第25章 章末检测--九年级数学人教版(上册)
人教版数学九年级上册第二十五单元测试试卷(含答案)(1)

人教版数学9年级上册第25单元·时间:90分钟满分:100分班级__________姓名__________得分__________一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•瑞安市校级月考)下列选项中的事件,属于必然事件的是( )A.在一个只装有白球的袋中,摸出黑球B.a是实数,|a|⩾0C.在一张纸上任意画两条线段,这两条线段相交D.两数相加,和是正数2.(3分)(2022秋•南城县期中)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.若需从这4名护士中随机抽取2人,那么被抽到的两名护士都是共产党员的概率( )A.13B.23C.12D.13.(3分)(2022秋•桥西区期中)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球.请你估计这个口袋中红球的数量是( )A.5B.6C.7D.84.(3分)(2022秋•龙湾区期中)学校招募运动会广播员,从三名男生和一名女生中随机选取一人,则选中女生的概率是( )A.12B.13C.14D.155.(3分)(2022秋•铁西区期中)有两张卡片正面上分别写有一个数字:﹣2,5,两张卡片除正面上的数字外无其它差别,把它们背面朝上洗匀,从中随机抽取一张卡片,记录下卡片上的数字,然后把卡片放回并洗匀,再随机抽取另一张,记录下卡片上的数字,则两次抽取的卡片上的数字都是﹣2的概率是( )A.14B.13C.12D.346.(3分)(2022秋•鹿城区校级期中)在一个不透明的布袋里装有2个红球,1个黄球,它们除颜色外其余都相同.现随机从布袋里摸出1个球,摸出黄球的概率为( )A.1B.23C.13D.07.(3分)(2022秋•新民市期中)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的概率稳定在0.2左右,则袋子中黄球的个数最有可能是( )A.4B.10C.12D.16 8.(3分)(2022秋•新民市期中)同时投掷三枚质地均匀的硬币,至少两枚硬币正面朝上的概率是( )A.38B.12C.23D.589.(3分)(2022秋•高新区期中)一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,在袋中放入3个除了颜色外其余均相同的白球,随机的从袋子中摸出一个球,记录下颜色后,放回袋中并摇匀,通过大量重复这样的试验后发现,摸到白球的频率稳定在0.15附近,则红球的个数为( )A.11B.14C.17D.20 10.(3分)(2022秋•桐庐县期中)为了解某地区九年级男生的身高情况,随机抽取了该地区200名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数10m n42根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是( )A.0.42B.0.21C.0.79D.与m,n的取值有关11.(3分)(2022秋•市南区校级期中)用如图所示的A、B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成紫色),A转盘是二等分,B转盘是三等分,分别转动两个转盘各一次(指针指向分界线则重新转动转盘),则配成紫色的概率为( )A .16B .14C .13D .1212.(3分)(2022秋•东港市期中)一个密码锁的密码由四个数字组成,每个数字都是1~9这九个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.若忘了中间的两个数字,则一次就能打开锁的概率为( )A .19B .110C .181D .1100二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•宝安区校级期中)在一个不透明的袋子中,有除颜色外完全相同的6个白球和若干个红球.通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,由此可估计袋中红球的个数为 .14.(3分)(2022秋•南岸区校级期中)从﹣2,﹣1,0,2,5中任取一个数记为a ,则a 的值使一元二次方程2x 2﹣3x +a =0有实数根的概率为 .15.(3分)(2022秋•新民市期中)掷一枚均匀的硬币,前五次抛掷结果都是正面朝上,那么第六次抛掷的结果为正面朝上的概率为 .16.(3分)(2022秋•沙坪坝区校级期中)从一副扑克牌中挑出一张红桃、三张黑桃.把它们背面朝上洗匀放在桌子上,随机从中抽取一张,记下花色后放回,再次洗匀放在桌上并随机再抽取一张,两次抽到的扑克牌花色一样的概率是 .17.(3分)(2022秋•西湖区校级期中)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为 .18.(3分)(2022秋•杭州期中)甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是 .三、解答题(共7小题,满分66分)19.(9分)(2022秋•平湖市期中)三张卡片分别标有数字1,2,3.(1)如果从中任取一个数字,放回,再取一个数字,能组成多少个不同的二位数?(2)如果同时从中任选两个数组成二位数,其中组成的两位数是偶数的概率是多少?20.(9分)(2022秋•大田县期中)一个盒子中有2个红球和3个白球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.求:(1)第一次摸到红球的概率;(2)两次摸到不同颜色球的概率.21.(9分)(2022秋•萧山区期中)某商店准备销售A、B、C、D四种口味的牛奶,现经过一周试销后统计:A口味35箱,B口味40箱,C口味15箱,D口味10箱.(1)试估计某顾客购买B口味的牛奶概率;(2)若商店为准备“双十一”促销活动,若根据试销的情况进货2000箱,这批牛奶中C口味的牛奶大概多少箱?22.(9分)(2022秋•市南区期中)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4,随机地一次摸取两张纸牌,请用列表或画树状图的方法解决下列问题.(1)计算两张摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.23.(9分)(2022秋•南宁期中)为了发展学生的艺术特长,某学校现在组建了四个艺术社团:A.舞蹈、B.乐器、C.国画、D.书法,学校规定每人只能选择参加一个社团,小邕和小青准备随机选择一个杜团报名.(1)小邕选择“书法”社团的概率是 ;(2)请用列表或画树形图的方法,求小邕和小青两人刚好选择同一个社团的概率.24.(10分)(2022秋•金东区期中)对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.抽取件数(件)1001502005008001000合格频数a141176445720900合格频率0.880.940.880.890.90b (1)求a,b的值.(2)估计这批衬衣的合格概率.(3)若出售1200件衬衣,其中次品大约有多少件?25.(11分)(2022秋•东台市期中)第二十四届冬奥会于2022年2月20日在北京闭幕,北京成为全球首个既举办过夏季奥运会义举办过冬季奥运会的城市.如图,是四张关于冬奥会运动项目的卡片,卡片的正面分别印有A.“花样滑冰”、B.“高山滑雪”、C.“单板滑雪大跳台”、D.“钢架雪车”(这四张卡片除正面图案外,其余都相同).将这四张卡片背面朝上,洗匀.(1)从中随机抽取一张,求抽得的卡片恰好为“花样滑冰”的概率;(2)若从中随机抽取两张卡片,请你用列表或画树状图的方法,求抽取的卡片中有“高山滑雪”的概率.参考答案一、选择题(共12小题,满分36分,每小题3分)1.B;2.C;3.C;4.C;5.A;6.C;7.D;8.B;9.C;10.B;11.C;12.C;二、填空题(共6小题,满分18分,每小题3分)13.414.3515.1216.5817.1318.12;三、解答题(共7小题,满分66分)19.解:(1)画树状图为:共有9种等可能的结果数,它们是:11,12,13,21,22,23,31,32,33;(2)因为在9个两位数中,偶数有3个,所以组成的两位数是偶数的概率=39=13.20.解:(1)∵一个盒子中有2个红球和3个白球,共5个球,∴第一次摸到红球的概率是25;(2)列表如下:红红白白白红(红,红)(红,红)(白,红)(白,红)(白,红)红(红,白)(红,白)(白,红)(白,红)(白,红)白(红,白)(红,白)(白,白)(白,白)(白,白)白(红,白)(红,白)(白,白)(白,白)(白,白)白(红,白)(红,白)(白,白)(白,白)(白,白)由表知,共有25种等可能的结果数,其中两次摸到不同颜色球的有14种结果,所以两次摸到球的颜色不相同的概率为14.2521.解:(1)∵40=0.4,35401510∴估计某顾客购买B口味的牛奶概率为0.4.(2)2000×15=300(箱),35401510答:这批牛奶中C口味的牛奶大概300箱.22.解:根据题意,列表如下:123413452356.34574567由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有12种,它们出现的可能性相等.(1)两张摸取纸牌上数字之和为5(记为事件A)有4个,P(A)=4=121;3(2)这个游戏不公平,理由如下:∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)=8=122,3两次摸出纸牌上数字之和为偶数(记为事件C)有4个,P(C)=4=121,3∴两次摸出纸牌上数字之和为奇数和为偶数的概率不相同,所以这个游戏不公平.23.解:(1)小邕选择“书法”社团的概率是14,故答案为:14;(2)画树状图如下:由树状图知,一共有16种等可能结果,其中小邕和小青两人刚好选择同一个社团的有4种结果,∴小邕和小青两人刚好选择同一个社团的概率为416=14.24.解:(1)a=0.88×100=88,b=9001000=0.9;故答案为:88,0.9;(2)任意抽一件衬衣是合格品的概率为0.9;(3)估计次品的数量为:1200×(1﹣0.9)=120(件).25.解:(1)由题意知,抽得的卡片恰好为“花样滑冰”的概率为14;(2)根据题意作树状图如下:∴抽取的卡片中有“高山滑雪”的概率为612=12.。
RJ人教版九年级上册第二十五章测试卷内含答案解析

第二十五章评估测试卷(时间:100分钟满分:100分)一、选择题(每小题3分,共30分)1.下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.3个人分成两组,一定有2个人分在一组D.三根长度为2cm,2cm,4cm的木棒能摆成三角形2.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件 M:“这个四边形是等腰梯形”,下列判断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为15D.事件M发生的概率为253.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是()A.16B.14C.13D.124.下列说法中错误的是()A.某种彩票的中奖率为1%,买100张彩票一定有一张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是1 65.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球,且摸到红球的概率为14,那么袋中球的总个数为()A.15个B.12个C.9个D.3个6.欢欢与贝贝统计学校门前的车辆日流量,欢欢统计的结果是每10辆通过学校门前的车中有一辆小轿车;贝贝统计的结果是学校门前每天通过的小轿车有60辆,请你估计学校门前每天通过的车辆数为()A.10 B.60 C.70 D.6007.从n张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K的概率为15,则n= ()A.54B.52C.10D.58.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为 x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=6x上的概率为()A.118B.112C.19D.169.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为()A.23B.59C.49D.1310.如图是两个可以自由转动的转盘,各转盘被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.12B.29C.49D.13二、填空题(每小题3分,共24分)11.如图,从10张连号的10元人民币中任意抽取1张,钞票上号码是5的倍数的概率是.12题图 15题图 17题图12.随意抛一粒豆子,恰好落在如图的方格中(每个方格除颜色外完全一样),那么这粒豆子落在黑色方格中的概率是 .13.某校举行A,B两项比赛,甲、乙两名学生各自随机选择参加其中的一项,则他们恰好参加同一项比赛的概率是 .14.国庆节期间,某商场开展购物抽奖活动,抽奖箱内有标号分别为1,2,3,4的四个质地、大小相同的小球,顾客从中任意摸出一个球,然后放回,摇匀后再摸出一个球,如果两次摸出的球的标号之和为“8”得一等奖,那么顾客抽出一等奖的概率是 .15.如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD把等腰梯形分成了四个三角形,任意选中其中两个小三角形是全等三角形的概率是 .16.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条鱼做上标记,然后放回湖里,经过一段时间,第二次再捕上200条鱼,若其中有标记的鱼有32条,那么估计湖里大约有条鱼.17.一张圆桌旁边有四个座位,A先坐在如图所示的座位上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻而坐的概率为 .18.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为 .三、解答题(共46分)19.(6分)一次联欢会上,12个男生(相互挨着)和10个女生围坐成一个圆圈,采用击鼓传花的方式决定谁演节目,若男生接传一次需用0.9秒,女生接传一次需用1秒,则每击鼓传花一次,男生演节目的可能性与女生演节目的可能性哪个大?为什么?20.(6分)下列事情哪些是随机事件?哪些是不可能事件?哪些是必然事件?(1)掷一个均匀的正方体骰子,结果是偶数;(2)两条平行直线被第三条直线所截,内错角相等;(3)二次多项式与三次多项式的和是五次多项式;(4)班级里有同年同月同日生的同学;(5)太阳从西边升起.21.(8分)如图,有一个转盘被分成16个相等的扇形,请在转盘的适当位置涂上颜色,使得自由转动这个转盘,当它停止时,指针落在绿色区域的概率为14,你还能举出一个随机事件,它发生的概率也是14吗?22.(8分)如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下表所示:朝下数字 1 2 3 4出现的次数16 20 14 10(1)计算上述试验中“4朝下”的频率是;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是13”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树形图的方法,求两次朝下的数字之和大于4的概率.23.(9分)如图,有两双大小、质地相同、仅有颜色不同的拖鞋(分左右脚,可用A1,A2表示一双,用B1,B2表示另一双)放置在卧室地板上,若从这四只拖鞋中随机取出两只,利用列表法(树形图或列表格)表示所有可能出现的结果,并写出恰好配成相同颜色的一双拖鞋的概率.24.(9分)“端午节”是我国的传统佳节,民间历来有吃粽子的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整:(3)若居民区有8 000人,请估计爱吃D粽的人数;(4)若有外形完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.答案第二十五章评估测试卷1.C 电影票座位号可能是奇数,也可能是偶数,是个随机事件;打开电视,正在播放动画片也是一个随机事件;3个人分成两组,必然有1个人一组和2个人一组,即一定有2个人分在一组,是个必然事件;用2,2,4的木棒围成三角形,不满足三角形三边关系定理,是一个不可能事件.2.B 根据正五边形性质可以证明任取正五边形四个顶点连成四边形,这个四边形一定是等腰梯形,所以这是必然事件.3.C 分别用A、B、C来代表甲、乙、丙,他们三人站成一排的情况有6种,分别是ABC、ACB、BAC、BCA、CAB、CBA,其中A站在中间的情况有两种.4.A 对于A:某种彩票的中奖率为1%,只能说这种彩票中奖的可能性为1%,即使买100张彩票也不一定中奖;对于B:从装有红球的袋子中,摸出白球是不可能的,正确;对于C:要了解一批日光灯的使用寿命,可采用也只能采用抽样调查的方式,所以正确;对于D:掷一枚普通的正六面体骰子,它有六个面,出现每个面都是等可能的,所以出现向上一面点数是2的概率是16,正确.5.B 设袋中球总个数为 x个,则314x=,解得 x =12,故选B.6.D 设每天通过的车辆数为x,则60110x=,∴x=600,经检验,x=600是原分式方程的根.7.D 根据概率的公式,115n=,解得n=5.8.C9.A10.C 由题意画树形图如下:由树形图知两数相加的等可能结果共有9种,其中和为偶数的结果有4种,所以P(和为偶数)=49.11.1 5任何10张连号的人民币上的号码,其个位数都包括从0到9这10个数字,所有可能的结果总数为10.