山东省诸城市桃林镇中考数学压轴题专项汇编 专题24 特殊平行四边形的存在性
中考数学 特殊的平行四边形(含中考真题解析)

特殊的平行四边形☞解读考点☞2年中考1.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定.2.(连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.3.(徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【答案】A.【解析】试题分析:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.考点:菱形的性质.4.(柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A B.C.D【答案】B.考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(南充)如图,菱形ABCD的周长为8cm,高AE长为3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:2D.1:3【答案】D.【解析】试题分析:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为3cm,∴=1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴=3(cm),∴BD=2OB=cm,∴AC:BD=1:3.故选D.考点:菱形的性质.7.(安徽省)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.B.C.5 D.6【答案】C.考点:1.菱形的性质;2.矩形的性质.8.(十堰)如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE=53,且∠ECF=45°,则CF 的长为( )A .102B .53 CD【答案】A .考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题.9.(鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.2014 21)(B.2015 21)(C.2015 33)(D.2014 33)(【答案】D.考点:1.正方形的性质;2.规律型;3.综合题.10.(广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.【答案】【解析】试题分析:连接AC,BD,相交于点O,如图所示,∵E、F、G、H分别是菱形四边上的中点,∴EH=12BD=FG,EH∥BD∥FG,EF=12AC=HG,∴四边形EHGF是平行四边形,∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴四边形EFGH是矩形,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABO=30°,∵AC⊥BD,∴∠AOB=90°,∴AO=12AB=3,∴AC=6,在Rt△AOB中,由勾股定理得:OB==,∴BD=,∵EH=12BD,EF=12AC,∴EH=EF=3,∴矩形EFGH的面积=EF•FG=cm2.故答案为:.考点:1.中点四边形;2.菱形的性质.11.(凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(3,2-).的交点,∴点P的坐标为方程组(11y xy x⎧=⎪⎨⎪=-⎩的解,解方程组得:32xy⎧=⎪⎨=⎪⎩,所以点P的坐标为(3,2-),故答案为:(3-,2).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为.【答案】(0.5,.考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】试题分析:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB ∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.考点:1.含30度角的直角三角形;2.正方形的性质.14.(南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(玉林防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q 分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】92.【解析】试题分析:如图1所示,作E 关于BC 的对称点E′,点A 关于DC 的对称点A′,连接A′E′,四边形AEPQ 的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ ∥AE′,D是AA′的中点,∴DQ 是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC ﹣CQ=3﹣2=1,∵BP ∥AA′,∴△BE′P ∽△AE′A′,∴'''BP BE AA AE =,即164BP =,BP=32,CP=BC ﹣BP=332-=32,S 四边形AEPQ=S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣SBEP=9﹣12AD•DQ ﹣12CQ•CP ﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S 、3S 、…n S ,则n S 的值为(用含n的代数式表示,n为正整数).【答案】232n-.故答案为:232n-.考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题.17.(齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .【答案】2014.考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.【答案】(1)证明见试题解析;(2.【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题.19.(恩施州)如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)由ABCD、BEFG均为正方形,得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,从而得到△ABG≌△CBE,即可得到结论;(2)由△ABG≌△CBE,得出∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.试题解析:(1)∵四边形ABCD、BEFG均为正方形,∴AB=CB,∠ABC=∠GBE=90°,BG=BE,∴∠ABG=∠CBE,在△ABG和△CBE中,∵AB=CB,∠ABG=∠CBE,BG=BE,∴△ABG ≌△CBE(SAS),∴AG=CE;(2)如图所示:∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG⊥CE.考点:1.全等三角形的判定与性质;2.正方形的性质.20.(武汉)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求EFAK的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN的边长.【答案】(1)①32;②3(8)2S x x=-,S的最大值是24;(2)245或24049.试题解析:(1)①∵EF∥BC,∴AK EFAD BC=,∴EF BCAK AD==128=32,即EFAK的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题.21.(荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE.【解析】试题分析:(1)先证出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;(2)由△ABP≌△CBP,得到∠BAP=∠BCP,进而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.1.(宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.(14)n﹣1 D.14n【答案】B.【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选B.考点:1.正方形的性质2.全等三角形的判定与性质.2.(山东省淄博市)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 BCD. 2【答案】C.考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质.3.(山东省聊城市)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A .B .3C .D【答案】B . 【解析】试题分析:∵四边形ABCD 是矩形,∴∠A=90°,即BA ⊥BF ,∵四边形BEDF 是菱形,∴EF ⊥BD ,∠EBO=∠DBF ,∴AB=BO=3,∠ABE=∠EBO ,∴∠ABE=∠EBD=∠DBC=30°,∴BE=cos30BO=︒,∴BF=BE=,∵EF=AE+FC ,AE=CF ,EO=FO∴,故选B .考点:1.矩形的性质;2.菱形的性质. 4.(广西来宾市)顺次连接菱形各边的中点所形成的四边形是( ) A . 等腰梯形 B . 矩形 C . 菱形 D . 正方形 【答案】B .考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质. 5.(贵州铜仁市)如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE=3,,则MF 的长是( )ABC.1 D.