2018-2019学年福建省龙岩市上杭县七年级(下)期末数学试卷(解析版)

合集下载

2018—2019学年度第二学期期末考试七年级数学试卷

2018—2019学年度第二学期期末考试七年级数学试卷

2018—2019学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号12345678 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,△ABC=500,△ACB=800,BP 平分△ABC ,CP 平分△ACB ,则△BPC的大小是( )A .1000B .1100C .1150D .1200(1) (2) (3)PCBA 小刚小军小华得分 评卷人C 1A 1ABB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(△0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,△为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,△则△ABC=_______度.16.如图,AD△BC,△D=100°,CA 平分△BCD,则△DAC=_______.17.给出下列正多边形:△ 正三角形;△ 正方形;△ 正六边形;△ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.C B A D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD△BC , AD 平分△EAC,你能确定△B 与△C 的数量关系吗?请说明理由。

福建省龙岩七年级下学期期末考试数学试题

福建省龙岩七年级下学期期末考试数学试题

福建省龙岩七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·北京模拟) 甲骨文是我国古代的一种文字,是汉字的早期形式,反映了我国悠久的历史文化,体现了我国古代劳动人民的智慧,下列甲骨文中,不是轴对称图形的是()A .B .C .D .2. (2分)(2019·无棣模拟) 下列计算正确的是()A . 2a3+3a3=5a6B . (x5)3=x8C . -2m(m-3)=-2m2-6mD . (-3a-2)(-3a+2)=9a2-43. (2分) (2016八上·湖州期中) 满足﹣1<x≤2的数在数轴上表示为()A .B .C .D .4. (2分)(2018·台州) 计算,结果正确的是()A . 1B .C .D .5. (2分)图中全等的三角形是()A . Ⅰ和ⅡB . Ⅱ和ⅣC . Ⅱ和ⅢD . Ⅰ和Ⅲ6. (2分) (2016八上·汕头期中) 如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD 的度数是()A . 80°B . 85°C . 100°D . 110°7. (2分)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,以下几个结论:①∠AEB=∠BEF;②△BEF是等腰三角形;③△DEG与△BEF相似;④四边形ABCD的面积为56.则以上正确的有()A . ①③B . ②③④C . ①②D . ①②④8. (2分)如图,菱形ABCD中,AB=AC,点E,F在AB,BC上,AE=BF,AF,CE交于G,GD和AC交于H,则下列结论中成立的有()个.①△ABF≌△CAE;②∠AGC=120°;③DG=AG+GC;④AD2=DH•DG;⑤△ABF≌△DAH.A . 2B . 3C . 4D . 59. (2分) (2019八下·大名期中) 为了了解我市2017年中考数学学科各分数段成绩分布情况,从中抽取180名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A . 180B . 被抽取的180名考生C . 被抽取的180名考生的中考数学成绩D . 我市2017年中考数学成绩10. (2分) (2017八下·兴化期末) 有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共8分)11. (1分)因式分解:6a2﹣3a=________ .12. (1分) (2020八上·镇赉期末) 正多边形的一个外角是,则这个多边形的内角和的度数是________.13. (1分)(2020·滨湖模拟) 给出如下5种图形:①矩形,②等边三角形,③正五边形,④圆,⑤线段.其中,是轴对称图形但不是中心对称图形的有________.(请将所有符合题意的序号填在横线上)14. (1分)(2019·桂林) 若x2+ax+4=(x﹣2)2 ,则a=________.15. (1分) (2018八上·黔南期末) 已知关于x的分式方程 =l的解是x≠l的非负数,则m的取值范围是________16. (1分)一个长方形在平面直角坐标系中三个顶点的坐标为(3,2),(﹣1,2),(3,﹣1),则第四个顶点的坐标为________.17. (2分)如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是,偶数42对应的有序实数对是________ ;(2)第n行的最后一个数用含n的代数式表示为________ ,并简要说明理由.三、解答题 (共9题;共80分)18. (10分) (2020八下·延平月考) 如图,在正方形ABCD中,E是边AB上的任意一点(不与点A , B重合),连接DE ,作点A关于直线DE的对称点为F ,连接EF并延长交BC于点G.(1)依题意补全图形,连接DG ,求∠EDG的度数;(2)过点E作EH⊥DE交DG的延长线于点H ,连接BH .线段BH与AE有怎样的数量关系,请写出结论并证明.19. (5分)如图所示,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC 交AC延长线于G,求证:BF=CG.20. (5分) (2019七下·北京期末) 先化简,再求值:,其中 .21. (5分)(2016·河南模拟) 先化简,再求值:÷(1﹣),其中x= ﹣9.22. (15分) (2017八上·双柏期末) 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.23. (5分) (2017七下·扬州期中) 如图,AB∥DC,AD∥BC,E为BC延长线上一点,连结AE与CD相交于点F,若∠CFE=∠E.试说明AE平分∠BAD.24. (10分) (2017八下·桥东期中) 如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC 不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.25. (10分) (2020八上·德江期末) 八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳。

【3套打包】龙岩市七年级下册数学期末考试试题(含答案)

【3套打包】龙岩市七年级下册数学期末考试试题(含答案)

最新人教版七年级(下)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是( )A 、x •x 2=x2 B 、(x +y )2=x 2+y 2 C .(x 2)3=x 6 D 、x 2+x 2=x 4 答案:C考点:整式的运算。

解析:A 、x •x 2=x1+2 =x 3,故错误; B 、(x +y )2=x 2+2xy +y 2,故错误;C .正确D 、x 2+x 2=2x 2,故错误; 2.一片金箔的厚度为0.000000091m ,用科学记数法表示0.000000091为( )A 、0.91×10﹣7B 、9.1×10﹣8C 、-9.1×108D 、9.1×108答案:B考点:科学记数法。

