巴特沃斯有源高通滤波器的设计
有源滤波器的设计

176有源滤波器的设计一.设计方法有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。
巴特沃斯低通滤波器的幅频特性为:ncuo u A j A 21)(⎪⎪⎭⎫ ⎝⎛+=ωωω , n=1,2,3,. . . (1)写成:ncuou A j A 211)(⎪⎪⎭⎫ ⎝⎛+=ωωω (2) )(ωj A u其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。
从(2)式中可知,当ω=0时,(2)式有最大值1; 0.707A uoω=ωC 时,(2)式等于0.707,即A u 衰减了 n=2 3dB ;n 取得越大,随着ω的增加,滤波器 n=8 的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。
如图1所示。
0 ωC ω当 ω>>ωC 时,nc uo u A j A ⎪⎪⎭⎫⎝⎛≈ωωω1)( (3) 图1低通滤波器的幅频特性曲线 两边取对数,得: lg20cuo u n A j A ωωωlg20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。
表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。
表1 归一化的巴特沃斯低通滤波器传递函数的分母多项式 n 归一化的巴特沃斯低通滤波器传递函数的分母多项式 1 1+L s 2 122++L L s s 3 )1()1(2+⋅++L L L s s s4)184776.1()176537.0(22++⋅++L L L L s s s s1775 )1()161803.1()161807.0(22+⋅++⋅++L L L L L s s s s s6 )193185.1()12()151764.0(222++⋅++⋅++L L L L L L s s s s s s7)1()180194.1()124698.1()144504.0(222+⋅++⋅++⋅++L L L L L L L s s s s s s s8 )196157.1()166294.1()111114.1()139018.0(2222++⋅++⋅++⋅++L L L L L L L Ls s s s s s s s在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = csω,ωC 是低通滤波器的截止频率。
巴特沃斯滤波器的设计与仿真

信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真学院英才实验学院学号2015180201019学生姓名洪 健指导教师王玲芳巴特沃斯滤波器的设计与仿真英才一班 洪健 2015180201019摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。
本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。
利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。
通过Multisim 软件,在电路中设计出巴特沃斯滤波器。
由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。
同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。
关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。
滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。
滤波器主要分成经典滤波器和数字滤波器两类。
从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。
模拟滤波器可以分为无源和有源滤波器。
无源滤波器:这种电路主要有无源元件R、L 和C 组成。
有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。
集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。
MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。
基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计

巴特沃斯低通、切比雪夫低通、高通IIR滤波器设计05941401 1120191454 焦奥一、设计思路IIR滤波器可以分为低通、高通、带通、带阻等不同类型的滤波器,而以系统函数类型又有巴特沃斯、切比雪夫等滤波器。
其中巴特沃斯较为简单,切比雪夫较为复杂;低阶比高阶简单,但却有着不够良好的滤波特性。
在满足特定的指标最低要求下,低阶、巴特沃斯滤波器能更大程度地节省运算量以及复杂程度。
滤波器在不同域内分为数字域和模拟域。
其中数字域运用最广泛。
在设计过程中,一般是导出模拟域的滤波器,之后通过频率转换变为数字域滤波器,实现模拟域到数字域的传递。
在针对高通、带通、带阻的滤波器上,可以又低通到他们的变换公式来进行较为方便的转换。
综上,IIR滤波器的设计思路是,先得到一个满足指标的尽可能简单的低通模拟滤波器,之后用频域变换转换到数字域。
转换方法有双线性变换法、冲激响应不变法等。
虽然方法不同,但具体过程有很多相似之处。
首先将数字滤波器的指标转换为模拟滤波器的指标,之后根据指标设计模拟滤波器,再通过变换,将模拟滤波器变换为数字滤波器,是设计IIR滤波器的最基本框架。
以下先讨论较为简单的巴特沃斯低通滤波器。
二、巴特沃斯低通滤波假设需要一个指标为0~4hz内衰减小于3db、大于60hz时衰减不小于30db的滤波器。
其中抽样频率为400hz。
以双线性变换方法来设计。
首先将滤波器转换到模拟指标。
T =1f f ⁄=1400Ωf ′=2ff f =8ff f =Ωf ′f =0.02fΩf ′=2ff f =120ff f =Ωf ′f =0.3f根据双线性变换Ω=2f tan (f 2) 得到Ωf =25.14Ωf =407.62这就得到了模拟域的指标。
由巴特沃斯的方程Α2(Ω)=|f f (f Ω)|2=11+(ΩΩf )2f20ff |f f (f Ω)|=−10ff [1+(ΩΩf)2f] {20ff |f f (f Ωf )|≥−320ff |f f (f Ωf )|≤−30ff得到{ −10ff [1+(Ωf Ωf)2f ]≥−3−10ff [1+(Ωf Ωf )2f]≤−30当N取大于最小值的整数时,解出N=2,因此为二阶巴特沃斯低通滤波器。
巴特沃斯滤波器原理