【答案】D.考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.【解析】试题分析:∵AE=13AB,∴BE=2AE.由翻折的性质得,PE=BE,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP)=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE.故①正确.∵BE=PE,∴EF=2PE.∵EF>PF,∴PF>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE 与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF (SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【例3】如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E ﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙【答案】B.考点:正方形的性质.☞1年模拟1.(山东省潍坊市昌乐县中考一模)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【答案】D.【解析】试题分析:根据平行四边形的菱形的性质得到A、B、C选项均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形.故选D.考点:1.菱形的判定与性质;2.平行四边形的判定与性质.2.(广东省广州市中考模拟)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B.考点:矩形的性质.3.(山东省日照市中考模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A .0.7B .0.9C .−2 D【答案】C . 【解析】试题分析:如图,∵∠B=45°,AE ⊥BC ,∴∠BAE=∠B=45°,∴AE=BE ,由勾股定理得:BE2+AE2=22,解得:,由题意得:△ABE ≌△AB1E ,∴∠BAB1=2∠BAE=90°,,∴,-2,∵四边形ABCD 为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F ,∵CF ∥AB ,∴△CFB1∽△BAB1,∴11B C CF AB BB =,解得:,∴△AEB1、△CFB1的面积分别为:112=,21(232⨯=-,∴△AB1E 与四边形AECD 重叠部分的面积=1(32--=.故选C .考点:1.菱形的性质;2.翻折变换(折叠问题). 4.(山东省济南市平阴县中考二模)如图,菱形OABC 的顶点O 在坐标系原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕原点O 顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )A.(B.,)C.(2,-2)D.,【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B.考点:正方形的判定.7.(山东省青岛市李沧区中考一模)如图,在矩形ABCD 中,,AD=1,把该矩形绕点A 顺时针旋转α度得矩形AB′C′D′,点C′落在AB 的延长线上,则图中阴影部分的面积是 .4π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算.8.(河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.【答案】【解析】试题分析:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE ⊥BH,∴BG=BE,∵△ABE为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴,BH=2,设OG=OE=x,则-3,-x,在RT△OEH中,EH2+OE2=OH2,即(-3)2+x2=-x)2,解得,∴⊙O的半径为.故答案为:考点:1.切线的性质;2.矩形的性质.9.(山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为.【答案】1 4.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.10.(山东省青岛市李沧区中考一模)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是.考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型.12.(北京市平谷区中考二模)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【答案】(1)见解析(2【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12BC.同理,AF=CF=12AD.∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形.13.(山东省日照市中考模拟)如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求sin∠ABC的值;(2)若E为x轴上的点,且S△AOE=163,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE∽△DAO.(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】 试题分析:(1)求得一元二次方程的两个根后,判断出OA 、OB 长度,根据勾股定理求得AB 长,那么就能求得sin ∠ABC 的值; (2)易得到点D 的坐标为(6,4),还需求得点E 的坐标,OA 之间的距离是一定的,那么点E 的坐标可能在点O 的左边,也有可能在点O 的右边.根据所给的面积可求得点E 的坐标,把A 、E 代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC 与AF 是邻边并且点F 在射线AB 上与射线BA 上两种情况,以及AC 与AF 分别是对角线的情况分别进行求解计算. 试题解析:(1)解x2-7x+12=0,得x1=4,x2=3.∵OA >OB ,∴OA=4,OB=3.在Rt △AOB 中,由勾股定理有5=,∴sin ∠ABC=54OA AB =;(3)根据计算的数据,OB=OC=3,∴AO 平分∠BAC ,①AC 、AF 是邻边,点F 在射线AB 上时,AF=AC=5,所以点F 与B 重合,即F (-3,0);②AC 、AF 是邻边,点F 在射线BA 上时,M 应在直线AD 上,且FC 垂直平分AM ,点F (3,8);③AC 是对角线时,做AC 垂直平分线L ,AC 解析式为y=-43x+4,直线L 过(32,2),且k 值为34(平面内互相垂直的两条直线k 值乘积为-1),L 解析式为y=34x+78,联立直线L与直线AB 求交点,∴F (4751-,722-);④AF 是对角线时,过C 做AB 垂线,垂足为N ,根据等积法求出CN=245,勾股定理得出,AN=75,做A 关于N 的对称点即为F ,AF=145,过F 做y 轴垂线,垂足为G ,FG=145×35=4225,∴F (-4225,4425).综上所述,满足条件的点有四个:F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型. 14.(河北省中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作EF 的垂线,交EF 于点M ,交DA 的延长线于点N ,连接NG .(1)求证:BE=2CF ;(2)试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明. 【答案】(1)证明见解析.(2)四边形BFGN 为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC ,则图中阴影部分的面积为.【答案】342π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A 、D′、C 及A 、B 、C′分别共线∴,∴扇形ACC′4π=.∵AC=AC′,AD′=AB ,∴在△OCD′和△OC'B 中,CD BC ACO AC D COD C OB ''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B(AAS ),∴OB=OD′,CO=C′O .∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC --1,OB+C′O=1,∴在Rt △BOC′中,BO2+(1-BO )2=-1)2,解得BO=12-,32C O '=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。
中考数学专项提升复习——特殊平行四边形存在性问题 (共30张PPT)

研究 元素
平行四边形
菱形
矩形
正方形 等腰梯形
对边平行 对边平行 对边平行 对边平行 对边平行
边 且相等
四边相等 且相等 四边相等 两腰相等
对角相等 性质 角 邻角互补
对角相等 四个角 邻角互补 为直角
四个角 为直角
在同一底 上的两个 角相等
对角 线
两组对边分别平行的四边形是平行四边形 边 两组对边分别相等的四边形是平行四边形
判定
一组对边平行且相等的四边形是平行四边形
角 两组对角分别相等的四边形是平行四边形
对角线 对角线互相平分的四边形是平行四边形
矩形:有一个角是直角的平行四边形叫做矩形
边
矩形对边平行 矩形对边相等
性质
角
矩形对角相等、邻角互补 矩形的四个内角都是直角
13
(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.