解析:把一个数表示成a 与10的n 次幂相乘的形式(1≤|a |<10,n 为整数),这种记数法叫做科学记数法,所以,0.000000091=9.1×10﹣83.如果a <b ,下列各式中正确的是( )A 、ac 2<bc 2B 、11a b > C 、﹣3a >﹣3b D 、44a b > 答案:C考点:不等式的性质。

解析:A 、当c =0时,ac 2<bc 2不成立,故错误;B 、11a b> 当a 是负数,b 是正数时,不成立,故错误; C 、﹣3a >﹣3b 不等式两边乘以-3,不等号方向改变,故正确; D 、44a b > 不等式两边除以正数4,不等号方向不改变,故错误;4.下列长度的三条线段能组成三角形的是( )A 、1.5cm ,2cm ,2.5cmB 、2cm ,5cm ,8cmC.1cm,3cm,4cm D、5cm,3cm,1cm答案:A考点:构成三角形的条件。

解析:三角形的两边之和大于第三边,只有A满足。

2018-2019学年福建省龙岩市七年级(下)期末数学试卷

2018-2019学年福建省龙岩市七年级(下)期末数学试卷

2018-2019学年福建省龙岩市七年级(下)期末数学试卷一、选择题(本大题共10小题,每题4分,共40分)1、﹣8的立方根是()A.﹣2B.2C.±2D.42、下列各数中,介于6和7之间的数是()3A.√28B.√43C.√58D.√393、若x轴上的点P到y轴的距离是3,则点P的坐标为()A.(3,0)B.(3,0)或(﹣3,0)C.(3,0)D.(0,3)或(0,﹣3)的解集是()4、不等式组{2x<6x+1≥−4A.﹣5≤x<3B.﹣5<x≤3C.x≥﹣5D.x<35、下列问题中,应采用抽样调查的是()A.企业招聘,对应聘人员进行面试B.了解某班学生的身高情况C.调查春节联欢晚会的收视率D.了解某校七年级第二学期期末考试各班的数学科平均成绩6、已知a∥b,将等腰直角三角形ABC按如图所示的方式放置,其中锐角顶点B,直角顶点C分别落在直线a,b上,若∠1=15°,则∠2的度数是()A.15°B.22.5°C.30°D.45°7、如图所示,下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C.D.8、如图所示,已知AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,那么∠ADB 等于( )A .45°B .30°C .50°D .36°9、对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[x+410]=5,则x 的取值可以是( )A .40B .45C .51D .56 10、关于x 、y 的方程组{2x +y =2mx +y =2+m的解为整数,则满足这个条件的整数m 的个数有( ) A .4个 B .3个 C .2个 D .无数个二、填空题(本题共6小题,每小题4分,共24分11、计算:√9−√83= .12、请写出一个比2大且比4小的无理数 .13、已知|4x +3y ﹣1|+(y ﹣3)2=0,求x +y 的值 .14、如图,把长方形ABCD 沿EF 对折,若∠1=50°,则∠AEF 的度数等于 .15、如图,在平面直角坐标系中,若▱ABCD 的顶点A ,B ,C 的坐标分别是(2,3),(1,﹣1),(7,﹣1),则点D 的坐标是 .16、古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,则第1007个三角数与第1009个三角数的差为 .三、解答题(本大题共9小题,共86分)17、计算:√16−|2−√5|+√27318、解不等式2(2x +1)<14,并把它的解集在数轴上表示出来:19、解方程组{2x −y =53x +4y =2(用代入法)20、如图:O 为直线AB 上一点,∠AOC =13∠BOC ,OC 是∠AOD 的平分线.求:∠COD 的度数.21、某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22、在图中描出A(﹣4,4),B(0,4),C(2,1),D(﹣2,1)四个点,线段AB、CD有什么位置关系?顺次连接A,B,C,D四点,求四边形ABCD的面积.23、我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.24、某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元.(1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?25、如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+√c+4=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是;(2)当P、Q分别在线段AO,OC上时,连接PB,QB,使S△P AB=2S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.。

