九年级下数学锐角三角函数导学案 (1)
濠知教育初三数学锐角三角函数导学案

学 生教 师 吴老师 日 期 2013/12/22 年 级 初三学 科数学时 段10:10-11:40学 情 分 析 锐角三角函数在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在20%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
课 题 锐角三角函数学习目标与 考点分析 本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin a 、cos a 、tan a 、cot a 准确表示出直角三角形中两边的比(a 为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。
学习重点 难 点让学生熟练掌握解题的方法,会运用知识灵活计算,并能正确地进行相关题目的运算教学方法 讲练结合、互动启发教学过程【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。
(1)求AB 的长;(2)求sinA 、cosA 的值; (3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小。
变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。
(2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。
濠知教育学科导学案【例2】计算:020045sin 30cot 60sin +⋅【例3】已知,在Rt △ABC 中,∠C =900,25tan =B ,那么cosA ( ) A 、25 B 、35C 、552 D 、32变式:已知α为锐角,且54cos =α,则ααcot sin += 。
【例4】已知3cot tan =+αα,α为锐角,则αα22cot tan += 。
评注:由锐角三角函数定义不难推出1cos sin 22=+A A ,1cot tan =⋅αα,它们是中考中常用的“等式”。
九年级数学下册《锐角三角函数》教案、教学设计

2.教学方法:
采用讲解法、示例教学法,结合几何画板演示,帮助学生形象地理解锐角三角函数的定义和性质。
3.教学过程:
(1)通过回顾勾股定理,引导学生发现锐角三角函数的定义。
(2)利用几何画板,动态演示锐角三角函数随角度变化的规律,帮助学生理解其性质。
(4)注重情感教育,关注学生的学习情感,激发学生的学习兴趣和内在动力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,全面评价学生的学习过程。
(2)终结性评价:通过测试、作业等方式,评价学生对本章知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生自我评价,激发学生的学习潜能。
九年级数学下册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其相互关系。
2.学会使用计算器或手工计算方法,解决直角三角形中锐角三角函数值的问题。
3.掌握用锐角三角函数解决实际问题的方法,如测量物体的高度、计算物体之间的距离等。
4.能够运用锐角三角函数的性质,解决一些简单的几何问题,如求角的度数、证明线段相等等。
3.利用计算器、几何画板等教学辅助工具,帮助学生直观地理解锐角三角函数的图像和变化规律,提高学生的数学思维能力。
4.设计丰富的例题和练习题,巩固学生对锐角三角函数知识的掌握,培养学生分析问题、解决问题的能力。
5.通过课堂小结,引导学生总结本章所学内容,形成知识体系,提高学生的概括和表达能力。
(三)情感态度与价值观
3.思考题:
(1)思考锐角三角函数的定义在解决实际问题中的作用,举例说明。
浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案一. 教材分析浙教版数学九年级下册1.1《锐角三角函数》是本册教材的第一课时,主要介绍锐角三角函数的定义及概念。
本节课内容是学生对初中数学中三角函数知识的初步接触,对于培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。
但是,对于锐角三角函数的定义和应用,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例讲解,让学生更好地理解和掌握锐角三角函数的知识。
三. 教学目标1.了解锐角三角函数的定义和概念;2.能够运用锐角三角函数解决实际问题;3.培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力。
四. 教学重难点1.教学重点:锐角三角函数的定义和概念;2.教学难点:如何运用锐角三角函数解决实际问题。
五. 教学方法采用问题驱动法、实例讲解法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学素养。
六. 教学准备1.准备相关的生活实例和图片;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如测量身高、角度等,引导学生思考如何利用数学知识解决这些问题。
从而引出锐角三角函数的概念。
2.呈现(10分钟)讲解锐角三角函数的定义和概念,让学生了解锐角三角函数的基本性质。
通过示例,让学生掌握如何运用锐角三角函数解决实际问题。
3.操练(10分钟)让学生分组讨论,选取一个生活实例,运用锐角三角函数进行解决。
教师巡回指导,为学生提供帮助。
4.巩固(5分钟)选取一些练习题,让学生独立完成,巩固所学知识。
教师及时批改,给予反馈。
5.拓展(5分钟)引导学生思考:除了生活中的实例,还有哪些领域会用到锐角三角函数?让学生了解锐角三角函数在实际应用中的广泛性。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重难点。
九年级数学《锐角三角函数(1)》导学案

