用MATLAB设计低通带通高通和带阻FIR数字滤波器
使用MATLAB进行数字滤波器设计的步骤与方法

使用MATLAB进行数字滤波器设计的步骤与方法数字滤波器是用于信号处理的重要工具,它可以对信号进行去噪、频率调整等操作。
而MATLAB作为一种强大的数学计算软件,提供了丰富的数字信号处理工具箱,可以方便地进行数字滤波器的设计与仿真。
本文将介绍使用MATLAB进行数字滤波器设计的步骤与方法。
1. 了解数字滤波器的基本原理在进行数字滤波器设计之前,首先需要了解数字滤波器的基本原理。
数字滤波器根据其频率响应特性可以分为低通、高通、带通和带阻滤波器等。
此外,数字滤波器的设计还需要考虑滤波器的阶数、截止频率以及滤波器类型等因素。
在设计中,我们可以选择滤波器的类型和相应的参考模型,然后利用MATLAB工具箱提供的函数进行设计。
2. 导入MATLAB中的数字信号处理工具箱使用MATLAB进行数字滤波器设计需要先导入数字信号处理工具箱。
通过在MATLAB命令窗口输入`>> toolbox`即可打开工具箱窗口,并可以选择数字信号处理工具箱进行加载。
加载完成后,就可以调用其中的函数进行数字滤波器设计。
3. 设计数字滤波器在MATLAB中,常用的数字滤波器设计函数有`fir1`、`fir2`、`iirnotch`等。
这些函数可以根据系统特性需求设计相应的数字滤波器。
以FIR滤波器为例,可以使用`fir1`函数进行设计。
该函数需要输入滤波器的阶数和截止频率等参数,输出设计好的滤波器系数。
4. 评估滤波器性能设计好数字滤波器后,需要进行性能评估。
可以使用MATLAB提供的`fvtool`函数绘制滤波器的幅频响应、相频响应和群延迟等。
通过观察滤波器在频域的性能表现,可以判断设计的滤波器是否满足要求。
5. 对滤波器进行仿真在对滤波器性能进行评估之后,还可以使用MATLAB进行滤波器的仿真。
通过将需要滤波的信号输入设计好的滤波器中,观察输出信号的变化,可以验证滤波器的去噪效果和频率调整能力。
MATLAB提供了函数`filter`用于对信号进行滤波处理。
用MATLAB设计FIR数字滤波器

实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。
2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。
3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。
二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。
由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。
FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。
重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。
本实验重要简介窗函数法。
用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。
(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。
可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。
程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。
如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。
matlabfir滤波器设计

matlabfir滤波器设计在数字信号处理中,滤波器是一种常用的工具,用于处理信号的频率特性。
其中,FIR(有限脉冲响应)滤波器是一种常见的滤波器类型之一。
MATLAB提供了方便的工具和函数来设计和实现FIR滤波器。
在本文中,我们将介绍MATLAB中如何使用fir1函数来设计FIR滤波器。
要使用fir1函数设计FIR滤波器,需要指定滤波器的阶数和截止频率。
阶数决定了滤波器的复杂度,而截止频率则决定了滤波器的频率响应特性。
通过调整这两个参数,可以设计出不同类型的滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
接下来,我们可以使用fir1函数来设计一个简单的低通滤波器。
例如,我们可以指定一个4阶低通滤波器,截止频率为0.5(归一化频率,取值范围为0到1)。
通过调用fir1函数并传入相应的参数,即可得到设计好的滤波器系数。
设计好滤波器系数后,我们可以将其应用于信号处理中。
例如,我们可以使用filter函数来对信号进行滤波。
将设计好的滤波器系数和待处理的信号作为输入参数传入filter函数,即可得到滤波后的信号。
这样,我们就可以实现对信号的滤波处理。
除了fir1函数外,MATLAB还提供了其他用于滤波器设计的函数,如firpm、fircls、firls等。
这些函数可以实现更复杂的滤波器设计,满足不同的需求。