如果钞票上的号码是5的倍数,那么号码的个位数字只能是0,5,出现这种可能的结果数为2,所以P(号码是5的倍数)=21 105=.12.4 15因为黑色方格的面积为4个小正方形面积和,总方格的面积是15个小正方形面积和,所以豆子落在黑色方格上的概率是415.13.12画出表格所有可能结果共有4个,出现两个参加项目相同的有2个,所以P(两人参加同一项比赛)=2142 =.14.116列表表示所有等可能结果如下:共有16种结果,其中两数字和为“8”的结果有1种,所以 P(两数字和为“8”)=1615.1 6通过列举,三角形两两结合的等可能结果有6种:①和②,①和③,①和④,②和③,②和④,③和④,其中全等的三角形是②和④,只有一种结果,所以两个小三角形是全等三角形的概率是16.16. 625 用频率来估计概率,假设湖里有x条鱼,根据题意得10032200x=,解得x=625.17.13把左边、下边和右边的座位分别记为左、下、右,则画树形图表示坐法如下:一共有6种坐法,其中A与B不相邻(即B不在左和右或B只能在下)而坐有2种,所以其概率为2163 =.18.3 819.男生区域总用时为0.9×12=10.8秒,女生区域总用时为1×10=10秒,10.8秒>10秒,所以男生演节目的可能性大.20.(1)(4)是随机事件;(2)是必然事件;(3)(5)是不可能事件.21.只要在四个扇形上涂上绿色即可,在去掉大小王的一副扑克牌中任意抽出一张牌,摸到方块的概率也是14(答案不唯一).22. 解(1)16(2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.(3)随机投掷正四面体两次,朝下的数字所有可能出现的结果如下:由表格可知:总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于4的结果有10种.故P(朝下数字之和大于4)=105 168=.23.画树形图如下:所有可能的结果A1A2,A1B1,A1B2;A2A1,A2B1,A2B2;B1A1,B1A2,B1B2;B2A1,B2A2,B2B1; 可见,从这四只拖鞋中随机地取出两只,共有12种不同的情况; 其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=41 123=.24.解:(1)60÷10%=600(人). 答:本次参加抽样调查的居民有600人.(2)如图:(3)8 000×40%=3 200(人). 答:该居民区有8 000人,估计爱吃D粽的人有3 200人. (4)如图:P(C粽)=31 124=.答:他第二个吃到的恰好是C粽的概率是14.。
人教版九年级上册数学第25章概率初步章末测试卷(有答案)

第二十五章章末测试卷(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1. 下列事件是随机事件的是(D )(A) —个三角形的内角和为365°(B) 矩形的对角线相等(C) 互为相反数的两个数之和为0(D) 外观相同的100件同种产品中有2件是不合格产品,现从中抽取一件恰为合格品2. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不1同外,其余均相同,若从中随机摸出一个球,它是白球的概率为亍,则黄球的个数为(D )(A)2 (B)4 (C)12 (D)16解析:设黄球的个数为x个,根据题意得J乙=,解得x=16,故选D.3. 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右, 则a的值约为(B )(A)12 (B)15 (C)18 (D)21J解析:由题意可得Q X 100%=20%解得a=15.故选B.4. 如图,在边长为3的正方形内有区域A(阴影部分所示),小明同学用随机模拟的方法求区域A的面积.若每次在正方形内随机产生10 000 个点,并记录落在区域A内的点的个数.经过多次试验,计算出落在区域A内点的个数平均值为6 600个,则区域A的面积约为(B )(A)5 (B)6 (C)7 (D)8解析:由题意,因为在正方形中随机产生了10 000个点,落在区域A内点的个数平均值为6 600个,6 600 &3所以概率詞二甩因为边长为3的正方形的面积为9,所以区域A的面积的估计值为X 9〜6.故选B.5. 小红、小明在玩“剪子、包袱、锤子”游戏,小红给自己一个规定:一直不出“锤子”.小红、小明获胜的概率分别是P l,P2,则下列结论正确的是(A )(A)P i二R (B)P>R(C)P i<R (D)P i< P2解析:根据题意画出树状图所有等可能的结果有6种,其中小红获胜的结果有2种,小明获胜的结果,如图所示.有2种,2 1则R=F2=6h,故选 A.6. 一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是(A )(A)3(B)2(C尸(D)31解析:观察这个图可知黑色区域(3块)的面积占总面积(9块)的,故其概率为P=.故选A.7. 如图的两个圆盘中均有5个数字,同时旋转两个圆盘,指针落在某一个数上的机会均等,那么两个指针同时落在奇数上的概率是解析:画树状图得2 \ 4 5 6因为共有25种等可能的结果,两个指针同时落在奇数上的有4种情况,4所以两个指针同时落在奇数上的概率是P=.4(A)百(B)10亦(D)1925A2故选A.8. 现有A,B两枚均匀的骰子(骰子的每个面上分别标有数字1,2,3,4,5,6). 以小莉掷出A骰子正面朝上的数字为X、小明掷出B 骰子正面朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定1的点P在已知抛物线y=-x 2+5x上的概率为 _____ .解析:画树状图为共有36种等可能的结果数,点P在抛物线y=-x2+5x上的结果数为(1,4),(2,6),(3,6),(4,4) 共4 个,4 1所以点P在已知抛物线y=-x2+5x上的概率为P==.二、填空题(每小题4分,共24分)9. 如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为—813解析:抽出的牌点数共有13种可能性,抽出的牌的点数小于9的有I, 2,3,4,5,6,7,8 共8 个,9所以从中任意抽取一张,抽出的牌点数小于9的概率是P=.10. 一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有14颗.6解析:由题意可得,=0.3,解得n=14.故估计盒子中黑珠子大约有14颗.II. 小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方公平.(填“公平”或“不公平”).解析:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,2 1 2 1因此同为奇数或同为偶数概率为P1==, 一奇一偶概率也为R= = ,所以这个游戏对双方公平.12. 如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5 .(精确到0.1)解析:由题意得,这名球员投篮的次数为1 550次,投中的次数为796,796故这名球员投篮一次,投中的概率约为P二0.5.13. 某市初中毕业女生体育考试项目有四项,其中“立定跳远” “ 1 000米跑”“篮球运球”为必测项目,另一项从“掷实心球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择同一个考试项目的概率是_______ .解析:分别用A,B代表“掷实心球”"一分钟跳绳”,画树状图得,T A £/X /\L A B A 3A A A AP^A BABA BAS因为共有8种等可能的结果,甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择同一个考试项目的有2种情况,所以其概率是P==.14. 有A,B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3;B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.若用(m,n)表示小明取球时m与n的1对应值,则使关于x的一元二次方程x2-mx+ n=0有实数根的概率为_23_.解析:树形图如下:J" 0 I 2 1ZN /T\ Zl\0 0 ] 20 L2O120] 2所以(m,n)所有取值是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2);当m,n对应值为(0,0),(1,0),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2) 时,△二^2n> 0,原方程有实数根.所以P( △> 0)=同=工三、解答题(共44分)15. (10分)在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1) 请估计:当n足够大时,摸到白球的频率将会稳定在_____________ (精确到0.01),假如你摸一次,你摸到白球的概率为 _____________ ; (2) 试估算盒子里白、黑两种颜色的球各有多少个?3(3) 在(2)条件下如果要使摸到白球的概率为5,需要往盒子里再放入⑵40 X 0.5=20,40-20=20.所以盒子里白、黑两种颜色的球各有 20个. (3)设需要往盒子里再放入x 个白球,20+ x |3根据题意,得 =•,解得x=10,故需要往盒子里再放入10个白球.16. (10分)一个不透明的布袋中有4个红球、5个白球、11个黄球, 它们除颜色外都相同.(1) 求从袋中摸出一个球是红球的概率;(2) 现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,1要使从袋中摸出一个球是红球的概率不小于耳问至少需取走多少个 黄球?解:(1)因为袋中有4个红球、5个白球、11个黄球,1多少个白球0.50;假如你摸一次,你摸到白球的概率为0.5.所以摸出一个球是红球的概率为P(红球)==.⑵设取走X个黄球,则放入X个红球,由题意得,打+门》*,解得XA M, 因为X为整数,所以x的最小正整数值是3.故至少取走3个黄球.17. (12分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;⑵小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是.⑵列表得共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,1所以P(两张都是轴对称图形)=2,因此这个游戏公平.18. (12分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1) 甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2) 若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5 的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.解:(1)所有可能出现的结果如图,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为3⑵不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,目3所以甲获胜的概率为,乙获胜的概率为.5 1因为> ,所以甲获胜的概率大,游戏不公平.。
人教版九年级数学上册第二十五章综合测试卷含答案

人教版九年级数学上册第二十五章综合测试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列事件中,是必然事件的是()A.五个人分成四组,这四组中有一组有两人B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.打开手机就有未接电话2.(2023河北)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()3.(2023娄底)从367,3.141 592 6,3.3·,4,5,-38,39中随机抽取一个数,此数是无理数的概率是()A.27 B.37 C.47 D.574.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是()A.13 B.12 C.14 D.165.如图,四张卡片除正面标有的数字不同外,其余完全相同,将四张卡片背面朝上,事件“从A,B,C三张卡片中先抽取一张记下数字后放回,洗匀后再抽取一张记下数字,两张卡片数字之和为正数”的概率为P1,事件“从A,B,C,D四张卡片中抽取一张,卡片数字为奇数”的概率为P2,则P1与P2的大小关系为()A.P1>P2B.P1<P2C.P1=P2D.无法确定(第5题)(第6题)6.如图,正方形ABCD是一块绿化带,其中四边形EOFB,四边形GHMN(阴影部分)都是正方形的花圃,已知自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.1732 B.12 C.1736 D.17387.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,“”恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13 B.38 C.12 D.238.(2024成都月考)小明和小亮在一次大量重复试验中,统计了某一结果出现的频率,绘制出如图所示的统计图,符合这一结果的试验可能是()A.掷一枚质地均匀的骰子,朝上的一面是3点B.掷一枚质地均匀的硬币,正面朝上C.从分别标有1,1,2,2,3,3的6张纸条中,随机抽出一张纸条上的数字是偶数D.从一道单项选择题的四个备选答案中随机选一个答案,选中正确答案(第8题)(第10题)9.(2023随州一模)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上、中、下三个等级的三匹马综合指标数如表,每匹马只赛一场,两综合指标数相比,大数为胜,三场两胜则赢,已知齐王的三匹马的出场顺序为6,4,2.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为() 马匹等级下等马中等马上等马齐王 2 4 6田忌 1 3 5A.13 B.16 C.19 D.11210.向上抛掷质地均匀的骰子(如图),落地时向上的面点数为a(a的可能取值为1,2,3,4,5和6),则关于x的不等式1-ax3-x>2有不大于2的整数解的概率为()A.23 B.12 C.13 D.16二、填空题(本题有5小题,每小题4分,共20分)11.“八月十五云遮月,正月十五雪打灯”是一句谚语,意思是说如果八月十五晚上阴天的话,正月十五晚上就下雪,你认为谚语描述的事件是____________(填“必然事件”“不可能事件”或“随机事件”).12.周末期间,小燕在学习之余与妈妈要玩一次转盘游戏,选项与所占比例如图所示,则小燕不看电视的可能性为________.(第12题)13.(2023济南)围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒中棋子的总个数是________个.14.用图中两个可自由转动的转盘做“配紫色”游戏:转盘A红色区域对应的圆心角度数为120°,转盘B被分成面积相等的四个扇形,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色(若指针停在分割线上,则重新转动转盘),那么可配成紫色的概率是________.15.(2023菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,该两位数是偶数的概率为________.三、解答题(本题有5小题,共70分,各小题都必须写出解答过程)16.(12分)(2024淮安月考)某运动员进行打靶练习,对该名运动员打靶正中靶心的情况进行统计,并绘制成了如图所示的统计图,请根据图中信息回答问题:(1)该名运动员正中靶心的频率在________附近摆动,他正中靶心的概率估计值为________.(2)如果一次练习时他一共打了150枪.①试估计他正中靶心的枪数.②如果他想要在这次练习中打中靶心160枪,请计算出他还需要打大约多少枪?17.(14分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种蔬菜被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.18.(14分)某市今年中考理、化实验操作考试,采用学生抽签决定自己的考试内容的方式.