2019/5/13
14
2.在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=3 5 .分别以OA、OC边所
在直线为x轴、y轴建立如图1所示的平面直角坐标系. (1)求点B的坐标; (2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的 解析式;
1.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长 度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于 点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运 动的时间为t秒(t≥0). (1)直接用含t的代数式分别表示:QB=_______,PD=_______;
2020年中考数学压轴题训练平行四边形的存在性问题

2020年中考数学压轴题训练平⾏四边形的存在性问题2020年中考数学压轴题训练平⾏四边形的存在性问题针对训练1、如图已知抛物线y=-x 2-2x+3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 顶点为P .若以A 、C 、P 、M 为顶点的四边形是平⾏四边形,求点M 的坐标2、如图,在平⾯直⾓坐标系xOy 中,已知抛物线y=-x 2+2x+3与x 轴交于A 、B 两点,点M 在这条抛物线上,点P 在y 轴上,如果以点P 、M 、A 、B 为顶点的四边形是平⾏四边形,求点M 的坐标3、将抛物线c1:y=23x 3-+沿x 轴翻折,得到抛物线c2如图所⽰现将抛物线c1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B :将抛物线c2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D E 在平移过程中,是否存在以点A 、N 、F,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理⽈如图,4、抛物线y=25x bx c 4-++与y 轴交于点A (0,1),过点A 的直线与抛物线交于为⼀点B (3.2),过点B 作BC ⊥x 轴,垂⾜为C(1)求抛物线的表达式;(2)点P是x轴正半轴上的⼀动点,过点P作PN⊥x轴交直线AB于点M,交抛物线于点N设OP的长度为m,连结CM、BN,当m 为何值时,四边形BCMN为平⾏四边形?5、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C秒1个单位长度的速度运动,动点Q从点C 开始沿边CB向点B以每秒2个单位长度的速度过点P作PD∥BC,交AB于点D,连结PQ点P、Q分别从点A、C同时出发,当其中⼀点到达终点时,另⼀点也随之停⽌运动,设运动的时间为t秒(t≥0)(1)直接⽤含t的代数式分别表⽰:QB= ,PD=(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某⼀时刻为菱形,求点Q的速度6、如图,在平⾯直⾓坐标系中,直线AB与x轴、y轴分别交于点A(4,0)、B(0,3),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴上的⼀动点,且满⾜O=2x,连结DE,以DE、DA为边作平⾏匹边形DEFA(1)如果平⾏四边形DEFA为矩形,求m的值(2)如果平⾏四边形DEFA为菱形,请直接写出m的值真题演练7、(18衢州24)如图,Rt△OAB的直⾓边OA在x轴上,顶点B的坐标为(6,8),直线CD 交AB 于点D (6,3),交x 轴于点C (12,0)(1)求直线CD 的函数表达式;(2)动点P 在x 轴上从点(-10,0)出发,以每秒1个单位的速度向x 轴正⽅向运动,过点P 作直线l 垂直于x 轴,设运动时间为t①点P 在运动过程中,是否存在某个位置,使得∠PDA=∠B ?若存在,请求出点P 的坐标;若不存在,请说明理由②请探索当t 为何值时,在直线l 上存在点M ,在直线CD 上存在点Q ,使得以OB 为⼀边,O 、B 、M 、Q 为顶点的四边形是菱形?并求出此时t 的值8、(19连云港26)如图,在平⾯直⾓坐标系xOy 中,抛物线L1:y=x 2+bx+c 过点C (0,-3),与抛物线L2:y=213222x x --+的⼀个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L1,L2上的动点(1)求抛物线L1的函数表达式(2)若以A 、C 、P 、Q 为顶点的四边形恰为平⾏四边形,求点P 的坐标;(3)设点R 为抛物线L1上另⼀个动点,且CA 平分∠PCR 若OQ ∥PR ,求点Q 的坐标9、(19南充25)抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0)、点B (-3,0)与y 轴交于点C ,且OB=OC (如图所⽰)(1)求抛物线的解析式;(2)若点P 在抛物线上,且∠POB=∠ACB ,求点P 的坐标;(3)抛物线上有两点M 、N ,点M 的横坐标为m ,点N 的横坐标为m+4.点D 是抛物线上M 、N 之间的动点,过点D 作y 轴的平⾏线交MN 于点①求DE 的最⼤值②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形?10(17泰安28)如图是将抛物线y=-x2平移后得到的抛物线,其中对称轴为x=1,与x轴的⼀个交点为A(-1,0),另⼀个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上⼀点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上⼀点,点Q是⼀次函数y=2x+2的图象上⼀点,若四边形OAPQ 为平⾏四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,请说明理由模拟训练11、(2018年长沙市中考模拟(三)第26题)如图,已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M直线y=2x-a分别与x轴、y轴相交于B、C两点,并且与直线M相交于点N.(1)试⽤含a的代数式分别表⽰点M与N的坐标;(2)如图,将△NAC沿y轴翻折,若点N的对应点N恰好落在抛物线上,AN与x 轴交于点D,连结CD,求a的值和四边形ADCN的⾯积;(3)在抛物线y=x2-2x+a上是否存在⼀点P,使得以P、A、C、N为顶点的四边形是平⾏四边形?若存在,求出点P的坐标;若不存在,试说明理由12、(2019年内蒙古准格尔旗中考模拟第24题)如图所⽰,已知抛物线y=-x2+bx+c与⼀直线相交于A(-1,0)、C(2,3)两点,其顶点为D(1)求抛物线及直线AC的函数关系式(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意⼀点,过点E 作EF∥BD交抛物线于点F,以B、D、E、F为顶4O点的四边形能否为平⾏四边形?若能,求点E的坐标;若不能,请说明理由(3)若P是抛物线上位于直线AC上⽅的⼀个动点,直接写出△APC的⾯积的最⼤值及此时点P的坐标专题预测13、如图,在平⾯直⾓坐标系中,矩形1BC的顶点A、C分别在x轴和y轴上,点B的坐标为(3.33)。
挑战中考数学压轴题——平行四边形存在性问题

(3)过点F作FT⊥BR于点T,如图2所示,
∵点B(m,n)在抛物线上,∴m2=4n,在Rt△BTF中,
BF= = = = ,
∵n>0,∴BF=n+1,又∵BR=n+1,∴BF=BR.∴∠BRF=∠BFR,又∵BR⊥l,EF⊥l,
∴BR∥EF,∴∠BRF=∠RFE,∴∠RFE=∠BFR,同理可得∠EFS=∠CFS,∴∠RFS= ∠BFC=90°,
(2)点G是线段AC上的动点(点G与线段AC的端点不重合),若△ABG与△ABC相似,求点G的坐标;
(3)设图象M的对称轴为l,点D(m,n)(﹣1<m<2)是图象M上一动点,当△ACD的面积为 时,点D关于l的对称点为E,能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.