福建省龙岩七年级下学期数学期末考试试卷

福建省龙岩七年级下学期数学期末考试试卷

福建省龙岩七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·湘西) 下列运算中,正确的是()A . a2•a3=a5B . 2a﹣a=2C . (a+b)2=a2+b2D . 2a+3b=5ab2. (2分) (2018八上·江干期末) 若a<b,则下列各式中一定成立的是()A . a2<b2B . a﹣1<b﹣1C . ac<bcD . ac2<bc23. (2分)若点P(2k-1,1-k)在第四象限,则k的取值范围为()A . k>1B . k<C . k>D . <k<14. (2分)(2017·杭州模拟) 已知关于x、y的方程组(a≥0),给出下列说法:①当a=1时,方程组的解也是方程x+y=2的一个解;②当x﹣2y>8时,a>;③不论a取什么实数,2x+y的值始终不变;④某直角三角形的两条直角边长分别为x+y,x﹣y,则其面积最大值为.以上说法正确的是()A . ②③B . ①②④C . ③④D . ②③④5. (2分)(2017·宽城模拟) 如图,在△ABC中,将△ABC在平面内绕点A按逆时针方向旋转到△AB′C′的位置,连结CC′,使CC′∥AB.若∠CAB=65°,则旋转的角度为()A . 65°B . 50°C . 40°D . 35°6. (2分)三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为()A . 13B . 15C . 18D . 13或187. (2分)已知下列命题:①若a>0,b>0,则a+b>0;②正方形的对角线互相垂直平分;③直角三角形斜边上的中线等于斜边的一半;④菱形的四条边相等.其中原命题与逆命题均为真命题的个数是()A . 1个B . 2个C . 3个D . 4个8. (2分) (2015八上·宜昌期中) 下列三角形不一定全等的是()A . 面积相等的两个三角形B . 周长相等的两个等边三角形C . 斜边和一条直角边分别对应相等的两个直角三角形D . 有一个角是100°,腰长相等的两个等腰三角形9. (2分)已知整数x满足是不等式组,则x的算术平方根为()A . 2B . ±2C .D . 410. (2分)如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2 ,依此类推,∠A4BC与∠A4CD的平分线相交于点A5 ,则∠A5的度数为()A . 19.2°B . 8°C . 6°D . 3°二、填空题 (共8题;共8分)11. (1分)纳米是非常小的长度单位,已知1纳米=10﹣6毫米,某种病毒的直径为100纳米,用科学记数法可表示为________毫米.12. (1分)因式分解:﹣3x3+9x=________13. (1分)已知2x+3y-5=0,则的值为________.14. (1分)(2011·百色) 如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=________度.15. (1分) (2017八下·鹿城期中) 如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使,你补充的条件是________(填出一个即可).16. (1分) (2016八上·肇源月考) 若4x2+20x+ a2是一个完全平方式,则a的值是 ________ .17. (1分)(2017·徐汇模拟) 如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子________.18. (1分)一个两位数的十位数字与个位数字之和等于5,十位数字与个位数字之差为1,设十位数字为x ,个位数字为y ,则用方程组表示上述语言为________三、解答题 (共8题;共66分)19. (10分) (2018八上·北京期末) 计算:(1)(﹣a2)3•4a(2) 2x(x+1)+(x+1)2.20. (10分) (2016八上·东城期末) 因式分解:(1) 4x2 -9(2) 3ax2 -6axy+3ay221. (5分)(2017·乐山) 求不等式组的所有整数解.22. (5分) (2019八上·北京期中) 已知3x-y-2 = 0 ,求代数式5(3x-y)2-9x +3 y-13的值.23. (10分)(2016·海南) 计算:(1)6÷(﹣3)+ ﹣8×2﹣2;(2)解不等式组:.24. (5分)如图,在▱ABCD中,E是CD的中点,AE的延长线与BC的延长线相交于点F.求证:BC=CF.25. (6分) (2019九上·盐城月考) 对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:如果,则的取值范围为________;(2)如果,求的值.26. (15分) (2017八上·台州开学考) 某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售量销售收入A型号B型号第一周3台5台1800元第二周4台10台3100元(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共66分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、24-1、25-1、25-2、26-1、26-2、26-3、。

2019-2020学年福建省龙岩市上杭县七年级(下)期末数学试卷(有答案解析)

2019-2020学年福建省龙岩市上杭县七年级(下)期末数学试卷(有答案解析)