规定:每名考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用列表法或画树状图法表示所有可能出现的结果.(2)小刚物理实验B和化学实验F不会做,那么他这两个实验一个也抽不到(记作事件M)的概率是多少?19.(15分)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是-6,-1,5,转盘B上的数字分别是6,-7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是________;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜.请用列表法或画树状图法说明这个游戏是否公平.20.(15分)某校计划成立五个兴趣活动小组(每名学生只能参加一个活动小组):A.音乐;B.美术;C.体育;D.阅读;E.人工智能.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图.根据图中信息,完成下列问题:(1)①补全条形统计图(要求在条形图上方注明人数);②扇形统计图中的圆心角α的度数为________;(2)若该校有3 600名学生,估计该校参加E组(人工智能)的学生人数;(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四名同学中随机抽取两名同学参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生和一名女生的概率.答案一、1.A 2.B 3.A 4.A 5.B 6.C7.B8.C9.B点拨:当田忌的三匹马随机出场时,双方马的对阵情况如下表:齐王的马6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 田忌的马5,3,1 5,1,3 3,5,1 3,1,5 1,5,3 1,3,5 共有6种等可能的对阵情况,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为16.故选B.10.A点思路:将a为1,2,3,4,5和6分别代入不等式中,求出对应不等式的解集,判断是否有不大于2的整数解即可.二、11.随机事件12.85%13.1214.5 1215.59三、16.解:(1)0.8;0.8(2)①150×0.8=120(枪).∴估计他正中靶心的枪数为120枪.②160÷0.8=200(枪),200-150=50(枪).∴他还需要打大约50枪.17.解:(1)画树状图如下.共有9种等可能的结果,分别为(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C).(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=39=13.18.解:(1)画树状图如下.共有9种等可能的结果,分别是AD,AE,AF,BD,BE,BF,CD,CE,CF.(2)从树状图可以看出,共有9种等可能的结果,其中物理实验B和化学实验F一个也抽不到的结果有4种,所以物理实验B和化学实验F一个也抽不到的概率P(M)=4 9.19.解:(1)1 3(2)列表如下.-6 -1 56 0 5 11-7 -13 -8 -24 -2 3 9由表格可知,一共有9种等可能的结果,其中a+b>0的结果有4种,a+b<0的结果有4种,∴P(小聪获胜)=49,P(小明获胜)=49.∴P(小聪获胜)=P(小明获胜).∴这个游戏公平.20.解:(1)①补全条形统计图如图.②120°(2)易知被调查的学生有300名.3 600×60300=720(名).∴估计该校参加E组(人工智能)的学生有720名.(3)画树状图如下.由树状图知,共有12种等可能的结果,其中抽到一名男生和一名女生的结果有8种,所以恰好抽到一名男生和一名女生的概率为812=23.。
人教版九年级数学上册第25章达标测试卷附答案

人教版九年级数学上册第二十五章达标测试卷一、选择题(每题3分,共30分)1.下列事件中,属于随机事件的是()A.|-63|>|-8|B.抛一枚质地均匀的硬币一次,正面朝上C.地球自转的同时也在绕太阳公转D.袋中只有五个黄球,摸出一个球是白球2.抛掷一枚质地均匀的硬币2 000次,正面朝上的次数最有可能为() A.500 B.800C.1 000 D.1 2003.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.12 B.34 C.112 D.5124.若在“正三角形”“平行四边形”“菱形”“正五边形”“正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15 B.25 C.35 D.455.如图,▱ABCD的对角线AC,BD相交于点O,EF,GH过点O,且点E,H 在边AB上,点G,F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD 内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.12 B.13 C.14 D.18 (第5题)(第8题)6.一个不透明的盒子里有n个除颜色外其他完全相同的球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计盒子中球的个数n为()A.20 B.24 C.28 D.307.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,抛第一次将朝上一面的点数记为x,抛第二次将朝上一面的点数记为y,则点(x,y)落在直线y=-x+5上的概率为()A.118 B.112 C.19 D.148. 如图,五一期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C或D出口离开的概率是()A.12 B.13 C.16 D.239.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.38 B.58 C.23 D.1210.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.12 B.512 C.712 D.13二、填空题(每题3分,共24分)11.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次投中的概率约为________(精确到0.1).12.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为________.13. 在m2□6m□9的“□”中任意填上“+”或“-”,所得的代数式为完全平方式的概率为________.14.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是________.(第14题)(第18题)15.经过某十字路口的汽车,可直行,也可左转或右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是________.16.在5瓶饮料中,有2瓶已过了保质期,随机从这5瓶饮料中取2瓶,则至少有1瓶过保质期的饮料的概率为________.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是________.18.如图,有两个转盘A,B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A,B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是19,则转盘B中标有数字1的扇形的圆心角的度数是________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用画树状图法或列表法说明理由.20.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是1 3,求从袋中取出黑球的个数.21.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出1个盒子,求2次摸出的盒子中的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).22.在甲、乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲口袋中任意摸出一个小球,记下数字为m,再从乙口袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果.(2)若m,n都是方程x2-5x+6=0的解,则小明获胜;若m,n都不是方程x2-5x+6=0的解,则小利获胜,问他们两人谁获胜的概率大?23.某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图①和图②).(1)请你求出该班的总人数,并补全条形统计图(注:在所补小矩形上方标出人数).(2)在该班团支部4人中,有1人选修排球、2人选修羽毛球、1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的2人中恰好有1人选修排球、1人选修羽毛球的概率是多少?24.某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=1 2.(1)求这4个球价格的众数.(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由.②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如下表)求乙组两次都拿到8元球的概率.答案一、1.B 2.C 3.D 4.C 5.C 6.D 7.C 8.B 9.D 10.D 二、11.0.5 12.14 13.12 14.23 15.19 16.710 17.1418.80° 【点拨】设转盘B 中指针落在标有数字1的扇形区域内的概率为x .根据题意,得12x =19,解得x =29.∴转盘B 中标有数字1的扇形的圆心角的度数为360°×29=80°.三、19.解:这个游戏对双方公平.理由:如图所示.一共有6种等可能的结果,和小于4的有3种, ∴P (和小于4)=36=12. ∴这个游戏对双方公平.20.解:(1)袋中共有20个球,其中黄球有5个,所以从袋中摸出一个球是黄球的概率为520=14.(2)设从袋中取出黑球的个数为x . 由题意得8-x 20-x =13,解得x =2. 经检验x =2是方程的解且符合题意,即从袋中取出黑球的个数为2. 21.解:(1)搅匀后从中摸出1个盒子有3种等可能的结果,所以摸出的盒子中是A 型矩形纸片的概率为13.(2)共有6种等可能的结果,分别为AB ,AC ,BA ,BC ,CA ,CB ,其中2次摸出的盒子中的纸片能拼成一个新矩形的有4种结果,即AB ,BA ,BC ,CB.所以2次摸出的盒子中的纸片能拼成一个新矩形的概率为46=23.22.解:(1)画树状图如图所示.(2)∵m,n都是方程x2-5x+6=0的解,∴m=2,n=3或m=3,n=2或m=n=2或m=n=3.由树状图得,共有12种等可能的结果,m,n都是方程x2-5x+6=0的解的结果有4种,m,n都不是方程x2-5x+6=0的解的结果有2种,∴小明获胜的概率为412=13,小利获胜的概率为212=16,∴小明获胜的概率大.23.解:(1)该班的总人数为12÷24%=50,足球科目人数为50×14%=7.补全条形统计图如图所示.(2)记选修排球的学生为A、选修羽毛球的学生为B1,B2,选修乒乓球的学生为C,则列举所有结果如下:AB1,AB2,AC,B1B2,B1C,B2C,共有6种等可能的结果,其中有1人选修排球、1人选修羽毛球的占2种,所以恰好有1人选修排球、1人选修羽毛球的概率为26=13.24.解:(1)∵P(一次拿到8元球)=12,∴8元球的个数为4×12=2(个).按照从小到大的顺序排列为7元、8元、8元、9元,∴这4个球价格的众数为8元.(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同.理由如下:原来4个球的价格按照从小到大的顺序排列为7元、8元、8元、9元,∴原来4个球价格的中位数为8+82=8(元),所剩的3个球价格为8元、8元、9元.∴所剩的3个球价格的中位数为8元.∴所剩的3个球价格的中位数与原来4个球价格的中位数相同.②列表如下:共有9种等可能的结果,乙组两次都拿到8元球的结果有4种,∴乙组两次都拿到8元球的概率为4 9.九年级数学上册期末达标检测卷一、选择题(每题4分,共40分)1.已知a,d,c,b是成比例线段,其中a=3 cm,b=2 cm,c=6 cm,则d的长度为()A.4 cm B.1 cm C.9 cm D.5 cm2.在反比例函数y=k-1x图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k<0 B.k>0 C.k<1 D.k>13.对于抛物线y=-12(x+2)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x=2;③顶点坐标为(-2,3);④当x>2时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.44.如图,在▱ABCD中,E是AD边的中点,连接BE并延长交CD的延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:55.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=5,BC =2,则sin∠ACD的值为()A.52 B.2 55 C.53 D.236.如图,P为线段AB上一点,AD与BC相交于点E,∠CPD=∠A=∠B,BC 交PD于点F,AD交PC于点G,则图中相似三角形有()A.1对B.2对C.3对D.4对7.如图,在直角平面坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的相似比为13的位似图形△OCD ,则点C 的坐标为( )A .(-1,-1) B.⎝ ⎛⎭⎪⎫-43,-1 C.⎝ ⎛⎭⎪⎫-1,-43 D .(-2,-1) 8.如图,在笔直的海岸线l 上有A ,B 两个观测站,且AB =2 km.从A 站测得船C 在北偏东45°方向,从B 站测得船C 在北偏东22.5°方向,且tan 22.5°=2-1,则船C 离海岸线l 的距离(即CD 的长)为( ) A .4 kmB .(2+2)kmC .2 2 kmD .(4-2)km9.如图,已知边长为4的正方形EFCD 截去一角成为五边形ABCDE ,其中AF=2,BF =1.在AB 上找一点P ,使得矩形PNDM 有最大面积,则矩形PNDM 面积的最大值为( ) A .8B .12C.252D .1410.如图,在平面直角坐标系中,抛物线y =-x 2+2 3x 的顶点为A ,且与x轴的正半轴交于点B ,点P 为该抛物线对称轴上一点,则OP +12AP 的最小值为( ) A.3+2214B.3+232C .3D .2 3二、填空题(每题5分,共20分)11.如图,在由边长相同的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是________.12.如图,点P 是反比例函数y =43x (x >0)图象上一动点,在y 轴上取点Q ,使得以P ,Q ,O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q 的坐标是________________.13.如图是二次函数y =ax 2+bx +c (a ≠0)的图象,其与x 轴的交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①abc >0;②4a -2b +c <0;③2a -b <0.其中正确的有____________(填序号).14.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE沿BE 折叠,使点C 恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,使点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG .其中正确的有____________(填序号).三、解答题(15~18题每题8分;19,20题每题10分;21,22题每题12分;23题14分,共90分)15.计算:(-1)2 022-6tan30°+⎝ ⎛⎭⎪⎫12-2+|1-3|.16.已知抛物线y =12x 2-4x +7与直线y =12x 交于A ,B 两点(点A 在点B 左侧).(1)求A ,B 两点的坐标;(2)求抛物线顶点C 的坐标,并求△ABC 的面积.17.如图,在△ABC中,AB=43,AC=10,∠B=60°,求△ABC的面积.18.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.19.如图,已知在正方形ABCD中,BE平分∠DBC,交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG·BG=4,求BE的长.20.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数表达式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.21.