∴2(1+m)=3,m= .
(3)若A、N、E、M为顶点的四边形是矩形,
∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣ )、M(﹣m, ),
∴点A,E关于原点对称,点N,M关于原点对称,
∴A、N、E、M为顶点的四边形是平行四边形,
则AN⊥EN,KAN×KEN=﹣1,
∵A(﹣1﹣m,0),E(1+m,0),N(m,﹣ ),
三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.
四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.
灵活运用向量和中心对称的性质,可以使得解题简便.
典型例题
例1.如图,抛物线:y= x2﹣x﹣ 与x轴交于A、B(A在B左侧),A(﹣1,0)、B(3,0),顶点为C(1,﹣2)
中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析由抛物线上的点构成特殊四边形的问题,需要根据特殊四边形的性质与判定去确定点的坐标,然后求解 . 具体而言,解该类题时,我们要根据题目中的条件,科学地进行分类,然后画出图形,再根据这个四边形的性质或判定求出这点的坐标,若这一点是根据特殊四边形的特性得到的坐标,我们还应将这一点代入到抛物线的解析式中去验证是否是抛物线上的点 .本节主要来讨论下特殊四边形:平行四边形、菱形、矩形的存在性问题 .类型一:平行四边形问题【例题1】如图,抛物线y = 1/2 x^2 + bx + c 经过点A(-1,0)和点B(3,0),同时交y 轴于点C .(1)求抛物线的解析式;(2)若点Q 在y 轴上,点P 在抛物线上,且以A , B , Q , P 为顶点的四边形是平行四边形,求满足条件的点P 的坐标 .【分析】(1)根据抛物线经过A , B 两点即可求得b , c 的值,可解题;(2)以A , B , Q , P 为顶点的四边形是平行四边形,则点P 横坐标为4 或- 4,将x = 4 或- 4 代入抛物线解析式即可求得y 的值,即可解题 .【解析】(1)把A(-1,0),B(3,0)代入y = 1/2 x^2 + bx + c 中,∴抛物线的解析式是y = 1/2 x^2 - x - 3/2 .(2)①当AB 为边时,只要PQ∥AB 且PQ = AB = 4 即可 .又知点Q 在y 轴上,∴点P 的横坐标为4 或- 4 ,这时符合条件的点P 有两个,分别记为P1 , P2,把x = 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 5/2 ,把x = - 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 21/2 ,此时P1(4 , 5/2),P2(- 4 , 21/2);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 .又知点Q 在y 轴上,且线段AB 中点的横坐标为1,∴点P 的横坐标为2,这时符合条件的P 只有一个记为P3 ,而且当x = 2 时,y = - 3/2 ,此时P3(2,- 3/2),综上,满足条件的P 为P1(4 , 5/2),P2(- 4 , 21/2),P3(2,-3/2).类型二:菱形问题【例题2】如图,在平面直角坐标系中,点O 为坐标原点,直线y = -x + b 与坐标轴交于C,D 两点,直线AB 与坐标轴交于A , B 两点,线段OA , OC 的长是方程x^2 - 3x + 2 = 0 的两个根(OA > OC).(1)求点A , C 的坐标;(2)直线AB 与直线CD 交于点E,若点E 是线段AB 的中点,反比例函数y = k/x (k ≠0 )的图象的一个分支经过点E,求k 的值;(3)在(2)的条件下,点M 在直线CD 上,坐标平面内是否存在点N,使以点B , E , M , N 为顶点的四边形是菱形?若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由 .【分析】(1)利用分解因式法解一元二次方程x^2 - 3x + 2 = 0 即可得出OA , OC 的值,再根据点所在的位置即可得出A , C 的坐标;(2)根据点C 的坐标利用待定系数法即可求出直线CD 的解析式,根据点A , B 的横坐标结合点E 为线段AB 的中点即可得出点E 的横坐标,将其代入直线CD 的解析式中即可求出点E 的坐标,再利用待定系数法即可求出k 的值;(3)假设存在,设点M 的坐标为(m , - m + 1), 分别以BE 为边、BE 为对角线来考虑 .根据菱形的性质找出关于m 的方程,解方程即可得出点M 的坐标,再结合点B , E 的坐标即可得出点N 的坐标 .【解析】(1)x^2 - 3x + 2 = (x - 1)(x - 2)= 0 ,∴x1 = 1 , x2 = 2 ,∵OA > OC ,∴OA = 2 , OC = 1 ,∴A(-2,0),C(1,0);(2)将C(1,0)代入y = - x + b 中,得0 = - 1 + b , 解得b = 1 ,∴直线CD 的解析式为y = - x + 1 .∵点E 为线段AB 的中点,A(-2,0),B 的横坐标为0 ,∴点E 的横坐标为- 1 .∵点E 为直线CD 上一点,∴E(-1,2).将点E(-1,2)代入y = k/x (k ≠0 )中,得2 = k / -1 , 解得k = -2 ;(3)假设存在,设点M 的坐标为(m , - m + 1),以点B , E , M , N 为顶点的四边形是菱形分两种情况(如上图所示)类型三:矩形问题【例题3】【解题策略】这三道例题分别呈现了运动变化过程中的平行四边形、菱形、矩形的存在性问题,三道例题的思路都是要依据特殊四边形的性质构图并建立方程求点的坐标 .特别地,由于菱形任意三个顶点组成的三角形都是等腰三角形,因此可将菱形问题转化为等腰三角形的存在性问题;而矩形问题则可转化为直角三角形的问题,要注意体会相关知识之间的联系 .。