巴特沃斯滤波器原理巴特沃斯滤波器是一种常用的信号处理滤波器,它在信号处理领域有着广泛的应用。
巴特沃斯滤波器的原理是基于巴特沃斯函数而来的,它可以对信号进行低通滤波和高通滤波,从而实现对信号频率的调节和控制。
本文将详细介绍巴特沃斯滤波器的原理和工作方式。
巴特沃斯滤波器的原理基于巴特沃斯函数,该函数可以描述滤波器的频率响应特性。
巴特沃斯函数的形式为:H(ω) = 1 / [1 + (ω/ωc)^(2n)]其中,H(ω)表示频率响应,ω表示频率,ωc表示截止频率,n表示阶数。
从上式可以看出,巴特沃斯函数随着频率的增加而逐渐减小,当频率达到截止频率时,频率响应将下降至-3dB。
这就是巴特沃斯滤波器的频率特性,它可以实现对不同频率信号的滤波处理。
在实际应用中,巴特沃斯滤波器可以分为低通滤波器和高通滤波器两种类型。
低通滤波器可以通过调节截止频率来滤除高频信号,保留低频信号;而高通滤波器则可以滤除低频信号,保留高频信号。
这种灵活的频率调节方式使得巴特沃斯滤波器在信号处理中有着广泛的应用。
巴特沃斯滤波器的工作方式是通过电路中的电容和电感元件来实现的。
在低通滤波器中,电容和电感元件会形成一个低通滤波的电路,从而实现对高频信号的滤除;而在高通滤波器中,电容和电感元件会形成一个高通滤波的电路,从而实现对低频信号的滤除。
通过合理选择电容和电感的数值,可以实现对不同频率信号的滤波处理。
除了频率响应特性外,巴特沃斯滤波器还具有良好的群延迟特性。
群延迟是指滤波器对不同频率信号的传输延迟,巴特沃斯滤波器的群延迟特性较为平坦,可以保持信号的相位特性,不会引起信号失真。
总的来说,巴特沃斯滤波器是一种常用的信号处理滤波器,它基于巴特沃斯函数的频率响应特性,可以实现对不同频率信号的滤波处理。
通过合理选择截止频率和阶数,可以实现对信号频率的精确控制。
同时,巴特沃斯滤波器还具有良好的群延迟特性,可以保持信号的相位特性,不会引起信号失真。
因此,在实际应用中,巴特沃斯滤波器有着广泛的应用前景。
巴特沃斯滤波器

巴特沃斯滤波器滤波器的作用顾名思义就是过滤掉不需要的信号,它可以将有用的信号与噪声分离,提高信号的抗干扰性及信噪比,滤掉不感兴趣的频率成分等。
巴特沃斯滤波器是三大原型模拟低通滤波器之一,今天小编要介绍的就是巴特沃斯滤波器。
巴特沃斯滤波器电路一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。
二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。
巴特沃斯滤波器原理巴特沃斯型滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。
其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。
滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。
滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的所有电容元件值来实现的。
巴特沃斯低通滤波器简介D0表示通带的半径,n表示的是巴特沃斯滤波器的次数。
随着次数的增加,振铃现象会越来越明显。
巴特沃斯低通滤波器原理图图3二阶巴特沃斯低通滤波器原理图基于以上对有源一阶RC 低通滤波器、积分器以及两者之间的区别于联系的分析,在此给出阶巴特沃斯低通滤波器的原理图如下图3 所示:根据巴特沃斯-阶低通滤波器的原理图可知,在该滤波电路中R和C,构成低通级,R3和G构成积分环节,这两级电路同时表现出低通特性。
巴特沃斯滤波器优点巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐渐减少,趋向负无穷大。
DSP实验4巴特沃斯滤波器的设计与实现(精)

DSP实验4巴特沃斯滤波器的设计与实现(精)实验四巴特沃斯数字滤波器的设计与实现1.数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减;s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化角频率参数:p ω:通带截止角频率(rad/s ),)2//(N p p f f =ω;s ω:阻带起始角频率(rad/s ),)2//(N s s f f =ω通过以上参数就可以进行离散滤波器的设计。
● 低通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频率为2000Hz ,通带内波动3dB ,阻带内最小衰减为50dB ,则p ω=1500/4000,s ω=2000/4000,p R =3dB ,s R =50dB 。
● 高通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频率为1000Hz ,通带内波动3dB ,阻带内最小衰减为65dB ,则p ω=1500/4000,s ω=1000/4000,p R =3dB ,s R =65dB 。
● 带通滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻带起始频率为[500Hz ,1800Hz],通带内波动3dB ,阻带内最小衰减为45dB ,则p ω=[800/4000,1500/4000],s ω=[500/4000,1800/4000],p R =3dB ,s R =45dB 。
● 带阻滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻带起始频率为[1000Hz ,1300Hz],通带内波动3dB ,阻带内最小衰减为55dB ,则p ω=[800/4000,1500/4000],sω=[1000/4000,1300/4000],p R =3dB ,s R =45dB 。
数字高通巴特沃斯滤波器的设计