斜边c对边abCBA《28.1 锐角三角函数(1)》导学案【知识脉络】【学习目标】1.知识技能:知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定这一事实,进而认识正弦(sinA ).2. 数学思考:经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维.3.问题解决:通过自学、探究等活动,在直角三角形中,初步建立边与角之间的关系,进而知晓对于解决三角形问题又有了新的途径——运用正弦函数进行简单的计算。
4.情感态度:通过对直角三角形的“锐角”与“对边/斜边的比值”对应关系的学习,激发学生探究欲望,体验数学活动充满着探索与创造,从而主动参与数学活动。
【要点检索】 1、重点: 知道直角三角形当锐角固定时,它的对边与斜边的比值是固定值这一事实,认识正弦(sinA ). 2、难点: 对任意锐角,它的对边与斜边的比值是固定值的事实,关键在于比较、分析,得出结论. 【方法导航】 一、学习诱导 【课前热身】(一)我思考,我回顾1、(1)如图右,在Rt △ABC 中,∠C=90°,∠A=30°,BC=6,则AB= ,AC= 。
BC 与AB 的比值是多少?(2)在图中,当∠A=45°时,BC=1,则AC= ,AB= 。
BC 与AB 的比值是多少? 【头脑风暴】又是一年金秋时,秋天是植树的好季节。
为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?【追根溯源】(友情提示:先自学课本第74—75页,然后独立解决1——4题,时间5分钟,比一比,看谁最先完成)(二)我自学,我探索问题2:思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ;结论:直角三角形中,30°角的对边与斜边的比值思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值 。
浙教版初中数学九年级下册导学案:1.1锐角三角函数(1)(教师用)

重点知识精选
掌握知识点,多做练习题,基础知识很重要! 浙教版初中数学 和你一起共同进步学业有成!
浙教版初中数学
TB:小初高题库
浙教版初中数学
课 1.1 锐角三角函数(一)
题 学 1、 理解锐角的三个三角函数的概念和表示。 习 2、 了解锐角的三个三角函数的推导过程。 目 会运用概念进行简单的计算。 标
∠A 的邻边是
二、如上图,设 BC= a ,AC=b,AB=c,则
∠B 的对边是
A的对边 a
(1) ∠A 的正弦记作 sinA,即 sinA=
=,
斜边 c
(2)∠A 的余弦记作 c osA, 即
∠B 的邻边是
[来源:学,科,网]
(3)∠A 的正切记作 tanA, 即
思考: [来源:学科网]
1、sinA, cosA, tanA 的取值范围分别是
课前自学 课中交流 【课前自学】
A
备课组: 九年级数学 主备人: 周立强 重 重点:锐角的三个三角函数的概念。[来源:学科网] 点 难 点
日期: 2014。12.15
课堂教学设计
执教者:
B
C
TB:小初高题库
一、在 Rt⊿ABC 中, ∠C=90°,
(1)角的关系:
(2 )边的关系:
(3)∠A 的对边是
,
,
2、怎样的三角形中可以计算三角函数?
【课中交流】
1、 如图,在 Rt⊿ABC 中,∠C=90 °,AC=2, BC=3,求: [来源:学+科+网 Z+X+X+K]
B
∠B 的三个三角函数。(请根据公式计算)
[来源Rt⊿ABC 中,∠C=90°,AC:BC=1:2,求 sinA,cosA,tanA。
人教版九年级数学下册《锐角三角函数(一)》导学案

28.1锐角三角函数(一)导学案
一、教学目标
知识与技能初步了解锐角三角函数的意义,初步理
解在直角三角形中一个锐角的对边与斜边的
比值就是这个锐角的正弦的定义,并会根据
已知直角三角形的边长求一个锐角的正弦
值。
过程与方法从实际问题入手研究,经历从发现到解决
直角三角形中的一个锐角所对应的对边与斜
边之间的关系的过程,体会研究数学问题的
一般方法以及所采用的思考问题的方法。
情感态度与价值观在解决问题的过程中体验求索的科
学精神以及严谨的科学态度,进一步激发学
习需求。
二、教学重难点
重点锐角的正弦的定义
难点理解直角三角形中一个锐角与其对边与斜边比值的对应关系。
三、学习过程
1、验证正弦函数
2、正弦函数的定义
3、例题示范
4、巩固训练。
北师大版数学九年级下册1.1《锐角三角函数》教案