通过选择合适的函数和参数,可以设计出性能优越的滤波器,用于各种信号处理应用中。
MATLAB提供了强大的工具和函数来设计和实现各种类型的滤波器。
通过合理选择滤波器的阶数和截止频率,以及使用适当的函数来设计滤波器系数,可以实现对信号的有效滤波处理。
希望本文能够帮助读者了解MATLAB中fir1函数的使用方法,进一步掌握滤波器设计的技巧,提高信号处理的效率和质量。
使用MATLAB设计FIR滤波器

使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。
语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。
如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。
⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。
matlab的fir滤波器设计

matlab的fir滤波器设计Matlab是一种常用的科学计算软件,可以广泛应用于信号处理领域。
其中一个常用的信号处理技术就是滤波器。
FIR滤波器是数字滤波器的一种,它具有线性相位特性和稳定性,并且在数字信号处理中应用非常广泛。
在Matlab中,设计FIR滤波器有多种方法,其中最常用的是窗函数法和最小二乘法。
窗函数法是基于理想滤波器的幅频响应,在频域上与希望的滤波器响应相乘的方式得到FIR滤波器系数。
而最小二乘法则是通过最小化滤波器输出与希望的输出之间的误差平方和来设计FIR滤波器。
在Matlab中,可以使用fir1函数实现FIR滤波器设计。
这个函数的输入参数包括滤波器阶数、截止频率、滤波器类型等。
例如,下面的代码可以实现一个低通FIR滤波器的设计:fs = 1000; % 采样频率fc = 100; % 截止频率N = 100; % 滤波器阶数h = fir1(N, fc/(fs/2), 'low'); % 低通FIR滤波器在上面的代码中,fs表示采样频率,fc表示截止频率,N表示滤波器阶数,h表示设计得到的FIR滤波器系数。
'low'表示设计的是低通滤波器,如果要设计高通、带通或带阻滤波器,可以将'low'换成'high'、'bandpass'或'bandstop'。
设计好FIR滤波器后,可以使用filter函数将滤波器应用于信号中。
例如,下面的代码可以将一个信号x通过上面设计得到的FIR 滤波器h进行滤波:y = filter(h, 1, x);在上面的代码中,h表示设计得到的FIR滤波器系数,x表示需要进行滤波的信号,y表示滤波后的信号。
'1'表示滤波器的分母系数为1,因为FIR滤波器的分母系数恒为1。
综上所述,Matlab的FIR滤波器设计方法包括窗函数法和最小二乘法,可以使用fir1函数实现滤波器设计,使用filter函数将滤波器应用于信号中。
基于matlab的fir数字滤波器的设计

一、引言数字滤波器是数字信号处理中至关重要的组成部分,它能够对数字信号进行滤波处理,去除噪音和干扰,提取信号中的有效信息。
其中,fir数字滤波器作为一种常见的数字滤波器类型,具有稳定性强、相位响应线性等特点,在数字信号处理领域得到了广泛的应用。
本文将基于matlab软件,探讨fir数字滤波器的设计原理、方法和实现过程,以期能够全面、系统地了解fir数字滤波器的设计流程。
二、fir数字滤波器的基本原理fir数字滤波器是一种有限长冲激响应(finite impulse response, FIR)的数字滤波器,其基本原理是利用线性相位特性的滤波器来实现对数字信号的筛选和处理。
fir数字滤波器的表达式为:$$y(n) = \sum_{k=0}^{M}h(k)x(n-k)$$其中,y(n)为输出信号,x(n)为输入信号,h(k)为滤波器的系数,M为滤波器的长度。
fir数字滤波器的频率响应特性由其系数h(k)决定,通过设计合适的系数,可以实现对不同频率成分的滤波效果。
三、fir数字滤波器的设计方法fir数字滤波器的设计方法主要包括窗函数法、频率抽样法、最小最大法等。
在matlab中,可以通过信号处理工具箱提供的fir1函数和firls函数等来实现fir数字滤波器的设计。
下面将分别介绍这两种设计方法的基本原理及实现步骤。
1. 窗函数法窗函数法是fir数字滤波器设计中最为常见的方法之一,其基本原理是通过对理想滤波器的频率响应进行窗函数加权来满足设计要求。
在matlab中,可以使用fir1函数实现fir数字滤波器的设计,其调用格式为:h = fir1(N, Wn, type)其中,N为滤波器的阶数,Wn为滤波器的截止频率,type为窗函数的类型。
通过调用fir1函数,可以灵活地设计出满足特定要求的fir数字滤波器。
2. 频率抽样法频率抽样法是fir数字滤波器设计中的另一种重要方法,其基本原理是在频域上对理想滤波器的频率响应进行抽样,并拟合出一个最优的滤波器。
基于MATLAB设计FIR滤波器

基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。