如图,某大楼DE的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:3,AB=8米,AE=12米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.414,3≈1.732)22.某公司经销一种绿茶,每千克成本为50元.经市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体表达式为w =-2x+240.设这种绿茶在这段时间内的销售利润为y元,解答下列问题:(1)求y与x的函数表达式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少?23.矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长;(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,说明理由.答案一、1.B 2.D3.C 【点拨】∵a <0,∴抛物线的开口向下,①正确;抛物线y =-12(x +2)2+3的对称轴为直线x =-2,②错误;顶点坐标为(-2,3),③正确;④抛物线开口向下,当x >2时,图象是下降趋势,y 随x 的增大而减小,④正确.故选C.4.A 【点拨】在▱ABCD 中,AD =BC ,AD ∥BC ,∵E 是AD 的中点,∴DE =12AD =12BC .由AD ∥BC 可得,△EDF ∽△BCF .它们的周长比等于相似比,∴周长比等于ED BC =12BC :BC =1:2.故选A.5.C 【点拨】∵在Rt △ABC 中,∠ACB =90°,AC =5,BC =2,∴AB =AC 2+BC 2=(5)2+22=3. ∵∠ACB =90°,CD ⊥AB , ∴∠ACD +∠BCD =90°,∠B +∠BCD =90°,∴∠ACD =∠B , ∴sin ∠ACD =sin B =AC AB =53. 故选C.6.C 【点拨】∵∠CPD =∠A ,∠D =∠D ,∴△ADP ∽△PDG ,∴∠APD =∠PGD ,∴∠FPB =∠AGP .∵∠CPF =∠B ,∠C =∠C ,∴△CPF ∽△CBP ,∴∠CFP =∠CPB ,∴∠PFB =∠APG ;在△AGP 和△BPF 中,∠AGP =∠BPF ,∠APG =∠BFP ,∴△AGP ∽△BPF .故选C. 7.B 8.B9.B 【点拨】延长NP 交EF 于点G ,设PG =x ,则PN =4-x . ∵PG ∥BF ,∴△APG ∽△ABF , ∴AG AF =PG BF ,即AG 2=x 1, 解得AG =2x ,∴PM =EG =EA +AG =2+2x ,∴S 矩形PNDM =PM ·PN =(2+2x )(4-x )=-2x 2+6x +8=-2⎝ ⎛⎭⎪⎫x -322+252(0≤x ≤1),当x =1时,矩形PNDM 的面积最大,最大值为12.故选B .10.C 【点拨】连接AB ,过点P 作PC ⊥AB 于点C .设抛物线的对称轴与x 轴的交点为点D .易求出抛物线的对称轴为直线x =3,顶点A (3,3),故BD =OD =3,AD =3,在Rt △ABD 中,tan ∠BAD =BD AD =33,∴∠BAD =30°,∴PC =12AP .当O ,P ,C 三点共线时,OP +PC 的长最短,最短距离为sin ∠OBC ·OB =sin 60°×2 3=3.∴OP +12AP 的最小值为3.故选C.二、11.212.(0,23)或(0,2)或⎝ ⎛⎭⎪⎫0,833或(0,8) 13.①②③ 【点拨】①∵图象开口向下, ∴a <0,∵图象的对称轴在y 轴左侧, ∴-b2a <0,而a <0,∴b <0, ∵图象与y 轴的交点在正半轴上, ∴c >0,∴abc >0,故结论正确. ②∵-2<x 1<-1,∴当x =-2时,y =4a -2b +c <0,故结论正确. ③∵-2<x 1<-1,0<x 2<1, ∴-b2a >-1,∵a <0, ∴2a -b <0,故结论正确. 故正确的结论有①②③.14.①③④ 【点拨】∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处, ∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10, ∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确.HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AGDF ,∴△ABG 与△DEF 不相似,∴②错误.∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确.∵AG +DF =3+2=5,而FG =5,∴AG +DF =FG ,∴④正确.三、15.解:原式=1-6×33+4+3-1=4- 3.16.解:(1)联立⎩⎪⎨⎪⎧y =12x 2-4x +7,y =12x ,解得⎩⎨⎧x =2,y =1或⎩⎪⎨⎪⎧x =7,y =72.∴A (2,1),B ⎝ ⎛⎭⎪⎫7,72.(2)∵y =12x 2-4x +7=12(x -4)2-1, ∴顶点C 的坐标为(4,-1).过顶点C 作CD ∥x 轴交直线y =12x 于点D ,如图.在y =12x 中,令y =-1,得12x =-1,解得x =-2,∴CD =6,∴S △ABC =S △BCD -S △ACD =12×6×⎝ ⎛⎭⎪⎫72+1-12×6×(1+1)=7.5.17.解:过点A 作AD ⊥BC 于点D .在Rt △ABD 中,AD =AB ·sin B =4 3×32=6,BD =AB ·cos B =4 3×12=2 3.在Rt △ACD 中,CD =AC 2-AD 2=102-62=8, ∴BC =BD +CD =2 3+8.∴S △ABC =12BC ·AD =12×(23+8)×6=63+24. 18.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6.19.(1)证明:∵BE 平分∠DBC , ∴∠DBG =∠CBE ,根据旋转的性质,得∠EDG =∠CBE , ∴∠DBG =∠EDG , 又∵∠DGB =∠EGD , ∴△BDG ∽△DEG .(2)解:由(1)知△BDG ∽△DEG , ∴BG DG =DGEG ,∴DG 2=EG ·BG . ∵EG ·BG =4,∴DG 2=4, ∴DG =2(负值舍去).∵∠EDG =∠CBE ,∠DEG =∠BEC , ∴∠BGD =∠BCE =90°. ∴∠BGF =∠BGD =90°.又∵BG =BG ,∠DBG =∠FBG , ∴△DBG ≌△FBG .∴DG =FG ,∴DF =2DG =4, 由题意可知,BE =DF , ∴BE =4.20.解:(1)由题意得,y 1=||x ,即y 1=||x =⎩⎨⎧x ,x ≥0,-x ,x <0.函数图象如图所示.(2)①∵点A 的纵坐标为2,点A 在函数y 1的图象上,∴||x =2,即x =±2.∴点A 的坐标为(2,2)或(-2,2).∴k =±4.②当k =4时,图象如图①,当y 1>y 2时,x 的取值范围为x <0或x >2; 当k =-4时,图象如图②,当y 1>y 2时,x 的取值范围为x <-2或x >0.21.解:(1)过点B 作BG ⊥DE 于点G ,如图.在Rt △ABH 中,tan ∠BAH =13=33, ∴∠BAH =30°, ∴BH =12AB =4(米).∴点B距水平面AE的高度BH为4米.(2)由(1)知BH=4(米),∴GE=BH=4(米),AH=4 3(米).∴BG=HE=AH+AE=(4 3+12)米.在Rt△BGC中,∠CBG=45°,∴CG=BG=(4 3+12)米.在Rt△ADE中,∠DAE=60°,AE=12米,∴DE=AE·tan ∠DAE=12·tan 60°=12 3(米).∴CD=CG+GE-DE=4 3+12+4-12 3=16-8 3≈16-8×1.732≈2.1(米).∴广告牌CD的高度约为2.1米.22.解:(1)由题意得y=(x-50)·w=(x-50)·(-2x+240)=-2x2+340x-12 000,∴y与x的函数表达式为y=-2x2+340x-12 000.(2)y=-2x2+340x-12 000=-2(x-85)2+2 450,∴当x=85时,y的值最大.(3)当y=2 250时,可得-2(x-85)2+2 450=2 250,解这个方程,得x1=75,x2=95,根据题意知,x=95不合题意,故舍去,∴销售单价应定为75元/千克.23.(1)①证明:如图,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°.由折叠可得∠APO =∠B =90°,∴∠1+∠2=90°.∴∠3=∠2.又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA , ∴OP P A =CP DA =12.∴CP =12AD =4,AP =2OP .设OP =x ,则易得CO =8-x .在Rt △PCO 中,∠C =90°,由勾股定理得 x 2=(8-x )2+42.解得x =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不变.作MQ ∥AN ,交PB 于点Q ,如图.∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP .∴MP =MQ .又∵BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN ,∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵PC =4,BC =8,∠C =90°.∴PB =82+42=4 5,∴EF =12PB =2 5.∴动点M ,N 在移动的过程中,线段EF 的长度不变,恒为2 5.。
人教版九年级上册数学第25章测试卷及答案

精品基础教育教学资料,仅供参考,需要可下载使用!25章概率初步单元测试(满分:120分 考试时间:100分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)题号 1 2 3 4 5 6 7 8 9 10 答案BDAADCABAB1.下列事件中是必然事件的是(B)A .投掷一枚硬币正面朝上B .明天太阳从东方升起C .五边形的内角和是560°D .购买一张彩票中奖 2.“水中捞月”事件发生的概率是(D) A .1 B.12 C.14D .03.5月5日,中国邮政发行《马克思200周年诞辰》纪念邮票1套2枚,这套邮票图案名称分别为:马克思像、马克思与恩格斯像,其背面完全相同,发行当日,某集邮爱好者购买了此款纪念邮票3套,他将所购买的6枚纪念邮票背面朝上放在桌面上,并随机从中取出一张,则取出的邮票恰好是“马克思像”的概率为(A)A.12B.13C.14D.164.下列说法正确的是(A) A .必然事件发生的概率为1B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次5.口袋内装有一些除颜色外其他完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率为0.2,摸出白球的概率为0.5,那么摸出黑球的概率为(D) A .0.2 B .0.7C .0.5D .0.36.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是(C)A .点数都是偶数B .点数的和为奇数C .点数的和小于13D .点数的和小于27.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的概率是(A) A.14 B.13 C.12 D.348.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是(B) A.18 B.16 C.14 D.129.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是(A) A.12 B.13 C.23 D.5610.如图,△ABC 是一块绿化带,将阴影部分修建为花圃.已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为(B)A.16B.π6C.π8D.π5二、填空题(本大题共5个小题,每小题3分,共15分)11.“清明时节雨纷纷”是随机事件.(填“必然”“不可能”或“随机”)12.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是13.13.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有12个白球.14.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK 之后,则选中的车牌号为8ZK86的概率是13.15.在如图所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是13.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分)(1)一个袋中装有2个红球,3个白球和5个黄球,每个球除了颜色外都相同,从中任意摸出一个球,分别求出摸到红球、白球、黄球的概率;解:∵袋中装有2个红球,3个白球和5个黄球,共10个球,∴摸到红球的概率为210,即15;摸到白球的概率为310;摸到黄球的概率为510,即12.(2)随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),求这粒豆子落在黑色方格中的概率.解:∵共有12个方格,其中黑色方格占4个, ∴这粒豆子落在黑色方格中的概率是412=13.17.(本题6分)在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个. (1)当n 为何值时,这个事件必然发生? (2)当n 为何值时,这个事件不可能发生? (3)当n 为何值时,这个事件可能发生?解:(1)当n >6时,即n =7或8或9时,这个事件必然发生.(2)当n <3时,即n =1或2时,这个事件不可能发生.(3)当3≤n ≤6时,即n =3或4或5或6时,这个事件可能发生.18.(本题7分)如图是一个正六边形转盘被分成6个全等的正三角形,指针位置固定.转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个三角形的公共边时,当作指向右边的三角形),这时称转动了转盘1次. (1)下列说法不正确的是(B)A .出现1的概率等于出现3的概率B .转动转盘30次,6一定会出现5次C .转动转盘3次,出现的3个数之和等于19,这是一个不可能发生的事件 (2)当转动转盘36次时,出现2这个数大约有多少次? 解:∵转动转盘1次时,出现2的概率为16,∴转动转盘36次,出现2这个数大约有36×16=6(次).19.(本题9分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同. (1)小明选择去蜀南竹海旅游的概率为14;(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率. 解:画树状图如下:两人选择的方案共有16种等可能的结果,其中都选择兴文石海的方案有1种, 所以小明和小华都选择去兴文石海旅游的概率为116.20.(本题9分)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”“花开富贵”“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10 000张奖券的抽奖结果如下:奖券种类 紫气东来 花开富贵 吉星高照 谢谢惠顾 出现张数(张)5001 0002 0006 500(1)(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由. 解:(1)50010 000=120.(2)平均每张奖券获得的购物券金额为100×50010 000+50×1 00010 000+20×2 00010 000+0×6 50010 000=14(元),∵14>10,∴选择抽奖更合算.21.(本题9分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.解:(1)列表如下:乙 甲 6 7 8 93 9 10 11 124 10 11 12 13 511121314(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴P(李燕获胜)=612=12,P(刘凯获胜)=312=14.22.(本题12分)在一个不透明的袋子中装有(除颜色外)完全相同的红色小球1个,白色小球1个和黄色小球2个.(1)从中先摸出一个小球,记录下它的颜色后,将它放回袋中搅匀,再摸出一个小球,记录下颜色.求摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(2)如果摸出第一个小球之后不放回袋中,再摸出第二个小球,这时摸出的两个小球的颜色恰好是“一红一黄”的概率是多少?(3)小明想给袋中加入一些红色的小球,使从袋中任意摸出一个小球恰为红色的概率为45,请你帮小明算一算,应该加入多少个红色的小球? 解:(1)画树状图如下:由树状图可得:共有16种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=416=14. (2)画树状图如下:由树状图可得:共有12种等可能的结果,其中“一红一黄”的结果有4种.则P(一红一黄)=412=13. (3)设应加入x 个红色的小球,则 1+x 4+x =45,解得x =11. 故应加入11个红色的小球.23.(本题13分)如今,旅游度假成了中国人庆祝传统春节的一项“新年俗”,山西省旅发委发布的《“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:山西省2014年~2018年春节假日接待海内外游客数量 山西省2014年~2018年春节假日实现旅游总收入图1 图2 图3(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,首次突破了“千万”大关,达到1__365.45万人次,比春节假日增加414.4万人次;(2)2月15日~20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日 (除夕)2月16日 (初一)2月17日 (初二)2月18日 (初三)2月19日 (初四)2月20日 (初五)日接待游客 数量(万人次)7.56 82.83119.51 84.38 103.2151.55这组数据的中位数是93.79万人次;(3)根据图2中的信息预估:春节假日山西旅游总收入比同比增长的百分率约为30%,理由是近3年平均涨幅在30%左右,估计比同比增长约30%;(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A ,B ,C ,D 四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”“国粹京剧”“陶瓷艺术”“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率. 解:画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12.。