2019-2020学年福建省龙岩市上杭县七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.下列工具中,有对顶角的是()A. B. C. D.2.在平面直角坐标系中,点(5,-3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列调查中,采用的调查方式合适的是()A. 《新闻联播》电视栏目的收视率,采用全面调查方式B. 为了精确调查你所在班级的同学的身高,采用抽样调查方式C. 环保部门为调查长江某段水域的水质情况,采用抽样调查方式D. 调查龙岩市城乡家庭的收入情况,采用全面调查方式4.下列各式正确的是()A. B. =3 C. =-4 D. =±55.如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.6.已知a>b,下列不等式变形不正确的是()A. a+2>b+2B. a-2>b-2C. 2a>2bD. 2-a>2-b7.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()A. 16°B. 33°C. 49°D. 66°8.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A. 六折B. 七折C. 八折D. 九折9.已知a,b都是正整数,且a>,b<,则a-b的最小值是()A. 1B. 2C. 3D. 410.已知和是关于x,y的方程kx+2y=5的两组解,且0<k<4,则n的值可以是()A. 3B. 4C. 5D. 6二、填空题(本大题共6小题,共24.0分)11.把二元一次方程3x-y=2改写成含x的式子表示y的形式:______.12.某校七年级(1)班60名学生在一次单元测试中,优秀人数是20人,在扇形统计图中,表示这部分同学的扇形圆心角是______度.13.若x的一半与1的和为非负数,且x<0,则x可取的所有整数解的和是______.14.在-,,-,,-π这5个数中,最小的有理数是______.15.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是如图中的图______(填甲或乙),你选择的依据是______(写出你学过的一条公理)16.有一根长为2019m的绳子,第一次截去绳长的一半:第二次截去余下的绳长的;第三次再截去第二次截去后余下的绳长的;第四次再截去第三次截去后余下的绳长的……依此类推,则第______次截去后余下的绳长恰好是1cm.三、计算题(本大题共3小题,共24.0分)17.(1)计算:(2)解方程组18.解不等式,并把解集在数轴上表示出来.19.先化简,再求值:5m-2[2(n+3m)-(m-mn)],其中m、n满足:2n+1和5+n是正数m的两个平方根.四、解答题(本大题共6小题,共62.0分)20.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.21.如图,∠FAD=∠B,EC⊥CD,∠BCE=40°.求∠ADC的度数.22.某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记x分(60≤x≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.分数段频数频率60≤m<70a0.3870≤m<80m0.3280≤m<90n b90≤m≤100100.1合计1请根据以上信息,解决下列问题(1)征文比赛成绩频数分布表中a=______,b=______;(2)补全征文比赛成绩频数分布直方图:(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(1)我们知道“三角形三个内角的和为180°”.现在我们用平行线的性质来证明这个结论是正确的.已知:∠BAC、∠B、∠C是△ABC的三个内角,如图1求证:∠BAC+∠B+∠C=180°证明:过点A作直线DE∥BC(请你把证明过程补充完整)(2)请你用(1)中的结论解答下面问题:如图2,已知四边形ABCD,求∠A+∠B+∠C+∠D的度数.24.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0)和(3,0)现将线段AB平移得到线段CD,且点A的对应点C的坐标为(0,2),连接AD.(1)直接写出点D的坐标为______,△ABD的面积为______;(2)平移线段AD得线段EF,点A的对应点E的坐标为E(a,b),如果x=a,y=b是方程2x+y=-3的解,且点F在第一象限的角平分线上,求a,b的值.(3)点P(t,0)是x轴上位于点A右侧的动点连接PC,将线段PC向右平移得线段QD,其中点P的对应点为Q,点C的对应点为D,H是DQ的中点,如果△BDH和△PBD面积相等,求t的值.-------- 答案与解析 --------1.答案:B解析:解:由对顶角的定义可知,工具中,有对顶角的是选项B.故选:B.对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.依此即可求解.考查了对顶角,关键是熟练掌握对顶角的定义.2.答案:D解析:解:点(5,-3)所在的象限是第四象限.故选:D.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.答案:C解析:解:A.《新闻联播》电视栏目的收视率,适合采用抽样调查方式;B.为了精确调查你所在班级的同学的身高,适合采用全面调查方式;C.环保部门为调查长江某段水域的水质情况,适合采用抽样调查方式;D.调查龙岩市城乡家庭的收入情况,适合采用抽样调查方式;故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.答案:A解析:解:A、原式=-2,符合题意;B、原式不能化简,不符合题意;C、原式=|-4|=4,不符合题意;D、原式=5,不符合题意,故选:A.利用算术平方根,立方根定义判断即可.此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.5.答案:B解析:解:由①得,x>-2,由②得,x≤2,故此不等式组的解集为:-2<x≤2.故选:B.数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.本题考查了在数轴上表示不等式的解集.不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.答案:D解析:解:A、由a>b知a+2>b+2,此选项变形正确;B、由a>b知a-2>b-2,此选项变形正确;C、由a>b知2a>2b,此选项变形正确;D、由a>b知-a<-b,则2-a<2-b,此选项变形错误;故选:D.根据不等式的性质:不等式左右两边都加上或减去同一个数或整式,不等号方向不变;不等式左右两边都乘以或除以同一个正数,不等号方向不变;不等式左右两边都乘以或除以同一个负数,不等号方向改变,即可做出判断.此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.7.答案:D解析:解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°.∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∴∠CEF=∠ABE=66°.故选:D.先根据平行线的性质求出∠ABC的度数,再由BC平分∠ABE求出∠ABE的度数,进而可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.答案:B解析:解:设打x折,根据题意得120•-80≥80×5%,解得x≥7.所以最低可打七折.故选:B.设打x折,利用销售价减进价等于利润得到120•-80≥80×5%,然后解不等式求出x的范围,从而得到x的最小值即可.本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x折时,标价要乘0.1x为销售价.9.