考研数学概率论所有知识点合集六
山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理概率论与数理统计是数学的重要分支,广泛应用于各个领域。
在山东省考研的数学科目中,概率论与数理统计是必考内容之一。
为了帮助考生复习,本文将针对概率论与数理统计的重点知识点进行整理,并提供相应的考点解析和习题练习。
一、概率论基础知识1. 随机事件与概率:事件的概念、随机事件的概率、事件的运算(包括事件的和、积,互斥事件,逆事件等)2. 条件概率与独立性:条件概率的概念、乘法定理、全概率公式、贝叶斯公式、独立事件的概念与性质3. 随机变量与分布函数:随机变量的概念、离散型随机变量、连续型随机变量、随机变量函数的分布4. 数学期望与方差:随机变量的数学期望、方差的性质与计算、条件期望、协方差与相关系数的定义与计算二、概率分布1. 离散型随机变量的分布:伯努利分布、二项分布、泊松分布等,包括分布的概率函数、分布函数、数学期望和方差的计算2. 连续型随机变量的分布:均匀分布、指数分布、正态分布等,包括分布的密度函数、分布函数、数学期望和方差的计算3. 两个随机变量的分布:随机变量之和的分布、两个随机变量的函数的分布三、大数定律与中心极限定理1. 大数定律:切比雪夫不等式、大数定律的独立同分布条件、伯努利大数定律、辛钦大数定律2. 中心极限定理:中心极限定理的独立同分布条件、独立同分布情况下的林德伯格-列维定理、棣莫弗-拉普拉斯中心极限定理四、参数估计与假设检验1. 点估计:估计量与矩估计、最大似然估计、无偏性与有效性、均方误差2. 区间估计:置信区间的构造与解释、枢轴变量法构造置信区间、大样本置信区间与小样本置信区间3. 假设检验:假设检验的基本原理与步骤、拒绝域与接受域、显著性水平与p值、参数检验与非参数检验五、相关分析与方差分析1. 相关分析:相关系数的计算与解释、相关系数的性质与应用、线性回归与最小二乘法2. 方差分析:单因素方差分析、双因素方差分析、方差分析的假设条件与检验方法六、样本调查与抽样分布1. 随机抽样:简单随机抽样、分层抽样、整群抽样、多阶段抽样等抽样方法2. 样本调查:样本容量的确定、调查问卷设计与分析、样本误差与抽样误差3. 抽样分布:统计量与抽样分布、正态分布与t分布、卡方分布与F分布通过对概率论与数理统计的重点知识点进行整理,希望能够帮助山东省考研数学的考生有一个清晰的复习框架。
考研数学所有知识点合集(概率论,高数,线代)

P ( X = k ) = q k −1 p, k = 1,2,3, Λ ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布。 ⑥均匀分布 b]内, 其密度函数 f ( x ) 在 设随机变量 X 的值只落在[a, [a,b]上为常数 k,即
2、常见分布
①0-1 分布 P(X=1)=p, P(X=0)=q ②二项分布 在 n 重贝努里试验中, 设事件 A 发生的概率为 p 。 事件 A 发 生的次数是随机变量,设为 X ,则 X 可能取值为
F (−∞) = lim F ( x) = 0
x → −∞ x → +∞
,
F (+∞) = lim F ( x) = 1 ;
4° 5°
F ( x + 0) = F ( x) ,即 F ( x) 是右连续的; P ( X = x) = F ( x) − F ( x − 0) 。
X x1, x 2,Λ , xk , Λ | P ( X = xk ) p1, p 2,Λ , pk ,Λ 。
A ⊂ Υ Bi
i =1
n
, P ( A) > 0 ,
P ( Bi / A) =
P( Bi ) P( A / Bi )
∑ P( B
j =1
n
,i=1,2,…n。
j
) P( A / B j )
m A所包含的基本事件数 = = n 基本事件总数
此公式即为贝叶斯公式。
2、五大公式(加法、减法、乘法、全概、 贝叶斯)
,k = 0.1 , 这就是 (0-1)
分布,所以(0-1)分布是二项分布的特例。 ③泊松分布 设随机变量 X 的分布律为
P ( x < X ≤ x + dx) ≈ f ( x)dx
考研数学概率论复习重要知识点