人教版 九年级上册数学 25章概率初步章节水平测试题(含答案)
25.1随机事件与概率一.选择题1.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟2.一个不透明的盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,这些球除颜色外都相同,从盒子中任抽一个球,则抽到红球的概率是()A.B.C.D.3.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件4.在一个不透明的袋子里装有2个黑球3个白球,它们除颜色外都相同,随机从中摸出一个球,是黑球的概率是()A.B.C.D.5.从﹣3,,0,,这5个数中任意抽取一个,抽到无理数的概率为()A.B.C.D.6.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是7.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0B.C.D.8.下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转D.一天有24小时9.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上10.某商店举办有奖销售活动,购货满100元者发奖券一张,在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,若某人购物满100元,那么他中奖的概率是()A.B.C.D.二.填空题11.一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,则“摸出的球至少有1个黑球”是事件.(填“必然”、“不可能”或“随机”)12.有8张卡片,标号为1,2,3,4,5,6,7,8从中任意抽取一张,P(抽到大于3)=.13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为.14.在9张质地完全相同的卡片上分别写上数字﹣4、﹣3、﹣2、﹣1、0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上的数字的绝对值大于2的概率是.15.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,则盒中有白色弹珠的颗数为.三.解答题16.①四边形内角和是180°;②今年的五四青年节是晴天;③367人中有2人同月同日生.指出上述3个事件分别是什么事件?并按事件发生的可能性由大到小排列.17.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.18.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现再将n个白球放入布袋,搅匀后.使摸出1个白球的概率为.求n的值.参考答案1.解:A、明天太阳从西边出来是不可能事件;B、打开电视,正在播放《云南新闻》是随机事件;C、昆明是云南的省会是必然事件;D、小明跑完800米所用的时间恰好为1分钟是不可能事件;故选:C.2.解:∵盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,共9个球,从盒子中任抽一个球共有9种结果,其中出现红球的情况2种可能,∴抽到红球的概率是:.故选:C.3.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.4.解:∵在一个不透明的袋子里装有2个黑球3个白球,共5个球,∴随机从中摸出一个球,摸到黑球的概率是.故选:A.5.解:∵﹣3,,0,,这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.6.解:A、“穿十条马路连遇十次红灯”是随机事件,故此选项错误;B、任意画一个三角形,其内角和是180°是必然事件,正确;C、某彩票中奖概率为1%,那么买100张彩票也不一定会中奖,故此选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是,故此选项错误.故选:B.7.解:∵共有3只包装相同的备用口罩,其中有2只是医用外科口罩,∴她一次取对的概率为;故选:D.8.解:A、抛出的篮球会下落的是,是必然事件,不符合题意;B、爸爸买彩票中奖了,是随机事件,符合题意;C、地球绕着太阳转,是必然事件,不符合题意;D、一天有24小时是必然事件,不符合题意,故选:B.9.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.10.解:∵在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,∴他中奖的概率是=;故选:D.11.解:一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,共有以下2种情况:1、2个红球;2、1个红球,1个黑球;所以从中任意摸出2球,“摸出的球至少有1个黑球”是随机事件,故答案为:随机.12.解:标号为1,2,3,4,5,6,7,8的卡片中大于3的有5张,∴P(抽到大于3)=,故答案为:.13.解:由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5;故答案为:0.5.14.解:∵数的总个数有9个,绝对值大于2的数有﹣4、﹣3、3、4,共4个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值大于2的概率是,故答案为:.15.解:设盒中有白色弹珠x颗,那么盒中一共有弹珠(x+12)颗,∵从盒中随机取出一颗弹珠,取得白色弹珠的概率是,∴=,解得:x =6.故答案为:6.16.解:①是不可能事件;②是随机事件;③必然事件.答:按事件发生的可能性由大到小排列为:③>②>①.17.解:(1)P (指针指向偶数区域)==;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为; 方法二:自由转动转盘,当它停止时,指针指向数字不大于4的区域的概率是. 故答案为:18.解:(1)∵一个不透明的布袋里装有3个球,其中2个红球,1个白球,∴摸出1个球是白球的概率为;(2)由题意得:,解得:n =4.经检验,n =4是所列方程的解,且符合题意,∴n =4. 人教版 九年级数学 25.2 用列举法求概率一、选择题(本大题共10道小题)1. 2018·大连 一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( )A.13B.49C.12D.592. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.233. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.234. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.125. 在▱ABCD 中,AC ,BD 是两条对角线,现从以下四个关系式:① AB =BC ,①AC =BD ,①AC①BD ,① AB①BC 中任选一个作为条件,可推出▱ABCD 是菱形的概率为( )A.12B.14C.34D.256. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )A.127B.13C.19D.297. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( )A.16B.14C.13D.238. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.129. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π410. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613B.513C.413D.313 二、填空题(本大题共7道小题)11. 一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是________.12. 2019·邵阳不透明袋中装有大小、形状、质地完全相同的4个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是________.13.①①①①①①①①①①①①①①①3①①(①①①①①①)①①①2①①①①①1①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①14. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是________.15. 任取不等式组⎩⎨⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为________.16. 已知电路AB 由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则能使电路形成通路的概率是________.17. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数的图象恰好经过第一、二、四象限的概率为________.三、解答题(本大题共4道小题)18. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A ,B ,C ,D ,E 五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A ,B 两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况;(2)小美玩一次游戏,得到小兔玩具的机会有多大?(3)假设有125人玩此游戏,估计游戏设计者可赚多少元.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为x的值,放回卡片洗匀后,再从三张卡片中随机抽取一张,以其正面数字作为y的值,两次结果记作(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使分式x2-3xyx2-y2+yx-y有意义的(x,y)出现的概率;(3)化简分式x2-3xyx2-y2+yx-y,并求使分式的值为整数的(x,y)出现的概率.21. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学25.2 用列举法求概率同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为5 9.2. 【答案】B[解析] 从树状图(C代表雌鸟,X代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟的概率是38.故选B.3. 【答案】C[解析] 列表得:所以甲获胜的概率是59.4. 【答案】C5. 【答案】A[解析] ①AB=BC,③AC⊥BD能够推出▱ABCD为菱形,4种情形中有2种符合要求,所以所求概率为24=12.6. 【答案】D[解析] 如图,用A,B,C分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P(三人摸到球的颜色都不相同)=627=29.7. 【答案】C[解析]根据题意,画树状图如下:共有6种等可能的结果,与5组成“V数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V数”的概率为26=13.8. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.9. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】13 [解析] 本题考查了用列举法求概率,关键扣住“不放回”,用列表法列出等可能的结果如下:所以共有12种等可能的结果,其中两次取出的小球上数字之积等于8的结果有4种,所以P(两次取出的小球上数字之积等于8)=412=13.12. 【答案】16 [解析] 画树状图如下:由树状图知,共有12种等可能的结果,其中取出2个小球的颜色恰好是一红一蓝的结果有2种,所以取出2个小球的颜色恰好是一红一蓝的概率为212=16.故答案为16.13.【答案】49①①①①①①①①①①①①①①①①①①①9①①①①①①①①①①①①①①①①①①①4①①①①①①①①①①①①①①①P①m n ①49.14. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.15. 【答案】13 [解析] 因为不等式组⎩⎨⎧k -3≤0,2k +5>0的解集为-52<k≤3,所以不等式组的整数解为-2,-1,0,1,2,3. 关于x 的方程2x +k =-1的解为x =-k +12. 因为关于x 的方程2x +k =-1的解为非负数,所以k +1≤0,解得k≤-1,所以能使关于x 的方程2x +k =-1的解为非负数的k 的值为-1,-2, 所以能使关于x 的方程2x +k =-1的解为非负数的概率为26=13.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.17. 【答案】16 [解析] 函数y =ax2+bx +1的图象一定经过y 轴上的点(0,1),又知其图象经过第一、二、四象限,则图象的开口向上,对称轴在y 轴的右侧,且与x 轴正半轴有两个交点,所以a >0,b <0,b2-4ac >0. 列表如下:由表可知,从-4,-2,1,2四个数中随机取两个数一共有12种等可能的结果,其中只有a=1,b=-4和a=2,b=-4这2种结果符合题意,所以所求概率=2 12=1 6.三、解答题(本大题共4道小题)18. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为210=15.(3)125×(3×45-4×15)=200(元).答:估计游戏设计者可赚200元.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B手中的结果只有1种,∴两次传球后,球恰好在B手中的概率为1 4.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A手中的结果有2种,∴三次传球后,球恰好在A手中的概率为28=14.20. 【答案】解:(1)画树状图如下:所以所有可能出现的结果为(-2,-2),(-2,-1),(-2,1),(-1,-2),(-1,-1),(-1,1),(1,-2),(1,-1),(1,1). (2)要使分式x2-3xy x2-y2+yx -y有意义,则有(x +y)(x -y)≠0,所以只有(-2,-1),(-2,1),(-1,-2),(1,-2)符合条件,所以使分式x2-3xy x2-y2+y x -y 有意义的(x ,y)出现的概率为49.