答案:B解析:解:∵9<10<16,8<10<27,∴3<<4,2<<3.a-b的最小值,取a的最小值和b的最大值所得,又∵a、b为正整数,且a>,b<,∴当a=4,b=2时,a-b有最小值,∴a-b的最小值为2.故选:B.先估算出a、b的取值范围,然后再求得a-b的最小值即可.本题主要考查的是估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.10.答案:C解析:解:∵和是关于x,y的方程kx+2y=5的两组解,∴∴解得:n=∵0<k<4,∴4<n<6故选:C.将解代入方程,可得n的值,由0<k<4,可求解.本题考查了二元一次方程的解,掌握将方程的解代入方程使方程两边的值相等.11.答案:y=3x-2解析:解:方程3x-y=2,解得:y=3x-2,故答案为:y=3x-2把x看做已知数求出y即可.此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.12.答案:120解析:解:360°×=120°故答案为120.优秀人数所占总人数的几分之几,所占的圆心角的度数就为360°的几分之几.此题考查了扇形统计图的制作方法,以及扇形统计图反映的是部分所占总体的百分比的意义.13.答案:-3解析:解:根据题意,得:,解不等式组,得-2≤x<0,所以x可取的整数解为-2、-1,-2-1=-3.故答案为-3.根据题意列出不等式组,解之求得x的取值范围,进而可得答案.本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的能力.14.答案:解析:解:∵,,∴,∴最小的有理数是.故答案为:根据实数的大小比较法则先进行比较,即可得出选项.本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.15.答案:乙在平面内,过一点有且只有一条直线与已知直线垂直解析:解:根据题意可得图形,依据是在平面内,过一点有且只有一条直线与已知直线垂直;故答案为:乙;在平面内,过一点有且只有一条直线与已知直线垂直.根据题意画出图形即可.此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.16.答案:2019解析:解:第一次截去绳长的一半后,余下cm,第二次截去余下的绳子的,余下×=cm,第三次截去第二次截去后余下的绳子的,余下×=cm,由此规律可知:第n次截去后余下的绳长恰好是cm,∴=1,∴n=2019,故答案为:2019设第n次截去后余下的绳长恰好是1cm.,然后根据题意列出方程即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.答案:解:(1)原式=5+4-3-1=5;(2),把②代入①得:6y-7-y=13,解得:y=4,把y=4代入②得:x=17,则方程组的解为.解析:(1)原式利用绝对值的代数意义,立方根定义计算即可求出值;(2)方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.18.答案:解:去分母得,3(x+3)≤5(2x-5)-15,去括号得,3x+9≤10x-25-15,移项得,-7x≤-49,系数化为1得,x≥7,这个不等式的解集在数轴上表示如下图,解析:根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.19.答案:解:原式=5m-2[2n+6m-m+mn]=5m-4n-12m+m-mn=-6m-4n-mn,由2n+1和5+n是正数m的两个平方根,得到2n+1+5+n=0,解得n=-2,则m=(5+n)2=9,所以原式=-6×9-4×(-2)-9×(-2)=-54+8+18=-28.解析:先将原式去括号合并得到最简结果,再根据平方根的定义与性质求出m与n的值,然后代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.也考查了平方根.20.答案:解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.解析:设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.答案:解:∵∠FAD=∠B,∴AD∥BC,∴∠ADC+∠BCD=180°∵EC⊥CD,∠BCE=40°.∴∠BCD=90°-40°=50°,∴∠ADC=180°-50°=130°解析:先应根据同位角相等判定两直线平行,再根据平行线的性质及余角的性质求出∠ADC的度数.本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.答案:38 0.2解析:解:(1)∵样本容量为10÷0.1=100,∴a=100×0.38=38,b=1-(0.38+0.32+0.1)=0.2,故答案为:38、0.2;(2)m=100×0.32=32,n=100×0.2=20,补全征文比赛成绩频数分布直方图如下:(3)估计全市获得一等奖征文的篇数为1000×(0.2+0.1)=300篇.(1)先求出样本总量,再根据频率=频数÷总数求解可得;(2)先求出m、n的值,据此可补全图形;(3)利用样本估计总体思想求解可得.本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.答案:解:(1)证明:过点A作直线DE∥BC,∴∠B=∠BAD,∠C=∠CAE(两直线平行,内错角相等),∵∠BAD+∠BAC+∠CAE=180°,∴∠B+∠BAC+∠C=180°;(2)连接BD,由(1)可知∠A+∠ABD+∠ADB=180°,∠C+∠BDC+∠CBD=180°,∴∠A+∠ABC+∠C+∠ADC=360°.解析:(1)根据平行线的性质以及平角的定义证明即可;(2)根据(1)的结论解答即可.本题考查了平行线的性质的应用以及三角形的内角和定理,主要考查学生的推理能力.24.答案:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50-a)台.依题意得:160a+120(50-a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200-160)a+(150-120)(50-a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.解析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50-a)台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.25.答案:(4,2) 4解析:解:(1)∵点A,B的坐标分别为(-1,0)和(3,0),C的坐标为(0,2),∴AB=CD=4,OC=2,∴D(4,2),∴△ABD的面积==4;故答案为(4,2),4;(2)设AD向左平移m个单位,向上平移n个单位,则D点平移后F坐标(4+m,2+n),A平移后E坐标(-1+m,n),∵点F在第一象限的角平分线上,∴4+m=2+n,∴n=2+m,∵E(a,b),x=a,y=b是方程2x+y=-3的解,∴2(-1+m)+n=-3,∴m=-1,∴n=1,∴a=-2,b=1;(3)∵PC向右平移得线段QD,P(t,0)∴Q(t+4,0),∵H是DQ的中点,∴H(4+,1),∵△BDH和△PBD面积相等,∴BD∥PH,∴2=,∴t=7.S△PBD=PB×CO=(3-t)×2=3-t,S△BDH=S△BDQ=BQ×CO=(t+4-3)×2=(t+1),∴3-t=(t+1),∴t=.综上所述,t=7或t=.(1)由已知可得AB=CD=4,OC=2,即可求点D与三角形ABD的面积;(2)设AD向左平移m个单位,向上平移n个单位,则D点平移后F坐标(4+m,2+n),A平移后E坐标(-1+m,n),根据已知条件可得4+m=2+n,2(-1+m)+n=-3,即可求a与b;(3)由已知条件可得Q(t+4,0),H(4+,1),根据△BDH和△PBD面积相等,可得BD∥PH,利用平行线的特点即可求解.本题考查一次函数的图象及性质,图形的平移;根据平行四边形的特点,结合一次函数图象上点的坐标特点是解题的关键.。