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是描述直角三角形中角度与边长关系的数学工具。它们在解决实际问题中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的影子长度和角度,我们可以利用锐角三角函数计算出树的高度,展示其在实际中的应用。
其次,学生在小组讨论环节表现积极,但部分学生在分析问题和解决问题时仍显得不够自信。在今后的教学中,我要更加关注这部分学生的需求,多给予鼓励和指导,提高他们的自信心和解决问题的能力。
此外,实践活动环节,学生对实验操作表现出浓厚兴趣,但也有一ቤተ መጻሕፍቲ ባይዱ小组在操作过程中出现了一些错误。我觉得在下次实验操作前,可以提前进行一次简短的模拟演示,让学生更清楚地了解操作步骤和注意事项,从而提高实验的成功率。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数据分析观念:通过解决直角三角形计算问题,引导学生对数据进行整理、分析和处理,培养学生数据分析的思维方式和方法,提高解决实际问题的能力。
北师大版九年级数学第一章三角函数全章导学案

3
35
A4
C
(1)
C
A
(2)
4.三角形在正方形网格纸中的位置如图所示,则 sin α的值是﹙ ﹚
3
A. 4
4
B
.3
3
C .5
4
D
.5
5.如图,在直角△ ABC中,∠ C= 90o,若 AB= 5, AC=4,则
A
sinA =( )
2
6.在△ ABC中,∠C=90°,BC=2,sinA= 3,则边 AC的长是 ( )
斜边
c
把∠ A 的对边与邻边的比叫做∠ A 的正切,记作 tanA ,即 tanA= A的对边 = a . A的邻边 b
例如,当∠ A=30°时,我们有 cosA=cos30°=
;
当∠ A=45°时,我们有 tanA=tan45 °=
.
锐角 A 的正弦、余弦、正切都叫做∠ A 的锐角三角函数.
对于锐角 A 的每一个确定的值, sinA 有唯一确定的值与它对应, 所以 sinA
B
2.难点:理解正弦的意义,并用它来表示两边的 比。
一、预习案
A
C
B
1、如图在 Rt△ABC 中,∠ C=90°,∠ A=30 °,
BC=10m, ?求 AB
A
C
2、如图在 Rt△ABC 中,∠ C=90°,∠ A=30 °,
AB=20m, ?求 BC
3、归纳直角三角形中存在的边角关系:
二、探究案
1.为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,
AB A ' B '
结论:这就是说,在直角三角形中,当锐角 形的大小如何, ?∠A 的对边与斜边的比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C BACBAC BA斜边c对边a bCBA课题:28.1锐角三角函数(1)【导学过程】 一、自学提纲:1、如图在Rt △ABC 中,∠C=90°,∠A=30°,BC=10m ,•求AB2、如图在Rt △ABC 中,∠C=90°,∠A=30°,AB=20m ,•求BC二、合作交流:问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ;结论:直角三角形中,30°角的对边与斜边的比值 思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边 的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值 三、教师点拨:从上面这两个问题的结论中可知,•在一个Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值?探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°, ∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.结论:这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比(2)1353CB A(1)34CB A正弦函数概念:规定:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦, 记作sinA ,即sinA= =ac. sinA =A a A c ∠=∠的对边的斜边 例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= . 四、学生展示:例1 如图,在Rt △ABC 中, ∠C=90°,求sinA 和sinB 的值.随堂练习 (2):1.三角形在正方形网格纸中的位置如图所示,则sin α的值是﹙ ﹚A .43B .34C .53D .542.如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( ) 3. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .B .3C .43D .4.如图,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .ba C .2222.a b D a ba b ++五、课堂小结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A •的对边与斜边的比都是 .在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A •的 ,•记作 ,CB A斜边c 对边abC BA课题:28.1锐角三角函数(2)一、自学提纲:2、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )A .53B .23C.255D .523、如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= . 