平行四边形存在性问题(三定一动)

平行四边形存在性问题
平行四边形存在性问题 第一篇
主讲人: 日 期:2022-11-15
2
平行四边形存在性问题
平行四边形存在性问题分类
类型一、三定点一动点
此种情况是三个点固定,另外一个动点可能在正比例函数、一次函数、反比例 函数、二次函数上,也可能在x轴、y轴或者坐标平面上。
问题是先找动点位置,再求出动点坐标可以使这四个点构成平行四边形;
B、P两点为对点,则B、P中点坐标 5 x0 , 2 y0
2
2
4 2 5 x0
2
2
2
2
2
5
平行四边形存在性问题
例题解析:如图,抛物线y= - x2 + x +2 与x轴的交点为A、B,与y轴的交点为C
,点P是平面内一点,判断有几个点P能使以点A、B、C、P为顶点的四边形是平
C
则P1、P2、P3就是所求的动点的具体位置,可以使四 边形ABCP为平行四边形。
4
1 平行四边形存在性问题
问题二:如图,在平面直角坐标系中,已知□ABCD的顶点坐标分别是A(-4,2), B(-5,-2),C(2,1),如何确定点P(x0,y0)?
y
A(-4,2)
7
O
7
B(-5,-2)
P(x0,y0)
顶点的四边形是平行四边形,求出P点坐标。
y
第一步:先求出A(1,0),B (0,1),C(-1,-1),
连接A、B、C组成三角形
P1
第二步:过A点做BC平行线,
(0,1)B
P3
O
C
(-1,-1)
A(1,0)
过B点做AC平行线,
过C点做BC平行线, 则三条平行线的三个交点即为P1、P2、 x 第P三3 步:利用点的平移法或者对点法进行点P坐标求解 ∴ P1(2,2),P2(-2,0),P3(0,-2)
中考数学压轴题专项汇编专题特殊平行四边形的存在性

专题24 特殊平行四边形的存在性破解策略在平行四边形的基础上增加一些条件,即可得到特殊的平行四边形因而可以结合”等腰三角形的存在性”,”直角三角形的存在性”和”平行四边形的存在性”来解决这类问题. 例题讲解例1:如图,在平面直角坐标系xOy 中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧).经过点A 的直线l :y =ax +a 与抛物线的另一交点为C ,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,那么以点A ,C ,P ,Q 为顶点是四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.解:以点A ,C ,P ,Q 为都顶点的四边形能成为矩形.令ax 2-2a -3a =ax +a .解得x 1=-1,x 2=4, 所以点A 的坐标为(-1,0),C 的坐标为(4,5a ).因为y =ax 2-2ax -3a ,所以抛物线的对称轴为x =1.则x P =1. ①若AC 是矩形的一条边,如图,则x A +x P =x C +x Q ,可得x Q =-4,从而点Q 坐标为(-4,21a ). 同样y A +y P =y C +y Q ,可得y P =26a ,从而点P 坐标为(1,26a ).因为AC =PQ ,所以有22+(26a )2=82+(16a )2, 解得)(77,7721舍去=-=a a ,此时点P 的坐标为(1,7726-)②若AC 是矩形的一条对角线,如图.则x A +x C =x P +x Q ,可得x Q =2,从而点Q 坐标为(2,-3a ). 同样y A +y C =y P +y Q ,可得y P =8a ,从而点P 坐标为(1,8a ).因为AC =PQ ,所以有52+(5a )2=12+(11a )2, 算得)(21,2143舍=-=a a ,所以此时点P 的坐标为(1,-4) 综上可得,以点A ,C ,P ,Q 为顶点的四边形能成为矩形,点P 的坐标为(1,7726-)或(1,-4).例2:如图,在平面直角坐标系xOy 中,菱形ABCD 的中心与原点重合,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)菱形ABCD 的边长是_____,面积是_____,高BE 的长是_____;(2)若点P 的速度为每秒1个单位.点Q 的速度为每秒k 个单位.在运动过程中,任何时刻都有对应的k 值,使得△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =4秒时的情形,并求出k 的值.解:(1)5,24,4.8.(2)要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,翻折前后两个图形是全等的,所以要满足四边形是菱形只需△APQ 为等腰三角形即可.当t =4时,AP =4.①如图,当点Q 在线段BC 上时,PQ ≥BE >AP ,同理,AQ >AP ,所以只存在QA =QP 的等腰三角形.过点Q 作QH ⊥AP 于点H ,交AC 于点F ,则AH =PH =21AP =2 易证:△AFH ∽△CFQ ∽△ADO , 所以43===AODO CQFQ AHFH可得522,1033,23===CQ FQ FH从而k =10114=CQ ②当Q 在BA 上时,有两种情况的等腰三角形存在:(i )如图1,当AP =AQ 时,此时点P ,Q 关于x 轴对称,BQ =PD =1 所以,k =234=+BQ CB (ⅱ)如图3,当PA =PQ 时,过点P 作PH ⊥AB 于点H .