基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。
fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。
要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。
阶数决定了滤波器的截止频率的陡峭程度。
一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。
步骤2:确定滤波器的截止频率。
截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。
根据应用的需求,可以选择适当的截止频率。
步骤3:选择窗函数。
窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。
常用的窗函数有Hamming、Hanning等。
窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。
步骤4:使用fir1函数设计滤波器。
根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。
具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。
设计好FIR滤波器后,可以使用filter函数对信号进行滤波。
具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。
以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。
根据具体需求和信号特性,可以进行相应的调整和优化。
用MATLAB结合窗函数法设计数字带通FIR滤波器

武汉理工大学《Matlab课程设计》报告目录摘要 (I)Abstract (II)1 原理说明 (1)1.1 数字滤波技术 (1)1.2 FIR滤波器 (1)1.3 窗函数 (2)1.4 MATLAB简介 (4)1.5 MATLAB结合窗函数设计法原理 (4)2 滤波器设计 (2)2.1 滤波器设计要求 (2)2.2 设计函数的选取 (2)2.3 窗函数构造 (3)2.4 设计步骤 (4)2.5 利用MATLAB自带函数设计 (4)3 滤波器测试 (9)3.1 滤波器滤波性能测试 (9)3.2 滤波器时延测量................................................................................错误!未定义书签。
3.3 滤波器稳定性测量............................................................................错误!未定义书签。
5 参考文献 (12)附件一: ........................................................................................................ 错误!未定义书签。
摘要现代图像、语声、数据通信对线性相位的要求是普遍的。
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。
因此,具有线性相位的FIR数字滤波器在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.用低频信号产生器产生一个1KHz的正弦信号。
4.选择FFT频谱分析与显示的点数为64点,开始进行FFT运算。此 后,计算机将周期性地取回DSP运算后的FFT数据并绘图显示
xlabel('frequency-->');
ylabel('!X(k)!');
%*******************************************************************%
假设需观察方波信号的频谱,对一个周期的方波信号作32点的FFT,则 只需在MATLAB的命令窗口下键入:[x]=ffts(21,5) ,程序进行模拟,并 且输出FFT的结果。
本硬件实验要进行两种信号,每个信号两种频率,每个信号两种点数等 共8次具体实验内容,性质能够体现实验要求的4个以上的例子进行记 录。
2.7 思考题
1.对同一个信号,不同点数FFT观察到的频谱图有何区别?
2.序列加长后FFT与原序列FFT的关系是什么,试推导其中一种关 系。
3.用傅立叶级数理论,试说明正弦信号频谱和方波信号频谱之间的关 系。
假如有一个1Hz的余弦信号y=cos(2*π*t),对其用4Hz的采样频率进行采 样,共采样32点,只需执行samples(1,4,5),即可得到仿真结果。
软件仿真实验内容如下表所示:
仿真参数 f Fs Wo(计算) Xn(图形) Xk(图形) (1,4,5)
另外记录图形,并标图号 (1,8,5)
2、 讨论在仿真实验中自选参数的意义。 3、将在2TP2端加方波信号后的恢复波形,与相同频率的正弦信号的恢 复波形相比,能够得出哪些结论?