_福建省龙岩市五县、区2018-2019学年七年级下学期数学期末考试试卷(含答案解析)

_福建省龙岩市五县、区2018-2019学年七年级下学期数学期末考试试卷(含答案解析)

○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………福建省龙岩市五县、区2018-2019学年七年级下学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 若y 轴上的点A 到x 轴的距离为3,则点A 的坐标为( )A . (3,0)B . (3,0)或(-3,0)C . (0,3)D . (0,3)或(0,-3)2. 不等式组的解集是( )A . -5≤x <3B . -5<x≤3C . x≥-5D . x <33. 如图,已知AD∥BC,∥C=30°,∥ADB:∥BDC=1:2,那么∥ADB 等于( )A . 45°B . 30°C . 50°D . 36°4. 已知a ∥b , 将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B , 直角顶点C 分别落在直线a , b 上,若∥1 15°,则∥2的度数是( )答案第2页,总16页……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 15°B . 22.5°C . 30°D . 45°5. 如下图所示,下列各组图形中,∥一个图形经过平移能得到另一个图形的是( )A .B .C .D .6. 下列各数中,界于6和7之间的数是( ) A . B .C .D .7. -8的立方根是( )A . -2B . 2C . ±2D . 48. 下列问题中,应采用抽样调查的是( ) A . 企业招聘,对应聘人员进行面试 B . 了解某班学生的身高情况 C . 调查春节联欢晚会的收视率D . 了解某校七年级第二学期期末考试各班的数学科平均成绩9. 对于实数 ,我们规定表示不大于 的最大整数,例如,,,若,则 的取值可以是( )A . 40B . 45C . 56D . 5110. 关于x 、y 的方程组 的解为整数,则满足这个条件的整数m 的个数有( )A . 4个B . 3个C . 2个D . 无数个第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共6题)○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………1. 如图,把长方形ABCD 沿EF 对折,若∥1=500 , 则∥AEF 的度数等于 .2. 计算: .3. 请写出一个比2大且比4小的无理数: .4. 已知(y -3)2=0,则:x+y 的值为5. 如图,在平面直角坐标系中,若∥ABCD 的顶点A ,B ,C 的坐标分别是(2,3),(1,-1),(7,-1),则点D 的坐标是 .6. 古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,则第1007个三角数与第1009个三角数的差为 . 评卷人 得分二、计算题(共2题)7. 计算:8. 解方程组:评卷人 得分三、解答题(共5题)9. 我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.答案第4页,总16页……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………10. 某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人? 11. 如图:O 为直线AB 上一点,,OC 是的平分线.求:的度数12. 解不等式,并把它的解集在数轴上表示出来.13. 在图中描出A (-4,4),B (0,4),C (2,1),D (-2,1)四个点,线段AB 、CD 有什么位置关系?顺次连接A,B,C,D 四点,求四边形ABCD 的面积.○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分四、综合题(共2题)14. 如图,在平面直角坐标系xOy 中,点A (a , 0),B (c , c ),C (0,c ),且满足 ,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B 的坐标,AO 和BC 位置关系是;。