4、•在Rt △ABC 中,∠C=90°,当锐角A 确定时, ∠A 的对边与斜边的比是 , •现在我们要问:∠A 的邻边与斜边的比呢? ∠A 的对边与邻边的比呢? 为什么? 二、合作交流:探究:一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠B=∠B`=α,那么与有什么关系?ABCD EOA BC D· ∠A的邻边b∠A的对边a 斜边c CBA6CB A三、教师点拨: 类似于正弦的情况,如图在Rt △BC 中,∠C=90°,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=A ∠的邻边斜边=ac;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=A A ∠∠的对边的邻边=ab.例如,当∠A=30°时,我们有cosA=cos30°=;当∠A=45°时,我们有tanA=tan45°= .(教师讲解并板书):锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是A 的函数.同样地,cosA ,tanA 也是A 的函数.例2:如图,在Rt △ABC 中,∠C=90°,BC=•6,sinA=35,求cosA tanB 的值.四、学生展示: 练习二: 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有()A ....2. 在中,∠C =90°,如果cos A=45 那么的值为()A .35.54.34.433、如图:P 是∠的边OA 上一点,且P 点的坐标为(3,4), 则cos α=_____________.五、课堂小结:在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA= =ac.sinA=A aA c∠=∠的对边的斜边把∠A的邻边与斜边的比叫做∠A的余弦,记作,即把∠A的对边与邻边的比叫做∠A的正切,记作,即课题:28.1锐角三角函数(3)填表30°45°60°siaAcosAtanA例3:求下列各式的值.(1)cos260°+sin260°.(2)cos45sin45︒︒-tan45°.例4:(1)如图(1),在Rt△ABC中,∠C=90,AB=6,BC=3,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的3倍,求a.四、学生展示: 二、选择题.1.已知:Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ).A .3B .6C .9D .12 2.下列各式中不正确的是( ).A .sin 260°+cos 260°=1 B .sin30°+cos30°=1 C .sin35°=cos55° D .tan45°>sin45° 3.计算2sin30°-2cos60°+tan45°的结果是( ). A .2 B .3 C .2 D .14.已知∠A 为锐角,且cosA ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A<90°C .0°<∠A ≤30°D .30°≤∠A<90°5.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB=21,则△ABC 的形状是( ) A .直角三角形 B .钝角三角形C .锐角三角形 D .不能确定6.如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4,设∠BCD=a ,则tana•的值为( ).A .34B .43C .35D .457.当锐角a>60°时,cosa 的值( ).A .小于12B .大于12C .大于 32D .大于18.在△ABC 中,三边之比为a :b :c=1:3:2,则sinA+tanA 等于( ).A .32313331.3..6222B C D +++9.已知梯形ABCD 中,腰BC 长为2,梯形对角线BD 垂直平分AC ,若梯形的高是3,•则∠CAB 等于( )A .30°B .60°C .45°D .以上都不对10.sin 272°+sin 218°的值是( ).A .1B .0C .12D . 3211.若( 3 tanA-3)2+│2cosB- 3 │=0,则△ABC ( ). A .是直角三角形 B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 三、填空题.12.设α、β均为锐角,且sin α-cos β=0,则α+β=_______.13.cos 45sin301cos60tan 452︒-︒︒+︒的值是_______.14.已知,等腰△ABC•的腰长为4 3 ,•底为30•°,•则底边上的高为______,•周长为______.15.在Rt△ABC中,∠C=90°,已知tanB=52,则cosA=________.五、课堂小结:要牢记下表:30°45°60°siaAcosAtanA16、求下列各式的值.(1)sin30°·cos45°+cos60°; (2)2sin60°-2cos30°·sin45°(3)2cos602sin302︒︒-; (4)sin45cos3032cos60︒+︒-︒-sin60°(1-sin30°).(5)tan45°·sin60°-4sin30°·cos45°+6·tan30°(6)sin45tan30tan60︒︒-︒+cos45°·cos30°28.2解直角三角形(1)二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足,(如图).现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角等于多少(精确到1o) 这时人是否能够安全使用这个梯子四、学生展示:2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形(未知边的长度和未知角的度数都求)。