2 FFT频谱分析实验
2.1 实验目的
1.通过实验加深对快速傅立叶变换(FFT)基本原理的理解。
2.了解FFT点数与频谱分辨率的关系,以及两种加长序列FFT与原序 列FFT的关系。
对N点序列x(n),其DFT变换对定义为:
在DFT运算中包含大量的重复运算。FFT算法利用了蝶形因子WN的周 期性和对称性,从而加快了运算的速度。FFT算法将长序列的DFT分解 为短序列的DFT。N点的DFT先分解为2个N/2点的DFT,每个N/2点的 DFT又分解为2个N/4点的DFT。按照此规律,最小变换的点数即所谓 的“基数(radix)。”因此,基数为2的FFT算法的最小变换(或称蝶 形)是2点DFT。一般地,对N点FFT,对应于N个输入样值,有N个频 域样值与之对应。一般而言,FFT算法可以分为时间抽取(DIT)FFT 和频率抽取(DIF)两大类。
if mode= =3 for n=0:Nfft/2-1 x(n+1)=sin(4*pi*n/Nfft); end
end
%定义一个长度为Nfft/2的正弦序列,后面一半为0序列。
if mode= =4 for n=0:Nfft-1 x(n+1)=square(2*pi*n/Nfft); end
end
(3)高通滤波器的技术指标:H(ejw)=0,0<w<0.7pi; H(ejw)=1,0.7pi<w<pi. (4)带阻滤波器的技术指标:H(ejw)=1,0<w<0.3pi; H(ejw)=0;0.3pi<w<0.7pi;H(ejw)=1,0.7<w<pi;
低通采样定理实验
1.1 实验目的
1.了解数字信号处理系统的一般构成;
关于软件仿真实验内容,建议在完成大量仿真例子的基础上,选择能够 体现实验要求的4个以上的例子进行记录。例如要观察后面补0的加长方 法来提高FFT的分辨率的现象,可以仿真ffts(4,5)和ffts(6,6)两个例子。
2.6 硬件实验步骤
1.将低频信号源输出加到实验箱模拟通道1输入端,将示波器探头接至 模拟通道1输出端。
stem(n,x);
axis([0 Nfft-1 1.1*min(x) 1.1*max(x)]);
xlabel('Points-->');
X=abs(fft(x,Nfft));
subplot(2,1,2);
stem(n,X);
axis([0 Nfft-1 1.1*min(X) 1.1*max(X)]);
2.掌握奈奎斯特抽样定理。
1.2 实验仪器
1.YBLD智能综合信号源测试仪
1台
2.双踪示波器
1台
3.MCOM-TG305数字信号处理与现代通信技术实验箱
1台
4.PC机(装有MATLAB、MCOM-TG305配套实验软件) 1台
1.3 实验原理
一个典型的DSP系统除了数字信号处理部分外,还包括A/D和D/A两部 分。这是因为自然界的信号,如声音、图像等大多是模拟信号,因此需 要将其数字化后进行数字信号处理,模拟信号的数字化即称为A/D转 换。数字信号处理后的数据可能需还原为模拟信号,这就需要进行D/A 转换。一个仅包括A/D和D/A两部分的简化数字信号处理系统功能如图1 所示。
在实际计算中,可以采用在原来序列后面补0的加长方法来提高FFT的 分辨率;可以采用在原来序列后面重复的加长方法来增加FFT的幅度。
2.4 实验内容
1.软件仿真实验:分别观察并记录正弦序列、方波序列及改变FFT的 点数后的频谱;分别观察并记录正弦序列、方波序列及2种加长序列等 信号的频谱。
2.硬件实验:分别观察并记录正弦信号、方波信号及改变FFT的点数 后的频谱。
(2,8,6)
自选