目录摘要 (1)Abstract (1)引言 (1)1.数字高通滤波器的设计原理 (1)1.1双线性变换法简介 (1)1.2方案论证及确定 (2)2.设计步骤 (2)3.设计方案 (3)3.1解析计算 (3)3.2 MATLAB程序仿真 (4)结束语 (7)参考文献 (8)数字高通巴特沃斯滤波器的设计摘要:本文基于巴特沃斯高通滤波器的设计原理及双线性变换,介绍了数字高通滤波器的设计原理和设计步骤,并结合MATLAB实现数字高通巴特沃斯滤波器的仿真。
该设计证明数字高通巴特沃斯滤波器具有平稳的幅频特性。
关键词:巴特沃斯;模拟低通;数字高通;频率;MATLAB仿真The Analysis of Digital Butterworth High-Pass Filter Design Abstract: Based on the Butterworth high-pass filter design principle and the bilinear transform, this paper introduce digital high-pass filter design principles and design steps, and with the help of MATLAB a simulation on digital high pass Butterworth filter is successfully finished.The design demonstrates that the Butterworth high-pass filter has smooth amplitude frequency characteristics.Key words:Butterworth;Analog low-pass filter;Digital high-pass filter;Frequency;MATLAB simulation引言滤波器是一种对信号有处理作用的器件或电路。
(整理)巴特沃斯高通数字滤波器设计