2018-2019(下)期末七年级数学考试试卷(含参考答案)

2018-2019(下)期末七年级数学考试试卷(含参考答案)

2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年福建省龙岩市上杭县七年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)下列工具中,有对顶角的是()A.B.C.D.2.(4分)在平面直角坐标系中,点(5,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)下列调查中,采用的调查方式合适的是()A.《新闻联播》电视栏目的收视率,采用全面调查方式B.为了精确调查你所在班级的同学的身高,采用抽样调查方式C.环保部门为调查长江某段水域的水质情况,采用抽样调查方式D.调查龙岩市城乡家庭的收入情况,采用全面调查方式4.(4分)下列各式正确的是()A.B.=3C.=﹣4D.=±5 5.(4分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(4分)已知a>b,下列不等式变形不正确的是()A.a+2>b+2B.a﹣2>b﹣2C.2a>2b D.2﹣a>2﹣b 7.(4分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()A.16°B.33°C.49°D.66°8.(4分)某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折9.(4分)已知a,b都是正整数,且a>,b<,则a﹣b的最小值是()A.1B.2C.3D.410.(4分)已知和是关于x,y的方程kx+2y=5的两组解,且0<k<4,则n的值可以是()A.3B.4C.5D.6二、填空题:本题共6小题,每小题4分,共24分11.(4分)把二元一次方程3x﹣y=2改写成含x的式子表示y的形式:.12.(4分)某校七年级(1)班60名学生在一次单元测试中,优秀人数是20人,在扇形统计图中,表示这部分同学的扇形圆心角是度.13.(4分)若x的一半与1的和为非负数,且x<0,则x可取的所有整数解的和是.14.(4分)在﹣,,﹣,,﹣π这5个数中,最小的有理数是.15.(4分)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是如图中的图(填甲或乙),你选择的依据是(写出你学过的一条公理)16.(4分)有一根长为2019m的绳子,第一次截去绳长的一半:第二次截去余下的绳长的;第三次再截去第二次截去后余下的绳长的;第四次再截去第三次截去后余下的绳长的……依此类推,则第次截去后余下的绳长恰好是1cm.三、解答题:本题共9个小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8分)(1)计算:(2)解方程组18.(8分)解不等式,并把解集在数轴上表示出来.19.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(8分)如图,∠FAD=∠B,EC⊥CD,∠BCE=40°.求∠ADC的度数.21.(8分)先化简,再求值:5m﹣2[2(n+3m)﹣(m﹣mn)],其中m、n满足:2n+1和5+n是正数m的两个平方根.22.(10分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记x分(60≤x≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.分数段频数频率60≤m<70a0.3870≤m<80m0.3280≤m<90n b90≤m≤100100.1合计1请根据以上信息,解决下列问题(1)征文比赛成绩频数分布表中a=,b=;(2)补全征文比赛成绩频数分布直方图:(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(10分)(1)我们知道“三角形三个内角的和为180°”.现在我们用平行线的性质来证明这个结论是正确的.已知:∠BAC、∠B、∠C是△ABC的三个内角,如图1求证:∠BAC+∠B+∠C=180°证明:过点A作直线DE∥BC(请你把证明过程补充完整)(2)请你用(1)中的结论解答下面问题:如图2,已知四边形ABCD,求∠A+∠B+∠C+∠D的度数.24.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.(14分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0)和(3,0)现将线段AB平移得到线段CD,且点A的对应点C的坐标为(0,2),连接AD.(1)直接写出点D的坐标为,△ABD的面积为;(2)平移线段AD得线段EF,点A的对应点E的坐标为E(a,b),如果x=a,y=b 是方程2x+y=﹣3的解,且点F在第一象限的角平分线上,求a,b的值.(3)点P(t,0)是x轴上位于点A右侧的动点连接PC,将线段PC向右平移得线段QD,其中点P的对应点为Q,点C的对应点为D,H是DQ的中点,如果△BDH和△PBD面积相等,求t的值.2018-2019学年福建省龙岩市上杭县七年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)下列工具中,有对顶角的是()A.B.C.D.【分析】对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.依此即可求解.【解答】解:由对顶角的定义可知,工具中,有对顶角的是选项B.故选:B.【点评】考查了对顶角,关键是熟练掌握对顶角的定义.2.(4分)在平面直角坐标系中,点(5,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(5,﹣3)所在的象限是第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(4分)下列调查中,采用的调查方式合适的是()A.《新闻联播》电视栏目的收视率,采用全面调查方式B.为了精确调查你所在班级的同学的身高,采用抽样调查方式C.环保部门为调查长江某段水域的水质情况,采用抽样调查方式D.调查龙岩市城乡家庭的收入情况,采用全面调查方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.《新闻联播》电视栏目的收视率,适合采用抽样调查方式;B.为了精确调查你所在班级的同学的身高,适合采用全面调查方式;C.环保部门为调查长江某段水域的水质情况,适合采用抽样调查方式;D.调查龙岩市城乡家庭的收入情况,适合采用抽样调查方式;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(4分)下列各式正确的是()A.B.=3C.=﹣4D.=±5【分析】利用算术平方根,立方根定义判断即可.【解答】解:A、原式=﹣2,符合题意;B、原式不能化简,不符合题意;C、原式=|﹣4|=4,不符合题意;D、原式=5,不符合题意,故选:A.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.5.(4分)如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.【解答】解:由①得,x>﹣2,由②得,x≤2,故此不等式组的解集为:﹣2<x≤2.故选:B.【点评】本题考查了在数轴上表示不等式的解集.不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(4分)已知a>b,下列不等式变形不正确的是()A.a+2>b+2B.a﹣2>b﹣2C.2a>2b D.2﹣a>2﹣b【分析】根据不等式的性质:不等式左右两边都加上或减去同一个数或整式,不等号方向不变;不等式左右两边都乘以或除以同一个正数,不等号方向不变;不等式左右两边都乘以或除以同一个负数,不等号方向改变,即可做出判断.【解答】解:A、由a>b知a+2>b+2,此选项变形正确;B、由a>b知a﹣2>b﹣2,此选项变形正确;C、由a>b知2a>2b,此选项变形正确;D、由a>b知﹣a<﹣b,则2﹣a<2﹣b,此选项变形错误;故选:D.【点评】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.7.(4分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()A.16°B.33°C.49°D.66°【分析】先根据平行线的性质求出∠ABC的度数,再由BC平分∠ABE求出∠ABE的度数,进而可得出结论.【解答】解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°.∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∴∠CEF=∠ABE=66°.故选:D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.(4分)某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折【分析】设打x折,利用销售价减进价等于利润得到120•﹣80≥80×5%,然后解不等式求出x的范围,从而得到x的最小值即可.【解答】解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x折时,标价要乘0.1x为销售价.9.(4分)已知a,b都是正整数,且a>,b<,则a﹣b的最小值是()A.1B.2C.3D.4【分析】先估算出a、b的取值范围,然后再求得a﹣b的最小值即可.【解答】解:∵9<10<16,8<10<27,∴3<<4,2<<3.a﹣b的最小值,取a的最小值和b的最大值所得,又∵a、b为正整数,且a>,b<,∴当a=4,b=2时,a﹣b有最小值,∴a﹣b的最小值为2.故选:B.【点评】本题主要考查的是估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.10.(4分)已知和是关于x,y的方程kx+2y=5的两组解,且0<k<4,则n的值可以是()A.3B.4C.5D.6【分析】将解代入方程,可得n的值,由0<k<4,可求解.