1.6 硬件实验步骤 本实验箱采样频率fs固定为10KHz,低通滤波器的截止频率约为 4.5KHz。 1、用低频信号源产生正弦信号,正弦信号源频率f自定,并将其接至 2TP2(模拟输入)端,将示波器通道一探头接至2TP6(采样时钟)端 观察采样时钟波形,示波器通道二探头接至2TP2观察并记录输入信号 波形。
if mode= =1 for n=0:Nfft-1 x(n+1)=sin(2*pi*n/Nfft); end
end
%定义一个长度为Nfft的单周期正弦序列
if mode= =2 for n=0:Nfft-1 x(n+1)=sin(4*pi*n/Nfft); end
end
%定义一个长度为Nfft的双周期正弦序列
2.5 MATLAB参考程序和仿真内容
%*******************************************************************%
function[x]=ffts(mode,M)
Nfft=2^M;
x=zeros(1,Nfft); %定义一个长度为Nfft的一维全0数组
%f—余弦信号的频率
% M—基2 FFT幂次数 N=2^M为采样点数,这样取值是为了便于作基2 的FFT分析
%2. 采样频率Fs
%*******************************************************************%
function samples(f,Fs,M)
这个滤波器100Hz、400Hz处衰减在-30db以上。
可以通过增大n增加衰减。
用MATLAB设计低通带通高通和带阻FIR数字滤波器
(1)低通滤波器的技术指标: H(ejw)=1,0<w<0.3pi; H(ejw)=0,0.3pi<w<pi. (2)带通滤波器的技术指标:H(ejw=0,0<w<0.4pi; H(ejw)=1;0.4pi<w<0.6pi;H(ejw)=0,0.6<w<pi;
2、将示波器通道二探头接至2TP3观察并记录样点输出波形。 3、将示波器通道二探头接至2TP4观察并记录滤波输出波形。 4、根据采样定理,分f=fs /8、f=fs/4、f=fs/2等3种情况更改正弦信号频 率,重复步骤2至步骤3。 5、用低频信号源产生方波信号,重复步骤1至步骤4。
1.7 思考题 1、 讨论在仿真实验中所计算的数字域频率Wo和Xk的图形中非零谱线 位置之间的对应关系。
A/D转换包括三个紧密相关的过程,即抽样、量化和编码。A/D转换中 需解决的以下几个重要问题:抽样后输出信号中还有没有原始信号的信 息?如果有能不能把它取出来?抽样频率应该如何选择?
奈奎斯特抽样定理(即低通信号的均匀抽样定理)告诉我们,一个频带
限制在0至fx以内的低通信号x(t),如果以fs≥2fx的抽样速率进行均匀抽 样,则x(t)可以由抽样后的信号xs(t)完全地确定,即xs(t)包含有x(t)的成 分,可以通过适当的低通滤波器不失真地恢复出x(t)。最小抽样速率 fs=2fx称为奈奎斯特速率。
低通 译码 编码 量化 抽样
输入信号
样点输出 滤波输出
A/D(模数转换)
D/A(数模转换)
图1 低通采样定理演示
为方便实现,实验中更换了一种表现形式,即抽样频率固定 (10KHz),通过改变输入模拟信号的频率来展示低通抽样定理。我们 可以通过研究抽样频率和模拟信号最高频率分量的频率之间的关系,来 验证低通抽样定理。
if mode= =5 for n=0:Nfft-1 x(n+1)=square(2*pi*n/Nfft); end
end
if mode= =6 for n=0:Nfft/2-1 x(n+1)=square(4*pi*n/Nfft); end
end
n=0:Nfft-1;
subplot(2,1,1);
N=2^M;
% fft点数=取样总点数
Ts=1/Fs;
% 取样时间间隔