易证△AHP ∽△AEB ,所以AH AP AE AB=,其中AE =227.5AB BE -= 所以AH =2825,AQ =2AH =5625,所以k =97450CB BQ +=. (ⅲ)由①可得,AP 的垂直平分线与BC 相交,所以点Q 在线段AB 上时,不存在AQ =PQ 这种情况.综上所得,满足条件的k 值为32,1110,9750.y xP QHE A CB DO例3 如图,二次函数212y x x c =-+的图象与x 轴分别交于A ,B 两点,顶点M 关于x 轴的对称点是M ′.问:是否存在抛物线212y x x c =-+使得四边形AMBM ′为正方形?若存在,请求出抛物线的表达式;若不存在,请说明理由.xyBM′MAO解:存在易得AMBM ’是菱彤,所以当AB =MM ′时,四边彤AMBM ′是正方形 设点A 的坐标为(x 1,0),B 的坐标为(x 2,0).令2102x x c -+=所以x 1+x 2=2,x 1·x 2=2c 所以AB =()212124x x x x +-=48.c -点M 的纵坐标为2421.42ac b c a --=若四边形AMBM ’为正方形,则有214822c c --=⨯.解得1213,.22c c ==-又因为已知抛物线与x 轴有两个交点, 所以()2214140.2b ac c ∆=-=--⨯>解得c <12, 所以c 的值为3.2-.所以存在抛物线21322y x x =--,使得四边彤AMBM '为正方形. 进阶训练1.已知抛物线C 1: y =-2x 2+8x -6与抛物线C 关于原点对称,抛物线C 2与x 轴分别交于点A ,B 两点(点A 在点B 的左侧),顶点为M ,抛物线C 2与x 轴分别交于C ,D 两点(点C 在点D 的左侧)顶点为N . (1)求抛物线C 2的表达式;(2)若抛物线C 1与抛物线C 2同时以每秒1 个单位的速度沿x 轴方向分别向左、向右运动,此时记A ,B ,C ,D ,M ,N 在某一时刻的新位置分别为A',B',C',D',M',N',当点A'与点D'重合时运动停止,在运动过程中,四边形B',M',C',N'能否形成矩形? 若能,求出此时运动时间t (秒)的值;若不能,请说明理由.解:(1)抛物线C 2的表达式为2286y x x =++ (2)能.1=[提示](2)如图,由轴对称的性质可得四边形C 'N 'B 'M '为平行四边形.所以当∠B 'M 'C '=90 或B 'C '=M 'N '时.四边形为矩形,由此可列方程,从面求得t .2.如图,抛物线22725()326y x =--与x 轴的右交点为A ,与y 轴的交点为B ,设E (x ,y )是抛物线上一动点,且位于第四象限,若四边形OEAF 是以OA 为对角线的平行四边形. (1)该四边形的面积为24时,判断平行四边形OEAF 是否为菱形;(2)是否存在点E ,使平行四边形OEAF 为正方形? 若存在,求出点E 的坐标;若不存在,请说明理由.xyAFEBO解:(1)当点E 的坐标为(3,-4)时,平行四边形OAEF 是菱形;(2)不存在,理由:若平行四边形OEAF 是正方形,则OA ⊥EF 且OA =EF .此时的点E 不在抛物线上.3.如图,抛物线经过原点O 与x 轴上一点A (4,0),抛物线的顶点为E ,它的对称轴x 轴交于点D ,直线y =-2x -1经过抛物线上一点B (-2,m ),与抛物线的对称轴交于点F . (1)求抛物线的表达式;(2)Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度均速运动,设点M 的运动时间为t 秒,是否能使以Q ,A ,E , M 四点顶点的四边形是菱形? 若能,请直接写出点M 的运动时间;若不能,请说明理由.xyDFBE A O解:(1)抛物线的表达式为214y x x =-; (2)能,t 的值为45-,6,45+或132. [提示](2)如图,点M 的运动过程中,以Q ,A ,E ,M 为顶点的四边形是菱形有以下四种情况,根据菱形的性质即可求得对应的t 的值. xyQ 1DFBEA OxQ 2A E BFDOxy Q 3A E BFDOxyQ 4A E BFDO4.如图,抛物线y =-x 2+bx +c 经过A (-1,0)两点,且与y 轴交于点C ,D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连结B D .(1)P 是线段BD 上一点,当PE =PC 时,请求出点P 的坐标;(2)在(1)的条件下,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F ,M ,N ,G 为顶点的四边形是正方形时,请求出点M 的坐标.xyCPDBEAO解:(1)点P 的坐标为(2,2),(2)点M 的坐标为1211213133130000.22⎛⎫⎛⎫⎫⎫-+ ⎪ ⎪⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,[提示](1)易求得抛物线的l 表达式为223y x x =-++.所以C (0,3),D (1,4),E (1,0),从而直线BD 的表达式为y =-2x +6.设点P 的坐标为(t ,-2t +6).若PE =P C .则有t 2+(-2t +6-3)()()22126t t =-+-+,解得t =2,从而得到点P 的坐标为(2.2).(2)可设点M 的坐标为(m ,0),则点G 的坐标为(m ,223m m -++).而以F ,M ,N ,G为顶点的四边形是正方形.所以MF =MG ,从而2223m m m -=-++,解得m =,或m =M 的坐标.。
平行四边形存性问题

中考专题:平行四边形存在性问题考情分析:平行四边形的存在性问题是近几年中考热点题目,题目灵活,难度高。
本专题侧重讲面对此类压轴题如何找点、如何利用几何特征求点的坐标的解题套路,提高解题的效率和准确性。
