 1 (两直线平行,内错角相等) B ∵ ∠1=∠2(已知) ∴ ∠1=∠ACD(等量代换) ∴AB ∥ CD
(内错角相等,两直线平行)
D 2 E
C
例3.已知 EF⊥AB,CD⊥AB,∠EFB=∠GDC, 求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC (垂直于同一条直线的两条直线互相平行) ∴ ∠EFB= ∠DCB D (两直线平行,同位角相等) E ∵ ∠EFB=∠GDC (已知) B ∴ ∠DCB=∠GDC (等量代换) ∴ DG∥BC (内错角相等,两直线平行) ∴ ∠AGD=∠ACB (两直线平行,同位角相等)
AB ED ∴ —— ∥—— ( 平行于同直线的两条直线互相平行。 )
例2. 已知∠DAC= ∠ACB, ∠D+∠DFE=1800,求 证:EF//BC D F
C
证明: ∵ ∠DAC= ∠ACB (已知) ∴ AD// BC (内错角相等,两直线平行) ∵ ∠D+∠DFE=1800(已知) A ∴ AD// EF (同旁内角互补,两直线平行) ∴ EF// BC (平行于同一条直线的两条直线互相平行)
1. 平行线的概念: 在同一平面内,不相交的两条直线叫做平行线。 2. 两直线的位置关系: 在同一平面内,两直线的位置关系只有两 种:(1)相交; (2)平行。 3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
经过直线外一点,有且只有一条直线与已知直线平行。
(2) 推论(平行线的传递性) 如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 4.同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,不共顶点的角之间的特殊位置关系。它 们与对顶角、邻补角一样,总是成对存在着的。
D 此题需要正确地 应用、对顶角、 邻补角、垂直的
概念和性质。
例2.已知OA OC,OB OD,AOB : BOC 32 :13, 求COD的度数。
C B
解由 . OA OC知 : AOC 900 即AOB BOC 90
0
由AOB : BOC 32 :13,
第五章相交线与平行线 复习
知识结构
两条
邻补角、对顶角
垂线及其性质
对顶角相等
直线
相 交 线
相交 两条
点到直线的距离
直线
被第 三条 直线 判定 性质 同位角、内错角、同旁内角
平 行 线
所截 平行公理 平移
1. 互为邻补角:两条直线相交所构成的四了角中,有公共顶点且 有一条公共边的两个角是邻补角。如图(1) 1与2是邻补角。
A
1 4
B 6 C
5
E
2
D
∴
∵ ∴
AF ∥—— BE —— ( 同位角相等,两直线平行。 )
∠5= ∠6 (已知)
BC EF —— ∥—— ( ) 内错角相等,两直线平行。
∵ ∠5+ ∠AFE=180 (已知)
AF ∥—— BE (同旁内角互补,两直线平行。) ∴ ——
∵ AB ∥பைடு நூலகம்C,
ED ∥FC (已知)
D A O B C
解.设AOC 2 X 0,则AOD=3X 0 根据邻补角的定义可得方程: 2X+3X=180 解得X=360 AOC 2 X 720 BOD AOC 720
0
在解 0 答 : BOD 的度数为 72 决与角的计算有关 的问题时,经常用 到代数方法。
4. 对顶角性质:对顶角相等。 两个特征:(1) 具有公共顶点; 5. n条直线相交于一点,
就有n(n-1)对对顶角。
(2) 角的两边互为反向延长线。
※相交※
• 1.直线AB、CD相交与于O,图中有 几对对顶角?邻补角? • 当一个角确定了,另外三个角的大 小确定了吗?
A 1 C 2 O 4 3 B D
例1.
∠1与哪个角是内错角? 答:∠ DAB
∠1与哪个角是同旁内角?答:∠ BAC,∠BAE , ∠2
∠2与哪个角是内错角?
D
A E
答:∠ EAC
B
1
2
C
随堂练习
1、观察右图并填空: (1) ∠1 与 ∠4 是同位角; (2) ∠5 与 ∠3 是同旁内角; (3) ∠1 与 ∠2 是内错角; 2、 指出图中的同位角、内错 角、同旁内角 同位角:∠4与∠1 内错角:∠4与∠2 同旁内角:∠3与∠1 m
内错角相等,两直线平行。
同旁内角互补,两直线平行。
在这五种方法中,定义一般不常用。
读下列语句,并画出图形
• 点p是直线AB外的一点, 直线CD经过点P,且与直 线AB平行; • 直线AB、CD是相交直线, 点P是直线AB外的一点, 直线EF经过点P与直线 AB平行,与直线CD交于E.
A D C A
理由:垂线段最短
C
例1.直线AB、CD相交于点O,OE AB,垂足为O, 且DOE 5COE。求AOD的度数。
C E
解 :由邻补角的定义知: COE+DOE=1800, 又由DOE 5COE
B
┓
A
O
COE 5COE 1800 COE 300 又 OE AB BOE 900 BOC BOE COE 1200 由对顶角相等得: AOD=BOC=1200
例2.已知直线AB、CD、EF相交于点O,DOE 900,AOE 360
求BOE、BOC的度数。
解. AOB是直线
E O A C F B D
AOE与BOE是互为邻补角 AOE BOE 1800 又 AOE 360 BOE 1800 360 1440 又 DOE 900 AOD AOE DOE 1260 又 BOC与AOD是对顶角 BOC AOD 1260
A
G
F
C
例4. 两块平面镜的夹角应为多少度?
如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入
射到а上,经两次反射后的反射光线 O ' B 平行于а,则角
θ=_____ 60 度
0
分析 : 依题意有OA // ,O ' B // ,
B
A
а
O 1 2 5
且1 2,3 4, 由OA // 得1 由O ' B // 得4 ,5 2 于是3=4=5= 由于3+4+5=1800 3 600,即 =600
2. 对顶角: (1)两条直线相交所构成的四个角中, 有公共顶点但没有公共边的两个角是对顶角。 如图(2). 1与2, 3与4是对顶角。 (2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。 3. 邻补角的性质: 同角的补角相等。
2 1
(1)
3
1 4 2
(2)
1与3互补,2与3互补 1 2(同角的补角相等)
θ
3
O'
4
β
1. 命题的概念: 判断一件事情的句子,叫做命题。 命题必须是一个完整的句子; 这个句子必须对某件事情做出肯 定或者否定的判断。两者缺一不可。 2. 命题的组成: 每个命是由题设、结论两部分组成。
P .
D
B C
.
P
E
F
B
练 一 练
如图中的∠1和∠2是同位角吗? 为什么?