(3)x2-3xy x2-y2+yx -y=x2-3xy (x +y )(x -y )+y (x +y )(x +y )(x -y ) =x2-3xy (x +y )(x -y )+xy +y2(x +y )(x -y ) =x2-3xy +xy +y2(x +y )(x -y ) =x2-2xy +y2(x +y )(x -y ) =(x -y )2(x +y )(x -y )=x -y x +y. 将使公式x2-3xy x2-y2+yx -y 有意义的(-2,-1),(-2,1),(-1,-2),(1,-2)分别代入上式,计算可得原式的值分别为13,3,-13,-3,所以使分式的值为整数的(x ,y)出现的概率为29.21. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M 的所有等可能的结果有16种,点M 落在四边形ABCD 所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P =816=12.25.3 用频率估计概率1. 关于频率和概率的关系,下列说法正确的是( ) A .概率等于频率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相同2. 从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .B .C .D .3.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;1100012001215C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4. 在抛掷一枚硬币的试验中,第一小组做了 500 次试验,当出现正面的频数为________时,其出现正面的频率才是 49.6 %( ) A .248 B .250 C .258 D .无法确定5. 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ). A .10粒 B .160粒 C .450粒 D .500粒 6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的;D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球. 7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是( ).A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数53535351记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元9. 小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅匀后再随意取出100粒,其中有5粒是黑色的,因此可以估算这碗芝麻有粒.10. 为了估计水塘中的鱼的个数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为条.11. 在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.12. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:25 72由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.13.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上.14. 图表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约是.(精确到0.1)从袋口里随机摸出5个球(不放回),其中有2个为黑球,请你估计口袋里大约有多少个白球?参考答案:1---8 BBBAC CCB9. 200010. 120011. 1512. 13. 0.1, 0.2, 0.4, 0.2, 0.075, 0.025;0.114. 0.515. 解:设有x 个白球,根据已知,得25=8x +8,解得x =12,所以可估计口袋中共有12个白球.3113,,102020111,,424。
九年级数学上册第25章《第二十五章章末复习》名师教案(人教版)
第25章 章末回顾一、本章思维导图二、典型例题讲解例1.已知关于x 的一元二次方程02=++c bx x ,从-1,2,3三个数中任取一个数,作为方程中b 的值,再从剩下的两个数中任取一个数作为方程中c 的值,能使该一元二次方程有实数根的概率是_________.【知识点】一元二次方程,用树状图或列表法求概率【解题分析】先利用列表或者树状图展示所有6种等可能的结果数,再根据判别式的意义得到当1,2-==c b ;1,3-==c b ;2,3==c b 时,该一元二次方程有实数根,然后根据概率公式计算.【解题过程】解:根据题意列表如下:b c -1 2 3-1(2,-1) (3,-1)2 (-1,2)(3,2) 3(-1,3) (2,3)∴一共6∵能使该一元二次方程有实数根,则042≥-ac b∴满足条件的占3种,即1,2-==c b ;1,3-==c b ;2,3==c b ∴)(一元二次方程有实数根P =63=21.故答案为21. 【思路点拨】本题考查了列表法或树状图法:利用列表法或树状图法展示所有可能的结果数(注意此题是不放回试验),再从中选出符合事件A 的结果数,求出事件A 的概率.同时也综合考查了一元二次方程根的判别式.例2.盒中有x 个黑球和y 个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是52;若往盒中再放进1个黑球,这时取得黑球的概率变为21. (1)填空:x =_______,y =_______;(2)小王和小林利用x 个黑球和y 个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?【知识点】解方程组,用树状图或列表法求概率【解题分析】(1)根据题意得:⎪⎪⎩⎪⎪⎨⎧=+++=+211152y x x y x x ,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.【解题过程】解:(1)根据题意得:⎪⎪⎩⎪⎪⎨⎧=+++=+211152y x x y x x , 解得:⎩⎨⎧==32y x ;故答案为:2,3; (2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况, ∴P (小王胜)=208=52,P (小林胜)=2012=53.【思路点拨】本题考查了列表法或树状图法:利用列表法或树状图法展示所有可能的结果数(注意此题是不放回试验),再从中选出符合事件A的结果数,求出事件A的概率.同时也综合考查了二元一次方程组的相关知识.例3.某中学组织网络安全知识竞赛活动,其中七年级6个班组每班参赛人数相同,学校对该年级的获奖人数进行统计,得到每班平均获奖15人,并制作成如图所示不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是班;(2)若二班获奖人数占班级参赛人数的32%,则全年级参赛人数是人;(3)若该年级并列第一名有男、女同学各2名,从中随机选取2名参加市级比赛,请你用列表法或画树状图的方法求参加市级比赛的两位同学恰好是1男1女的概率.【知识点】线统计图,用树状图或列表法求概率【数学思想】数形结合【解题分析】(1)共有15×6=90人获奖,然后用90分别减去其他5个班的获奖人数即可得到三班获奖人数,然后将折线统计图补充完整,并且可得到四班有17人获奖,获奖人数最多;(2)先计算出二班参赛人数,然后乘以6即可得到全年级参赛人数;(3)先画树状图展示所有12种等可能的结果数,再找出恰好是1男1女所占的结果数,然后根据概率公式求解.【解题过程】解:(1)三班获奖人数=6×15﹣14﹣16﹣17﹣15﹣15=13,折线统计图如图,该年级获奖人数最多的班级为四班; (2)二班参赛人数=16÷32%=50(人), 所以全年级参赛人数=6×50=300(人); (3)根据题意列表为:共有12∴P (恰好是1男1女)=128=32. 【思路点拨】本题考查了折线统计图:折线图是用一个单位表示一定的数量,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了列表法与树状图法.第25章 本章检测题(肖莲琴)一、选择题(每小题4分,共48分)1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件 【知识点】随机事件【解题过程】抛一枚均匀硬币,落地后有可能正面朝上、也有可能反面朝上,因此是随机事件 【思路点拨】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 【答案】B2.下列事件中属于不可能事件的是( ) A .某投篮高手投篮一次就进球B.打开电视机,正在播放世界杯足球比赛C.掷一次骰子,向上的一面出现的点数不大于6D.在一个标准大气压下,90℃的水会沸腾【知识点】不可能事件【解题过程】A.是随机事件,选项错误;B.是随机事件,选项错误;C.是必然事件,选项错误;D.正确.【思路点拨】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【答案】D3.下列说法中,正确的是()A.不可能事件发生的概率为01B.随机事件发生的概率为2C.概率很小的事件不会发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率的意义【解题过程】A.不可能事件发生的概率为0,所以A选项正确;B.随机事件发生的概率在0与1之间,所以B选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.【思路点拨】本题考查了概率的意义:一般地,对于随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A的概率,记为P(A);概率是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能事件的概率P(A)=0;随机事件的概率P(A)在0与1之间.【答案】A4.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A .61 B .41 C .31 D .21【知识点】概率的计算【解题过程】∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况, ∴从中随机抽取一张,点数为偶数的概率是:2163 . 【思路点拨】此题考查了古典概型概率的计算(古典概型的事件满足以下两个条件:①在每一次试验中,可能出现的结果是有限的;②在每一次试验中,各种结果出现的可能性相同):概率=所求情况数与总情况数之比. 【答案】D5.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,摸到白球的概率为( ) A .61 B .31 C .21 D .32【知识点】概率的计算【解题过程】1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是白球的概率是1÷6=61. 【思路点拨】此题考查了古典概型概率的计算(古典概型的事件满足以下两个条件:①在每一次试验中,可能出现的结果是有限的;②在每一次试验中,各种结果出现的可能性相同):概率=所求情况数与总情况数之比. 【答案】A6.如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为( )A .51B .41C .31D .254【知识点】几何概率【解题过程】解:∵黑色方砖的面积为5,所有方砖的面积为20, ∴键子恰落在黑色方砖上的概率=41205 . 【思路点拨】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比. 【答案】B7.转动下列各转盘,指针指向红色区域的概率最大的是( )A .B .C .D .【知识点】几何概率【解题过程】观察四个转盘,A 、B 、C 三个转盘中红色区域的面积均小于整个圆面积的一半,而D 转盘中红色区域的面积均等于整个圆面积的一半,因此指针指向红色区域的概率最大的是D 转盘.【思路点拨】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比. 【答案】D8.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为31,遇到黄灯的概率为91,那么他遇到绿灯的概率为( )A .31B .91C .32D .95【知识点】概率的计算【解题过程】由于十字路口只有红、黄、绿三色交通信号灯,因此三种情况的概率之和为1,又∵遇到红灯的概率为31,遇到黄灯的概率为91∴遇到绿灯的概率为1-31-91=95【思路点拨】概率除了可以利用公式可以计算外,也往往利用所有情况的概率之和为1,用1减去其它情况的概率就是所求事件的概率. 【答案】D9.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6,同时投掷这两枚骰子,记下朝上一面所标的数字,那么两个数字之和为9的概率是( )A .31B .61C .91D .121【知识点】用树状图或列表法求两步随机事件的概率 【解题过程】由题意可以列表如下:第一枚 第二枚 1234561 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)投掷这两枚骰子,共有36种等可能结果,其中点数之和为9的有(3,6),(4,5),(5,4),(6,3)共4种,所以,所求概率为:41369. 【思路点拨】先画树状图或列表展示36种等可能的结果数,然后找出各事件发生的结果数,即可以计算出该事件的概率. 【答案】C10.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .52 B .53 C . 32 D .103【知识点】用树状图或列表法求两步随机事件的概率 【解题过程】画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为:532012=. 【思路点拨】先画树状图或列表展示20种等可能的结果数(注意此题是不放回试验),然后找出各事件发生的结果数,即可以计算出该事件的概率. 【答案】B11.如图,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A .0B .31C . 21D .1【知识点】概率与几何的综合应用【解题过程】所有等可能的情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题的情况有:①②⇒③;①③⇒②;②③⇒①,则P=1.【思路点拨】根据题意找出组成命题的所有等可能的情况数,找出组成的命题是真命题的情况数,即可求出所求的概率.其中涉及到平行线的判定与性质;等腰三角形的判定与性质;命题与定理等内容. 【答案】D12.如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A .61 B .6π C . 8π D .5π【知识点】概率与几何的综合应用 【数学思想】数形结合【解题过程】∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2, ∴△ABC 为直角三角形, ∴△ABC 的内切圆半径3215912=-+=, ∴S △ABC =AC •BC =×12×9=54,S 圆=9π, ∴小鸟落在花圃上的概率6549ππ=. 【思路点拨】本题的关键是如何得到圆和三角形(猜测是直角三角形,但需注意题目没有直接告诉)的面积.不难发现15、12、9是勾股数,则△ABC 的面积容易得到;而圆的半径可以通过切线长定理求,也可以通过面积法来求. 【答案】B二、填空题(每题4分,共24分)13.小芳掷一枚硬币10次,出现了7次正面朝上,当她抛掷第11次时,出现正面朝上的概率为__________.【知识点】概率与频率的区别【解题过程】掷硬币每次可能出现的结果有两种,且这两种结果出现的可能性一样大,因此不管以前抛掷的结果,再抛掷硬币时,正面朝上的概率始终是21. 【思路点拨】掷一枚硬币10次,出现了7次正面朝上,只能说此时正面朝上的频率为107,但此时抛掷的次数较小,频率没有稳定在概率附近,误差较大,不能将此时的频率误当为概率. 【答案】2114.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为51,那么口袋中小球共有_______个.【知识点】概率计算公式的逆用 【解题过程】设小球共有x 个,则315x =,解得:x =15 【思路点拨】已知概率,可以逆用公式求小球的数量. 【答案】1515.在﹣2,﹣1,0,1,2这五个数中任取两数m ,n ,则二次函数n m x y +-=2)(的顶点在坐标轴上的概率为__________.【知识点】概率的计算与二次函数的综合 【解题过程】解:画树状图得:∵一共有20种等可能结果,其中取到0的有8种可能, ∴顶点在坐标轴上的概率为52208=. 【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案. 【答案】5216.有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是__________.