【解答】解:∵和是关于x,y的方程kx+2y=5的两组解,∴∴解得:n=∵0<k<4,∴4<n<6故选:C.【点评】本题考查了二元一次方程的解,掌握将方程的解代入方程使方程两边的值相等.二、填空题:本题共6小题,每小题4分,共24分11.(4分)把二元一次方程3x﹣y=2改写成含x的式子表示y的形式:y=3x﹣2.【分析】把x看做已知数求出y即可.【解答】解:方程3x﹣y=2,解得:y=3x﹣2,故答案为:y=3x﹣2【点评】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.12.(4分)某校七年级(1)班60名学生在一次单元测试中,优秀人数是20人,在扇形统计图中,表示这部分同学的扇形圆心角是120度.【分析】优秀人数所占总人数的几分之几,所占的圆心角的度数就为360°的几分之几.【解答】解:360°×=120°故答案为120.【点评】此题考查了扇形统计图的制作方法,以及扇形统计图反映的是部分所占总体的百分比的意义.13.(4分)若x的一半与1的和为非负数,且x<0,则x可取的所有整数解的和是﹣3.【分析】根据题意列出不等式组,解之求得x的取值范围,进而可得答案.【解答】解:根据题意,得:,解不等式组,得﹣2≤x<0,所以x可取的整数解为﹣2、﹣1,﹣2﹣1=﹣3.故答案为﹣3.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的能力.14.(4分)在﹣,,﹣,,﹣π这5个数中,最小的有理数是.【分析】根据实数的大小比较法则先进行比较,即可得出选项.【解答】解:∵,,∴,∴最小的有理数是.故答案为:【点评】本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.15.(4分)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是如图中的图乙(填甲或乙),你选择的依据是在平面内,过一点有且只有一条直线与已知直线垂直(写出你学过的一条公理)【分析】根据题意画出图形即可.【解答】解:根据题意可得图形,依据是在平面内,过一点有且只有一条直线与已知直线垂直;故答案为:乙;在平面内,过一点有且只有一条直线与已知直线垂直.【点评】此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.16.(4分)有一根长为2019m的绳子,第一次截去绳长的一半:第二次截去余下的绳长的;第三次再截去第二次截去后余下的绳长的;第四次再截去第三次截去后余下的绳长的……依此类推,则第201899次截去后余下的绳长恰好是1cm.【分析】设第n次截去后余下的绳长恰好是1cm,然后根据题意列出方程即可求出答案.【解答】解:第一次截去绳长的一半后,余下m,第二次截去余下的绳子的,余下×=m,第三次截去第二次截去后余下的绳子的,余下×=m,由此规律可知:第n次截去后余下的绳长恰好是m,∴=0.01,∴n=201899,故答案为:201899【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.三、解答题:本题共9个小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8分)(1)计算:(2)解方程组【分析】(1)原式利用绝对值的代数意义,立方根定义计算即可求出值;(2)方程组利用代入消元法求出解即可.【解答】解:(1)原式=5+4﹣3﹣1=5;(2),把②代入①得:6y﹣7﹣y=13,解得:y=4,把y=4代入②得:x=17,则方程组的解为.【点评】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)解不等式,并把解集在数轴上表示出来.【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【解答】解:去分母得,3(x+3)≤5(2x﹣5)﹣15,去括号得,3x+9≤10x﹣25﹣15,移项得,﹣7x≤﹣49,系数化为1得,x≥7,这个不等式的解集在数轴上表示如下图,【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.19.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)如图,∠FAD=∠B,EC⊥CD,∠BCE=40°.求∠ADC的度数.【分析】先应根据同位角相等判定两直线平行,再根据平行线的性质及余角的性质求出∠ADC的度数.【解答】解:∵∠FAD=∠B,∴AD∥BC,∴∠ADC+∠BCD=180°∵EC⊥CD,∠BCE=40°.∴∠BCD=90°﹣40°=50°,∴∠ADC=180°﹣50°=130°【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)先化简,再求值:5m﹣2[2(n+3m)﹣(m﹣mn)],其中m、n满足:2n+1和5+n是正数m的两个平方根.【分析】先将原式去括号合并得到最简结果,再根据平方根的定义与性质求出m与n的值,然后代入计算即可求出值.【解答】解:原式=5m﹣2[2n+6m﹣m+mn]=5m﹣4n﹣12m+m﹣mn=﹣6m﹣4n﹣mn,由2n+1和5+n是正数m的两个平方根,得到2n+1+5+n=0,解得n=﹣2,则m=(5+n)2=9,所以原式=﹣6×9﹣4×(﹣2)﹣9×(﹣2)=﹣54+8+18=﹣28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.也考查了平方根.22.(10分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记x分(60≤x≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.分数段频数频率60≤m<70a0.3870≤m<80m0.3280≤m<90n b90≤m≤100100.1合计1请根据以上信息,解决下列问题(1)征文比赛成绩频数分布表中a=38,b=0.2;(2)补全征文比赛成绩频数分布直方图:(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.【分析】(1)先求出样本总量,再根据频率=频数÷总数求解可得;(2)先求出m、n的值,据此可补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)∵样本容量为10÷0.1=100,∴a=100×0.38=38,b=1﹣(0.38+0.32+0.1)=0.2,故答案为:38、0.2;(2)m=100×0.32=32,n=100×0.2=20,补全征文比赛成绩频数分布直方图如下:(3)估计全市获得一等奖征文的篇数为1000×(0.2+0.1)=300篇.【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(10分)(1)我们知道“三角形三个内角的和为180°”.现在我们用平行线的性质来证明这个结论是正确的.已知:∠BAC、∠B、∠C是△ABC的三个内角,如图1求证:∠BAC+∠B+∠C=180°证明:过点A作直线DE∥BC(请你把证明过程补充完整)(2)请你用(1)中的结论解答下面问题:如图2,已知四边形ABCD,求∠A+∠B+∠C+∠D的度数.【分析】(1)根据平行线的性质以及平角的定义证明即可;(2)根据(1)的结论解答即可.【解答】解:(1)证明:过点A作直线DE∥BC,∴∠B=∠BAD,∠C=∠CAE(两直线平行,内错角相等),∵∠BAD+∠BAC+∠CAE=180°,∴∠B+∠BAC+∠C=180°;(2)连接BD,由(1)可知∠A+∠ABD+∠ADB=180°,∠C+∠BDC+∠CBD=180°,∴∠A+∠ABC+∠C+∠ADC=360°.【点评】本题考查了平行线的性质的应用以及三角形的内角和定理,主要考查学生的推理能力.24.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.25.(14分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0)和(3,0)现将线段AB平移得到线段CD,且点A的对应点C的坐标为(0,2),连接AD.(1)直接写出点D的坐标为(4,2),△ABD的面积为4;(2)平移线段AD得线段EF,点A的对应点E的坐标为E(a,b),如果x=a,y=b 是方程2x+y=﹣3的解,且点F在第一象限的角平分线上,求a,b的值.(3)点P(t,0)是x轴上位于点A右侧的动点连接PC,将线段PC向右平移得线段QD,其中点P的对应点为Q,点C的对应点为D,H是DQ的中点,如果△BDH和△PBD面积相等,求t的值.【分析】(1)由已知可得AB=CD=4,OC=2,即可求点D与三角形ABD的面积;(2)设AD向左平移m个单位,向上平移n个单位,则D点平移后F坐标(4﹣m,2+n),A平移后E坐标(﹣1﹣m,n),根据已知条件可得4﹣m=2+n,2(﹣1﹣m)+n=﹣3,即可求a与b;(3)由已知条件可得Q(t+4,0),H(4+,1),根据△BDH和△PBD面积相等,可得BD∥PH,利用平行线的特点即可求解.【解答】解:(1)∵点A,B的坐标分别为(﹣1,0)和(3,0),C的坐标为(0,2),∴AB=CD=4,OC=2,∴D(4,2),∴△ABD的面积==4;故答案为(4,2),4;(2)设AD向左平移m个单位,向上平移n个单位,则D点平移后F坐标(4﹣m,2+n),A平移后E坐标(﹣1﹣m,n),∵点F在第一象限的角平分线上,∴4﹣m=2+n,∴n=2﹣m,∵E(a,b),x=a,y=b是方程2x+y=﹣3的解,∴2(﹣1﹣m)+n=﹣3,∴m=1,∴n =1, ∴a =﹣2,b =1;(3)∵PC 向右平移得线段QD ,P (t ,0) ∴Q (t +4,0), ∵H 是DQ 的中点, ∴H (4+,1),∵△BDH 和△PBD 面积相等, ∴BD ∥PH , ∴2=,∴t =7. S △PBD =PB ×CO =(3﹣t )×2=3﹣t , S △BDH =S △BDQ =BQ ×CO =(t +4﹣3)×2=(t +1),∴3﹣t =(t +1),∴t =.综上所述,t =7或t =.【点评】本题考查一次函数的图象及性质,图形的平移;根据平行四边形的特点,结合一次函数图象上点的坐标特点是解题的关键.。

相关文档
最新文档