巴特沃斯高通数字滤波器设计要求:3dB 数字截止频率为rad c πω2.0=,阻带下边频πω05.0=s rad ,阻带衰减为dB A s 48≥。
一、课程设计目的:数字信号处理(Digital Signal Processing DSP )是20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。
数字信号处理是利用计算机或其他专用处理设备,以数值计算的方法对信号进行采集、变换、滤波、压缩、传输、估值与识别等加工处理,借以达到提取信息和便于应用的目的的一种技术。
数字信号处理随着计算机技术信息技术的进步获得了飞速的发展。
数字信号处理已广泛应用于科学研究和工程技术的各个领域,是新一代IT 工程师必须掌握的信息处理技术。
它在越来越多的应用领域中迅速替代传统的模拟信号处理技术,并且开辟出许多新的领域。
数字信号处理有很多深奥的数学概念,理论也相对抽象,而且是一门理论与实践密切结合的课程。
我们通过课程设计深入掌握课程内容,深入理解与消化关于巴特沃斯滤波器的基本理论,锻炼我们独立解决问题的能力,培养我们的创新意识,加强我们的实践学习。
二、设计原理:1、数字滤波器所谓数字滤波器,是指输入输出均为数字信号,通过数字运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。
正因为数字滤波通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。
按照不同的分类方式,数字滤波器可以有很多种类型,但总起来可以分为两大类:经典滤波器和现代滤波器。
经典滤波器的特点是其输入信号中有用的频率成分和希望滤除的成分分别占有不同的频带,通过一个合适的选频滤波器滤除干扰,得到纯净信号,达到滤波目的。
但是,如果信号和干扰的频谱相互重叠,则经典滤波器无法有效滤除干扰,最大限度恢复信号,这就需要现代滤波器。
现代滤波器是根据随机信号的一些统计特性,在某种最佳准则下,最大限度抑制干扰,同时最大限度恢复信号,达到最佳的滤波效果的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明理工大学课程设计说明书
课题名称:巴特沃斯有源高通滤波器的设计专业名称:电子信息工程
学生班级:09级电信三班
学生姓名:周剑彪
学生学号:200911513339
指导老师:王庆平
设计时间:2011年6月23日
第一部分:题目分析及设计思路
(一)、滤波器简介
滤波器是一种对信号有处理作用的器件或电路。
主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。
滤波器按照所处理的信号,可以分为:模拟滤波器和数字滤波器;按照信号的频段,可以分为:低通、高通、带通和带阻滤波器四种;按照所采用的原件,也可以分为:无源滤波器和有源滤波器。
用来说明滤波器性能的技术指标主要有:中心频率f0,即工作频带的中心;带宽BW;通带衰减,即通带内的最大衰减阻带衰减等。
(二)巴特沃斯滤波器简介
巴特沃斯滤波器是电子滤波器的一种。
巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。
这种滤波器最先由英国工程师斯替芬〃巴特沃斯(Stephen Butterworth)在1930 年发表在英国《无线电工程》期刊的一篇论文中提出的。
一级至五级巴特沃斯低通滤波器的响应如下图所示:
巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。
(三)、巴特沃斯有源高通滤波器优化设计
设计目的
掌握滤波器的基本概念;
掌握滤波器传递函数的描述方法;
掌握巴特沃斯滤波器的设计方法;
设计一个巴特沃斯滤波器,其技术指标为:
(1)阻带截止频率: fc = 1kHz ;
(2)通带放大倍数:Aup =2;
(3)品质因素:Q = 1;
(4)阻带最小衰减率:-25dB。
设计要求:
(1)确定传递函数;
(2)给出电路结构和元件参数;(运算放大器可以选择)
(3)利用PSPICE 软件对电路进行仿真,得到滤波器的幅频响应,是否满足设计指标;
第二部分:电路原理分析及基本电路图
(一)确定传递参数:
二阶高通滤波器的通带增益
截止频率,它是二阶高通滤波器通带与阻带的界限频率。
品质因数,它的大小影响高通滤波器在截止频率处幅频特性的形状。
(二)给出电路结构:
一般来说,滤波器的技术指标往往是幅频响应特性。
所有的技术指标基本上都可以通过滤波器的传递函数计算得到。
因此,从一定程度上讲,滤波器的设计就是寻找一个合适的传递函数,使其能够满足所要求的技术指标。
选取的电阻的标称值尽量接近计算结果,按图构成二阶高通滤波器或高通滤波节。
特别注意的是,增益k为靓电容的比值,所以应该把电容C1和C2的数值选成符合电容标称值的元件,否则就需要在电路中并联微调电容,这将增加调试难度。
在工程设计中,高通、带通和带阻滤波器的设计通常是利用低通滤波器的原型,经过频率变换得到。
这样就转变为一个低通滤波器的设计。
因此,根据低通原型滤波器的技术指标,确定阶次N,再确定巴特沃斯低通原型的传递函数,再通过频率变换获得一般滤波器的传递函数。
据题意可知为二阶高通有源滤波器,由RC网络,放大器和反馈网络等组成,初步电路图如上所示。
第三部分:电路参数确定
1电阻为参数K=1时的值,单位为K。
2.由表得f=1KHe时,取C=0.01uF;
3.由表可知当Av=2时电容C1=C=0.01uF;K=1时,电阻R1=15K,Rf=15K,R=15.915K 第四本分:电路的功能或性能验证
根据滤波器的基本特性所设计电路基本满足题目要求,基本没有太大的问题。
详细电路图及验证结果出现在第五部分。
注意问题:所选元件的标称值必须与计算结果非常接近,高阶高通滤波器要求元件比低阶要更精确些,若电路中全部电阻值乘以某一常数,同时全部电容都除以该常数,滤波器性能不会改变,这样可以微选取元件的标称值带来好处。
第五部分:设计成果
EWB建立在SPICE基础上,它具有以下突出的特点:
(1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取;
(2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。
(3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。
(4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。
(5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。
设计电路图如下:
电路在EWB仿真软件下工作下的结果截图(波特图):
二阶高通滤波的幅度特性曲线
二阶高通滤波的相位特性曲线
第六部分:总结与体会
通过这次巴特沃斯滤波器优化设计,了解了滤波器的一些概念、功能和一些基本的类型,对模电知识有了进一步的了解,学习了低通原型滤波器及其传递参数、频率变换、滤波器的设计流程和巴特沃斯滤波器的设计,在对截止频率fc 和滤波器的阶数N求解时,运算由于太复杂。
本次课程设计由于是个人独立选定课题,所以在此过程的开始时基本上所有人都在自己独立思考,同时又由于设计所采用的仿真和制板软件和在此之前基本不是很熟悉,因此本次课程设计的前期多半是在摸索中前进,当然付出中会有收获,本次课程设计让我弄懂了很多以前感觉模糊的东西,同时也带给我成功的喜悦感,增加了我的自信心,当我看到由我自己设计的东西由想法变成实物时,我的心里充满了成功的喜悦感。
回想起此次课程设计过程中经历的种种困难,遇到不明白的问题时,与他人讨论,请教老师的过程,所有的努力都指向一个明确的目标----确保课程设计的成功,我真的很感动。
此次课程设计不仅使我学会了不少东西,更让我体会到人与人之间的沟通的乐趣,感谢此次课程设计过程中给予我们悉心指导的王庆平和丽芳老师,同时也感谢班级的其他同学,正式由于和他们一起的努力使我成功完成了本次课程设计。
第七部分:参考文献
[1]童诗白、华成英.模拟电子技术基础.4版.北京:高等教育出版社,2006.
[2] 彭介华.电子技术课程设计指导.北京:高等教育出版社,1997.。