【知识点】列树状图求三步事件的概率 【解题过程】由题意可以列树状图如下:274272343747第三条23423247347第二条第一条开始一共有24种等可能结果,其中能组成三角形的有6种, ∴P (能组成三角形)=41246=. 【思路点拨】列表法只能求两步事件的概率,三步及三步以上事件的概率需要用树状图来解决. 【答案】4117.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是_________.【知识点】列表法与树状图法;等腰三角形的判定【解题过程】解:∵以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形, ∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA 1B 1,△OA 2B 2, 所作三角形是等腰三角形的概率是:2142=. 【思路点拨】根据题意画出树状图,进而得出以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形是等腰三角形的情况,求出概率即可. 【答案】21 18.从1-,0,1,2这四个数中,任取两个不同的数分别作为m ,n 的值,恰好使得关于x 的一元二次方程02=-+n mx x 有实数解的概率为 . 【知识点】概率的计算与一元二次方程的综合【解题过程】解:从1-,0,1,2这四个数中,任取两个不同的数分别作为m ,n 的值,所有情况列表如下:m n -1 0 1 2-1(0,-1) (1,-1) (2,-1)(-1,0)(1,0)(2,0)∴一共有12种等可能结果,其中使得一元二次方程02=-+n mx x 有实数解(即042≥+n m )有10种∴ P (一元二次方程02=-+n mx x 有实数解)=651210= 【思路点拨】先画树状图或列表展示36种等可能的结果数,然后找出各事件发生的结果数(即满足042≥+n m 的),即可以计算出该事件的概率. 【答案】65三、解答题(每题8分,共16分) 19.掷一枚均匀的正方体骰子,求 (1)“点数为5”的概率; (2)“点数为偶数”的概率; (3)“点数大于4”的概率; (4)“点数不小于3”的概率 【知识点】等可能试验的概率【解题过程】解:(1)∵一共有6种等可能结果,其中“点数为5”的结果只有1种,∴P (点数为5)=61(2)∵一共有6种等可能结果,其中“点数为偶数”的结果有3种, ∴P (点数为偶数)=2163= (3)∵一共有6种等可能结果,其中“点数大于4”的结果有2种, ∴P (点数大于4)=3162= (4)∵一共有6种等可能结果,其中“点数不小于3”的结果有4种, ∴P (点数不小于3)=3264= 【思路点拨】本题总结果数都是6种,所以关键是找出各事件发生的结果数,即可以计算出该事件的概率,注意“不小于”的含义.【答案】(1)61 (2)21 (3)31 (4)3220.学校有1张NBA 篮球比赛的门票,篮球队员喜羊羊和灰太狼都想获得这张门票,体育老师为他们出了一个主意,方法是:从印有数字1、2、3、4、4、5、6、7、8的9张扑克牌中任取一张,抽到比4大的牌,喜羊羊去;否则,灰太狼去.你认为这种方法对喜羊羊和灰太狼公平吗?请说明理由.如果不公平,请修改规则. 【知识点】等可能试验的概率、修改游戏规则 【解题过程】解:这个游戏不公平,理由如下: ∵一共有9种等可能结果,其中大于4的结果有4种,∴P (喜羊羊去)=94∴P (灰太狼去)=1-94=95 ∴P (喜羊羊去)<P (灰太狼去) 即对喜羊羊不公平修改规则:将印有数字4的牌抽出1张,再从剩下的8张牌里任取一张,抽到比4大的牌,喜羊羊去;否则,灰太狼去.【思路点拨】判断一个游戏是否公平,关键取决于游戏参与者获胜的概率是否相等.若不公平,我们修改游戏规则的目标也是使得游戏参与者获胜的概率变成相等的. 【答案】见上面解题过程四、解答题(每题10分,共40分)21.某篮球运动员进行3分投篮训练结果如下表:(1)计算表格中投篮50次、100次、150次、200次相应的命中频率,并填入表格中; (2)观察表格中的频率变化趋势,估计这个运动员投篮命中的概率是多少? (3)估计这个运动员3分球投篮15次能得多少分? 【知识点】用频率估计概率【解题过程】解:(1)0.5 0.65 0.6 0.6 (2)估计这个运动员投篮命中的概率是0.6(3)∵这个运动员投篮命中的概率是0.6 ∴15次大约能投进15×0.6=9(个) ∴得分估计为9×3=27(分)【思路点拨】观察表格中频率变化的趋势发现,当投篮次数增加时,频率逐渐稳定在0.6的附近,因此可以估计这个运动员投篮命中的概率是0.6. 【答案】见上面解题过程22.一个不透明的的袋中装有红、黄、白三种颜色球共40个,它们除颜色外其它都相同,其中黄球个数比白球个数的2倍少5个.已知:从袋中摸出一个球是红球的概率是310. (1)求袋中红球的个数;(2)从袋中摸出一个球是白球的概率;(3)取走10个球(其中有4个黄球)后,求从剩余的球中摸出一个球是黄球的概率. 【知识点】等可能事件的概率、方程【解题过程】解:(1)∵从袋中摸出一个球是红球的概率是310∴红球个数为:1210340=⨯(个) (2)设袋中白球个数为x ,则黄球个数为52-x ,由题意得405212=-++x x 解得:11=x ∴白球数量为11个 ∴摸到白球的概率为4011 (3)由(2)问知,白球数量为11个 ∴黄球数量是17个又∵取走了10个球,其中有4个黄球 ∴黄球有13个,总球数是30个 ∴摸到黄球的概率是3013 【思路点拨】(1)已知概率,可以逆用公式求红球的数量; (2)根据题意,先列方程求出白球的数量,再求摸到白球的概率;(3)分别计算取走了10个球以后的总球数和黄球数,再求摸到黄球的概率. 【答案】(1)12个 (2)4011 (3)301323.某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C ”所对应的圆心角度数; (3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,请用树状图或列表法分析选取的两名同学都是女生的概率.【知识点】列表法与树状图法;扇形统计图;条形统计图. 【数学思想】数形结合 【解题过程】解:(1)由题意可得总人数为50%2010=÷名; (2)听音乐的人数为1285151050=----名, 补全统计图得:“体育活动C ”所对应的圆心角度数=︒=︒⨯1083605015(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况, ∴选取的两名同学都是女生的概率=101202=. 【思路点拨】(1)利用“享受美食”的人数除以所占的百分比计算即可得解;(2)求出听音乐的人数即可补全条形统计图;由C 的人数即可得到所对应的圆心角度数; (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出两名同学都是女生的情况,再利用概率公式即可求得答案. 【答案】见上面解题过程24.有四张正面分别标有数字2,1,3-,4-的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n . (1)请画出树状图并写出),(n m 所有可能的结果;(2)求所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三、四象限的概率. 【知识点】列表法与树状图法;一次函数图象与系数的关系. 【解题过程】解:(1)画树状图得:则),(n m 共有12种等可能的结果:)1,2(,)3,2(-,)4,2(-,)2,1(,)3,1(-,)4,1(-,)2,3(-,)1,3(-,)4,3(--,)2,4(-,)1,4(-,)3,4(--;(2)∵所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三四象限的有:)4,3(--,)3,4(--,∴所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三四象限的概率为:61122=男生女生【思路点拨】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先可得所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三四象限的有:)4,3(--,)3,4(--,再利用概率公式即可求得答案. 【答案】见上面解题过程五、解答题(第25题10分,第26题12分,共22分)25.一学期结束后,九年级对学生进行了综合素质评定.为了解年级的评定情况,现对九年级某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)直接写出该班的学生人数并补全女生等级评定的折线统计图;(2)根据调查情况,该班班主任从评定等级为合格和A 的学生中各选1名学生进行交流,了解他们的想法.请用树状图或表格求出刚好选中一名男生和一名女生的概率. 【知识点】列表法与树状图法;折线统计图;扇形统计图. 【数学思想】数形结合【解题过程】解:(1)被抽查学生人数=40%5.7)21(=÷+(人)女生获得2A 等级的有5人;获得3A 等级的有2人,获得4A 等级的有10人.补全统计图如图所示.男生女生(2)列表如下:种不同的可能,其中,恰好抽到一男一女的共有5种.∴95( 一男一女)P【思路点拨】(1)利用“合格”的男女生人数和除以“合格”人数所占的百分比计算即可得解;然后分别计算出2A 、3A 、4A 的男女生人数和,将这个人数和减去对应的男生的人数就能得到对应项目女生的人数,再补全折线统计图.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好选中一名男生和一名女生的结果,再利用概率公式即可求得答案. 【答案】见上面解题过程26.现在初中课本里所学习的概率计算问题只有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验;解决概率计算问题,可以直接利用模型,也可以转化后再利用模型. 请解决以下问题:(1)如图,类似课本的一个寻宝游戏,若宝物随机藏在某一块砖下(图中每一块砖除颜色外完全相同),则宝物藏在阴影砖下的概率是多少?(2)在1~9中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:请你根据表中数据,估计从1~9中随机选取3个整数,以这3个整数为边长构成钝角三角形的概率是多少?(精确到百分位)【知识点】概率、频率的关系,利用频率估计概率【解题过程】解:(1)所有等可能的结果共有16种,藏在阴影砖下的结果共有4种,所以P (宝物藏在阴影砖下)=41164=. (2)各组实验中钝角三角形的频率依次是:第1组试验730.24300≈; 第2组试验 1550.26600≈;第3组试验 1910.21900≈; 第4组试验 2580.221200≈ ;第5组试验 3310.221500≈.所以估计P (构成钝角三角形)=0.22.【思路点拨】(1)根据列出条件所有等可能的结果和藏在阴影砖下的结果,得出结果.(2)根据概率和频率的关系,当重复试验的次数逐渐增大时,频率呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件的概率.所以依次计算各组实验中钝角三角形的频率,估计构成钝角三角形的概率. 【答案】(1)41(2)0.22。
人教版 九年级数学上册 第25章 概率初步 章末复习 (含答案)
人教版 九年级数学上册 第25章 概率初步 章末复习 (含答案)一、选择题(本大题共10道小题)1. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.232. 2018·大连一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.593. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.124. 重复抛掷同一枚啤酒瓶盖多次,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖,出现“凸面朝上”的概率为( ) A .22% B .44% C .50% D .56%5. 如图,有一块质地均匀的圆铁片,两面上分别写有数字1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有数字1,2,3和数字1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是( )A.12B.13C.16D.186. 2019·毕节 在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中随机取出一个作为条件,能推出平行四边形ABCD 是菱形的概率为( ) A.14B.12C.34D .17. 掷一枚质地均匀的正方体骰子,观察向上一面的点数,与点数3相差2的概率是( ) A.12B.13C.15D.168. 小宝的妈妈让他从袋子里挑选一颗糖果.小宝无法看到袋子里的糖果,图25-1-6是袋子里各种颜色糖果的数量,则小宝选到红色糖果的概率是( )A.12B.14C.15D.1109. 在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何区别.已知布袋中有红球若干个,白球5个,袋中的球已被搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是( ) A .4个B .5个C .不足4个D .6个或6个以上10. 2018·巴彦淖尔如图25-1-8,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB=13,AC=5,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()图25-1-8A.π15 B.2π15 C.4π15 D.π5二、填空题(本大题共6道小题)11. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.12. 2018·湘西州农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.13. 为调查某批乒乓球的质量,根据所做试验,绘制了这批乒乓球中“优等品”频率的折线统计图(如图25-3-2),则这批乒乓球中“优等品”的概率的估计值为________.(精确到0.01)14. 如图,在△ABC中,∠C=90°,AC=BC.如果在AB上任取一点M,那么AM≤AC的概率是________.15. 如图,A 是正方体小木块(质地均匀)的一个顶点,将小木块随机投掷在水平桌面上,则点A 与桌面接触的概率是________.16. 任取不等式组⎩⎨⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为________.三、解答题(本大题共5道小题)17. 公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a(单位:cm)表示脚印长度,b(单位:cm)表示身高,关系接近于b =7a -3.07.(1)某人的脚印长度为24.5 cm ,则他的身高约为多少厘米?(2)在某次案件中,抓获了两名可疑人员,一个身高为1.87 m ,另一个身高为1.75 m ,现场测量的脚印长度为26.7 cm ,请你帮助侦查一下,哪个可疑人员作案的可能性更大?18. 定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”,如876就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀.重复上面的操作两次,记下数字分别作为十位数字和个位数字,求三次摸球后得到的三位数是“下降数”的概率.19. 如图①,在Rt △ABC 中,∠C =90°,两条直角边长分别为a ,b ,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.20. 想经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.21. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学第25章概率初步章末复习-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] 列表得:B盘A盘3 4 51 4 5 62 5 6 73 6 7 8所以甲获胜的概率是5 9.2. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为59.3. 【答案】C4. 【答案】B5. 【答案】C[解析] 画树状图如下:因为共有24种等可能结果,面向桌面的三个数字的积为奇数的结果有4种,所以所求概率为16.6. 【答案】B7. 【答案】B[解析] 掷一枚质地均匀的正方体骰子,向上一面的点数一共有6种等可能结果,分别为1,2,3,4,5,6,其中与点数3相差2的点数为1,5,所以P (与点数3相差2)=26=13.8. 【答案】C[解析] 由条形图知,共有糖果6+5+3+3+2+4+2+5=30(颗),其中红色糖果有6颗,∴小宝选到红色糖果的概率是630=15.9. 【答案】D10. 