平行四边形存在性问题分两种类型第一类型:一个动点平行四边形存在性问题 第二类型:两个动点平行四边形存在性问题 平行四边形中一个动点的存在性问题. 方法步骤:1.先画图,确定点2.后计算,求点的坐标(平移或全等) 平行四边形中两个动点的存在性问题.分类方法及画图:(1)以已知的线段为边(平移,对边平行且相等) (2)以已知的线段为对角线(旋转,对角线互相平分) 诊断1:第Ⅰ类型:一个动点平行四边形存在性问题如图,在平面直角坐标系中,点A(-1,0),B(3,0),C(0,2),找一点D ,使以A 、B 、C 、D 为顶点的四边形成为平行四边形,则符合条件的点D 的坐标为_________________________________解:如图,123(2,2),(4,2),(4,2)D D D --第Ⅱ类型:两个动点平行四边形存在性问题 诊断2:如图,在平面直角坐标系中,抛物线过A(-1,0),B(3,0)C(0,-1)三点. (1)求该抛物线的表达式;(2)点Q 在y 轴上,在抛物线上是否存在一点P ,使Q 、P 、A 、B 为顶点的四边形是平行四边形.若存在,请求出点P 的坐标;若不存在,请说明理由2解:(1)设抛物线的解析式为1(1)(3),(0,1)3y a x x a =+--=把代入得 因此抛物线的解析式为212133y x x =--(2)由题意可知AB=4① 当AB 作平行四边形的边时,设(0,),Q m 当P 在y 轴右侧时,则(4,)P m因为P 在抛物线上,∴m=53,即5(4,)3P ;当P 在y 轴左侧时,则(4,)P m - ∴(4,7)P -②当AB 作平行四边形的对角线时,过P 作x 轴的垂线交x 轴于F ,则BF=AO=1∵OB=3,∴OF=2,即P 的横坐标为2,就求得P 的纵坐标为-1 ∴P(2,-1)综上所述,5(4,)3P 或(4,7)P -或P(2,-1)跟踪训练一:1.如图,在平面直角坐标系中,已知点(2,0),(5,3),(7,1)A B C ,请你在坐标平面内确定一点P ,使以A B C P 、、、为顶点的四边形是平行四边形,请求出点P 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题24 特殊平行四边形的存在性破解策略在平行四边形的基础上增加一些条件,即可得到特殊的平行四边形因而可以结合”等腰三角形的存在性”,”直角三角形的存在性”和”平行四边形的存在性”来解决这类问题. 例题讲解例1:如图,在平面直角坐标系xOy 中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧).经过点A 的直线l :y =ax +a 与抛物线的另一交点为C ,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,那么以点A ,C ,P ,Q 为顶点是四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.解:以点A ,C ,P ,Q 为都顶点的四边形能成为矩形.令ax 2-2a -3a =ax +a .解得x 1=-1,x 2=4, 所以点A 的坐标为(-1,0),C 的坐标为(4,5a ).因为y =ax 2-2ax -3a ,所以抛物线的对称轴为x =1.则x P =1. ①若AC 是矩形的一条边,如图,则x A +x P =x C +x Q ,可得x Q =-4,从而点Q 坐标为(-4,21a ). 同样y A +y P =y C +y Q ,可得y P =26a ,从而点P 坐标为(1,26a ).因为AC =PQ ,所以有22+(26a )2=82+(16a )2, 解得)(77,7721舍去=-=a a ,此时点P 的坐标为(1,7726-)②若AC 是矩形的一条对角线,如图.则x A +x C =x P +x Q ,可得x Q =2,从而点Q 坐标为(2,-3a ). 同样y A +y C =y P +y Q ,可得y P =8a ,从而点P 坐标为(1,8a ).因为AC =PQ ,所以有52+(5a )2=12+(11a )2, 算得)(21,2143舍=-=a a ,所以此时点P 的坐标为(1,-4) 综上可得,以点A ,C ,P ,Q 为顶点的四边形能成为矩形,点P 的坐标为(1,7726-)或(1,-4).例2:如图,在平面直角坐标系xOy 中,菱形ABCD 的中心与原点重合,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)菱形ABCD 的边长是_____,面积是_____,高BE 的长是_____;(2)若点P 的速度为每秒1个单位.点Q 的速度为每秒k 个单位.在运动过程中,任何时刻都有对应的k 值,使得△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =4秒时的情形,并求出k 的值.解:(1)5,24,4.8.(2)要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,翻折前后两个图形是全等的,所以要满足四边形是菱形只需△APQ 为等腰三角形即可.当t =4时,AP =4.①如图,当点Q 在线段BC 上时,PQ ≥BE >AP ,同理,AQ >AP ,所以只存在QA =QP 的等腰三角形.过点Q 作QH ⊥AP 于点H ,交AC 于点F ,则AH =PH =21AP =2 易证:△AFH ∽△CFQ ∽△ADO , 所以43===AODO CQFQ AHFH可得522,1033,23===CQ FQ FH从而k =10114=CQ ②当Q 在BA 上时,有两种情况的等腰三角形存在:(i )如图1,当AP =AQ 时,此时点P ,Q 关于x 轴对称,BQ =PD =1 所以,k =234=+BQ CB (ⅱ)如图3,当PA =PQ 时,过点P 作PH ⊥AB 于点H .