【答案】B[解析] ∵AB =13,BC =12,AC =5,∴AB 2=BC 2+AC 2, ∴△ABC 为直角三角形,∴△ABC 的内切圆半径=12+5-132=2. ∵S △ABC =12AC ·BC =12×5×12=30,S 圆=4π, ∴小鸟落在花圃上的概率=4π30=2π15.二、填空题(本大题共6道小题)11. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13. 设口袋中有x 个白球,则10x +10=13,解得x =20.经检验,x =20是原方程的解, 故答案为20.12. 【答案】12[解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.13. 【答案】0.9514. 【答案】22 [解析] 在等腰直角三角形ABC 中,设边AC 的长为1,则边AB的长为 2.在AB 上取点D ,使AD =1,则点M 在线段AD 上时,才满足条件.故在AB 上任取一点M ,AM ≤AC 的概率为12=22.15. 【答案】12 [解析] 正方体小木块共有6个面,其中包含点A 的面有3个,所以P(点A 与桌面接触)=36=12.16. 【答案】13 [解析] 因为不等式组⎩⎨⎧k -3≤0,2k +5>0的解集为-52<k≤3,所以不等式组的整数解为-2,-1,0,1,2,3. 关于x 的方程2x +k =-1的解为x =-k +12. 因为关于x 的方程2x +k =-1的解为非负数, 所以k +1≤0,解得k≤-1,所以能使关于x 的方程2x +k =-1的解为非负数的k 的值为-1,-2, 所以能使关于x 的方程2x +k =-1的解为非负数的概率为26=13.三、解答题(本大题共5道小题)17. 【答案】解:(1)当a =24.5时, b =7×24.5-3.07=168.43. 答:他的身高约为168.43 cm.(2)当a =26.7时,b =7×26.7-3.07=183.83, 因为1.87 m 比较接近183.83 cm ,所以身高为1.87 m 的可疑人员作案的可能性更大.18. 【答案】解:根据题意,画树状图如下:由树状图可知共有27种等可能的结果,其中组成的“下降数”只有1个,即321,∴三次摸球后得到的三位数是“下降数”的概率=127.19. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k 13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.20. 【答案】(1)根据题意,画出树状图如下:故P(三辆车全部同向而行)=19. (2)P(至少有两辆车向左转)=727.(3)依题意得,汽车右转、左转、直行的概率分别为25,310,310,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下: 左转绿灯亮的时间为90×310=27(秒); 直行绿灯亮的时间为90×310=27(秒); 右转绿灯亮的时间为90×25=36(秒).21. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M的所有等可能的结果有16种,点M落在四边形ABCD所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P=816=12.。
2023年人教版九年级上册数学第二十五章综合试卷及答案
5.从n个苹果和3个雪梨中,任选1个,若选中苹果
的概率是23,则n的值是( D )
A.3
B.4
C.5
D.6
-6-
第二十五章综合练习
6.小芳和小丽是乒乓球运动员,在一次比赛中,
每人只允许报“双打”或“单打”中的一项,那么两人
中至少有一人报“单打”的概率为( D )
A.14
B.13
C.12
D.34
-7-
-21-
第二十五章综合练习
五、(本大题共2小题,每小题10分,满分20分) 19.5件同型号的产品中,有1件不合格品和4件合格 品,在这5件产品中加入x件合格品后,进行如下试 验:随机抽取1件进行检测,然后放回,多次重复 这个试验,通过大量重复试验后发现抽到合格品的 频率稳定在0.9.求x的值.
-2-
第二十五章综合练习
2.在一口锅里有外表一样的汤圆,其中7个是花生 馅的,5个是黑芝麻馅的,8个是豆沙馅的.小文随 意捞起一个,捞到可能性最大的汤圆是( C ) A.花生馅 B.黑芝麻馅 C.豆沙馅 D.无法确定
-3-
第二十五章综合练习
3.从2,5,3,6,4这五个数中随机抽取一个,恰 好为2的倍数的概率为( C )
-17-
第二十五章综合练习
四、(本大题共2小题,每小题8分,满分16分) 17.某公司有甲、乙、丙三辆车去南京,它们出发 的先后顺序随机.张先生和李先生乘坐该公司的车 去南京出差,但有不同的需求.
-18-
第二十五章综合练习
请用所学概率知识解决下列问题: (1)写出这三辆车按先后顺序出发的所有可能结果; (2)求张先生乘坐到甲车的概率. 解:(1)一共6种结果:甲、乙、丙;甲、丙、乙; 乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、 甲. (2)张先生乘坐到甲车的概率是26 = 13.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.根据你对下列诗词的理解,请你从概率统计的角度判断:所给诗词描述的事件属于随机事件的是A.锄禾日当午,汗滴禾下土B.白日依山尽,黄河入海流C.离离原上草,一岁一枯荣D.春眠不觉晓,处处闻啼鸟2.下列说法中正确的是A.“任意画出一个等边三角形,它是轴对称图形”是必然事件B.任意掷一枚质地均匀的硬币20次,正面向上的一定是10次C.“概率为0.00001的事件”是不可能事件D.“任意画出一个平行四边形,它是中心对称图形”是随机事件3.一个不透明的盒子中装有3个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是A.58B.13C.15D.384.在2015–2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小5.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为A.310B.110C.19D.186.在某校运动会4×400m接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为A.316B.14C.38D.127.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上8.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标上数字1,2,3,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是A.16B.14C.13D.129.一个不透明的盒子里装有120个红、黄两种颜色的小球,这些球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计盒子中红球的个数为A.36 B.48C.70 D.8410.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P1,摸出的球上的数字小于4的概率记为P2,摸出的球上的数字为5的概率记为P3,则P1,P2,P3的大小关系是A.P1<P2<P3B.P3<P2<P1C.P2<P1<P3D.P3<P1<P2二、填空题(本大题共10小题,每小题3分,共30分)11.袋里有除了颜色不同外其他都相同的8个球,其中红色和黄色的球各有2个,其余的球都是蓝色的,根据以上信息,请写一个概率为1的事件为:__________.(答案不唯一)12.在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,白球若干个,从袋子中随机摸出一个小球是黄球的概率是14,则袋子中白色小球有__________个;13.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是__________.14.袋子中装有红、黄、绿三种颜色的小球各一个,从中任意摸出一个放回搅匀,再摸出一个球,则两次摸出的球都是黄色的概率是__________.15.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是__________,据此判断该游戏__________(填“公平”或“不公平”).16.下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000成活数m325 1336 3203 6335 8073 12628成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是__________(精确到0.1).17.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为__________.18.某种菜籽在相同的条件下发芽试验结果如下表:每批粒数n 2 5 10 70 130 310 700 1500 2000 3000发芽粒数m 2 4 9 60 116 282 639 1339 1806 2715 请用频率估计概率的方法估计这批油菜籽在相同条件下的发芽概率是__________.19.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A 地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是__________.20.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为__________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(6分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其他完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.22.(6分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.23.(8分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.24.(8分)为进一步深化基础教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出她所有可能的选法;(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?25.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(10分)党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是__________;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).27.(10分)某校计划从各班各抽出1名学生作为代表参加学校组织的海外游学计划,明明和华华都是本班的候选人,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:取M、N两个不透明的布袋,分别放入黄色和白色两种除颜色外均相同的乒乓球,其中M布袋中放置3个黄色的乒乓球和2个白色的乒乓球;N布袋中放置1个黄色的乒乓球,3个白色的乒乓球.明明从M布袋摸一个乒乓球,华华从N布袋摸一个乒乓球进行试验,若两人摸出的两个乒乓球都是黄色,则明明去;若两人摸出的两个乒乓球都是白色,则华华去;若两人摸出乒乓球颜色不一样,则放回重复以上动作,直到分出胜负为止.根据以上规则回答下列:(1)求一次性摸出一个黄色乒乓球和一个白色乒乓球的概率;(2)判断该游戏是否公平?并说明理由.28.(10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,这些球除颜色外其他都相同.(1)求从袋中摸出一个球是黄球的概率;(2)求从袋中摸出一个球不是红球的概率;(3)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率为25,则取出了多少个黑球?1.【答案】D【解析】A、锄禾日当午,汗滴禾下土是必然事件;B、白日依山尽,黄河入海流是必然事件;C、离离原上草,一岁一枯荣是必然事件;D、春眠不觉晓,处处闻啼鸟是随机事件;学科#¥网故选D.2.【答案】A3.【答案】A【解析】∵袋子中装有3个白球和5个红球,共有8个球,从中随机摸出一个球是红球的可能结果有5种,∴从袋子中随机摸出一个球是红球的可能性,即概率是58,故选A.4.【答案】A【解析】A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选A.5.【答案】B【解析】这句话中任选一个汉字,这个字是“绿”的概率=110.故选B.6.【答案】D【解析】四个赛道分别记为1,2,3,4.画树状图如下:由树状图可知共有12种等可能结果,其中甲、乙两名同学恰好抽中相邻赛道的结果有6种,所以甲、乙两名同学恰好抽中相邻赛道的概率为612=12,故选D.7.【答案】B8.【答案】C【解析】画树状图如下:由树状图知共有6种等可能结果,其中和为偶数的有2种结果,所以两个球上的数字之和为偶数的概率为26=13,故选C.9.【答案】D【解析】设盒子中红球的个数为x,根据题意,得:120120x=0.3,解得:x=84,即盒子中红球的个数为84,故选D.10.【答案】D【解析】∵在1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,∴P1=13,P2=1,P3=0,则P3<P1<P2,故选D.11.【答案】答案不唯一,如一次从袋里摸出7个球,其中红色,黄色和蓝色三种颜色的球都有.【解析】袋里有除了颜色不同外其他都相同的8个球,其中红色和黄色的球各有2个,其余的球都是蓝色的,根据以上信息,写一个概率为1的事件可以为:一次从袋里摸出7个球,其中红色,黄色和蓝色三种颜色的球都有.12.【答案】3【解析】设白球x个,由题意可得,232x++=14,解得:x=3.故答案为:3.13.【答案】1 314.【答案】1 9【解析】列表得:红黄绿红(红,红)(黄,红)(绿,红)黄(红,黄)(黄,黄)(绿,黄)绿(红,绿)(黄,绿)(绿,绿)故一共有9种情况,两次摸出的球都是黄色的有一种,则两次摸出的球都是黄色的概率是19.15.【答案】14,不公平【解析】所有可能出现的结果如下表所示:正反正(正,正)(正,反)反(反,正)(反,反)因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为14,一正一反的概率为24=12,因为二者概率不等,所以游戏不公平.故答案为:14,不公平.16.【答案】0.9【解析】大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种幼树移植成活的概率约为0.9.故答案为:0.9.17.【答案】【解析】根据题意列表得:2 3 4 52 –––(3,2)(4,2)(5,2)3 (2,3)–––(4,3)(5,3)4 (2,4)(3,4)–––(5,4)5 (2,5)(3,5)(4,5)–––由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为812=23,故答案为:23.18.【答案】0.9019.【答案】1 3【解析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率=26=13.故答案为:13.20.【答案】1 4【解析】画树状图为:共有24种等可能的结果数,其中能构成三角形的结果数为6,所以能构成三角形的概率=624=14.故答案为14.21.【解析】列表得:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率=39=13.学科@网23.【解析】(1)肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,(2)由(1)可得,小悦拿到的两个粽子都是肉馅的概率是:212=16,即小悦拿到的两个粽子都是肉馅的概率是16.24.【解析】(1)画树状图为:共有12种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率=416=14.25.【解析】(1)∵共有三根细绳,且抽出每根细绳的可能性相同,26.【解析】(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率=24=12;故答案为12;(2)画树状图为:共有12种等可能的结果数,其中两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的结果数为8,所以两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率=812=23.27.【解析】(1)画树状图如下:由树状图可知共有20种等可能结果,其中一次性摸出一个黄色乒乓球和一个白色乒乓球的有11种结果,∴一次性摸出一个黄色乒乓球和一个白色乒乓球的概率为11 20;(2)由(1)中树状图可知,明明去的概率为320,华华去的概率为620=310,∵320≠620,∴该游戏不公平.。