易证△AHP ∽△AEB ,所以AH AP AE AB=,其中AE =227.5AB BE -= 所以AH =2825,AQ =2AH =5625,所以k =97450CB BQ +=. (ⅲ)由①可得,AP 的垂直平分线与BC 相交,所以点Q 在线段AB 上时,不存在AQ =PQ 这种情况.综上所得,满足条件的k 值为32,1110,9750.y xP QHE A CB DO例3 如图,二次函数212y x x c =-+的图象与x 轴分别交于A ,B 两点,顶点M 关于x 轴的对称点是M ′.问:是否存在抛物线212y x x c =-+使得四边形AMBM ′为正方形?若存在,请求出抛物线的表达式;若不存在,请说明理由.xyBM′MAO解:存在易得AMBM ’是菱彤,所以当AB =MM ′时,四边彤AMBM ′是正方形 设点A 的坐标为(x 1,0),B 的坐标为(x 2,0).令2102x x c -+=所以x 1+x 2=2,x 1·x 2=2c 所以AB =()212124x x x x +-=48.c -点M 的纵坐标为2421.42ac b c a --=若四边形AMBM ’为正方形,则有214822c c --=⨯.解得1213,.22c c ==-又因为已知抛物线与x 轴有两个交点, 所以()2214140.2b ac c ∆=-=--⨯>解得c <12, 所以c 的值为3.2-.所以存在抛物线21322y x x =--,使得四边彤AMBM '为正方形. 进阶训练1.已知抛物线C 1: y =-2x 2+8x -6与抛物线C 关于原点对称,抛物线C 2与x 轴分别交于点A ,B 两点(点A 在点B 的左侧),顶点为M ,抛物线C 2与x 轴分别交于C ,D 两点(点C 在点D 的左侧)顶点为N . (1)求抛物线C 2的表达式;(2)若抛物线C 1与抛物线C 2同时以每秒1 个单位的速度沿x 轴方向分别向左、向右运动,此时记A ,B ,C ,D ,M ,N 在某一时刻的新位置分别为A',B',C',D',M',N',当点A'与点D'重合时运动停止,在运动过程中,四边形B',M',C',N'能否形成矩形? 若能,求出此时运动时间t (秒)的值;若不能,请说明理由.解:(1)抛物线C 2的表达式为2286y x x =++ (2)能.1=[提示](2)如图,由轴对称的性质可得四边形C 'N 'B 'M '为平行四边形.所以当∠B 'M 'C '=90 或B 'C '=M 'N '时.四边形为矩形,由此可列方程,从面求得t .2.如图,抛物线22725()326y x =--与x 轴的右交点为A ,与y 轴的交点为B ,设E (x ,y )是抛物线上一动点,且位于第四象限,若四边形OEAF 是以OA 为对角线的平行四边形. (1)该四边形的面积为24时,判断平行四边形OEAF 是否为菱形;(2)是否存在点E ,使平行四边形OEAF 为正方形? 若存在,求出点E 的坐标;若不存在,请说明理由.xyAFEBO解:(1)当点E 的坐标为(3,-4)时,平行四边形OAEF 是菱形;(2)不存在,理由:若平行四边形OEAF 是正方形,则OA ⊥EF 且OA =EF .此时的点E 不在抛物线上.3.如图,抛物线经过原点O 与x 轴上一点A (4,0),抛物线的顶点为E ,它的对称轴x 轴交于点D ,直线y =-2x -1经过抛物线上一点B (-2,m ),与抛物线的对称轴交于点F . (1)求抛物线的表达式;(2)Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度均速运动,设点M 的运动时间为t 秒,是否能使以Q ,A ,E , M 四点顶点的四边形是菱形? 若能,请直接写出点M 的运动时间;若不能,请说明理由.xyDFBE A O解:(1)抛物线的表达式为214y x x =-; (2)能,t 的值为45-,6,45+或132. [提示](2)如图,点M 的运动过程中,以Q ,A ,E ,M 为顶点的四边形是菱形有以下四种情况,根据菱形的性质即可求得对应的t 的值. xyQ 1DFBEA OxQ 2A E BFDOxy Q 3A E BFDOxyQ 4A E BFDO4.如图,抛物线y =-x 2+bx +c 经过A (-1,0)两点,且与y 轴交于点C ,D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连结B D .(1)P 是线段BD 上一点,当PE =PC 时,请求出点P 的坐标;(2)在(1)的条件下,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F ,M ,N ,G 为顶点的四边形是正方形时,请求出点M 的坐标.xyCPDBEAO解:(1)点P 的坐标为(2,2),(2)点M 的坐标为1211213133130000.22⎛⎫⎛⎫⎫⎫-+ ⎪ ⎪⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,[提示](1)易求得抛物线的l 表达式为223y x x =-++.所以C (0,3),D (1,4),E (1,0),从而直线BD 的表达式为y =-2x +6.设点P 的坐标为(t ,-2t +6).若PE =P C .则有t 2+(-2t +6-3)()()22126t t =-+-+,解得t =2,从而得到点P 的坐标为(2.2).(2)可设点M 的坐标为(m ,0),则点G 的坐标为(m ,223m m -++).而以F ,M ,N ,G为顶点的四边形是正方形.所以MF =MG ,从而2223m m m -=-++,解得m =,或m =M 的坐标.。