考研数学概率论复习重要知识点一、基本概念概率是指某个事件发生的可能性大小,用于量化不确定性。
而随机事件是指在一次试验中,不能事先确定出现的结果。
概率的数学定义:对于任意事件A,P(A)表示事件A发生的可能性大小,0 ≤P(A)≤ 1。
同时,P(Ω) = 1,其中Ω是样本空间。
二、加法公式概率公式若A1和A2是两个互不相容的事件,则有:$P(A_1 \\cup A_2) = P(A_1) + P(A_2)$容斥原理当两个事件不互不相容时,可以用容斥原理求出其概率:$P(A_1 \\cup A_2) = P(A_1) + P(A_2) - P(A_1 \\cap A_2)$其中,$P(A_1 \\cap A_2)$ 表示事件A1和A2同时发生的概率。
三、条件概率条件概率是指已知事件B发生的情况下,事件A发生的概率。
条件概率的公式:$P(A|B) = \\frac{P(A \\cap B)}{P(B)}$其中,$P(A \\cap B)$ 表示事件A和B同时发生的概率。
四、乘法公式用乘法公式计算两个事件的概率,即:$P(A \\cap B) = P(A|B)P(B)$五、独立事件若事件A和事件B满足以下条件,则称它们是独立的:$P(A \\cap B) = P(A)P(B)$六、全概率公式与贝叶斯公式全概率公式如果在样本空间Ω中,有一个有限或无限个互不相交的事件序列B1,B2,…,B n,且对Ω的任意一个子集A有:$A = (A \\cap B_1) \\cup (A \\cap B_2) \\cup \\cdots \\cup (A \\cap B_n)$则称事件序列B1,B2,…,B n是一组划分,其全概率公式为:$P(A) = P(A \\cap B_1) + P(A \\cap B_2) + \\cdots + P(A \\cap B_n)$贝叶斯公式如果事件B1,B2,…,B n是一组划分,并对每个$i=1,2,\\cdots,n$,有P(B i)>0,则贝叶斯公式为:$P(B_i|A) = \\frac{P(B_i)P(A|B_i)}{P(A)}$其中,P(B i|A)表示在事件A发生的条件下,事件B i发生的概率。
考研数学概率论重要章节知识点总结

2018考研数学概率论重要章节知识点总结第一章、随机事件与概率本章需要掌握概率统计的基本概念,公式。
其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。
第二章、随机变量及其分布本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。
第三章、多维随机变量的分布在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。
二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。
掌握用随机变量的独立性的判断的充要条件。
最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。
第四章、随机变量的数字特征本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。
另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。
第五章、大数定律和中心极限定理本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。
第六章、数理统计的基本概念重点在于“三大分布、八个定理”以及计算统计量的数字特征。
第七章、参数估计本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。
对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。
区间估计和假设检验只有数一的同学要求,考题中较少涉及到。
考生要对每章的出题重点做到了如指掌,加以题目训练,相信会有好的成绩!。
考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
考研数学概率论复习必备知识点

第一章随机事件和概率重点内容是:事件的关系:包含,相等,互斥,对立,完全事件组,独立;事件的运算:并,交,差;运算规律:交换律,结合律,分配律,对偶律;概率的基本性质及五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;利用独立性进行概率计算,伯努力试验计算。
近几年单独考查本章的考题相对较少,但是大多数考题中将本章的内容作为基础知识来考核。
第二章随机变量及其分布本章的主要内容是:随机变量及其分布函数的概念和性质,分布律和概率密度,随机变量的函数的分布,一些常见的分布:0-1分布、二项分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用。
而重点要求会计算与随机变量相联系的事件的概率,用泊松分布近似表示二项分布,以及随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。
第三章二维随机变量及其分布本章是概率论重点部分之一,尤其是二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。
第四章随机变量的数字特征本章内容是:随机变量的数字特征:数学期望、方差、标准差、矩、协方差、相关系数,常见分布的数字特征。
而重点是利用数字特征的基本性质计算具体分布的数字特征,根据一维和二维随机变量的概率分布求其函数的数学期望。
第五章大数定律和中心极限定理本章内容包括三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律,以及两个中心极限定理:棣莫弗——拉普拉斯定理、列维——林德伯格定理。
本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了。
常见题型有1.估计概率的值2.与中心极限定理相关的命题第六章数理统计的基本概念数理统计的基本概念主要是总体、简单随机样本、统计量、样本均值、样本方差及样本矩。
重点是正态总体的抽样分布,包括样本均值、样本方差、样本矩、两个样本的均值差、两个样本方差比的抽样分布。
考研数学概率复习知识点

考研数学概率复习知识点考研数学概率复习知识点汇总随着考研的时间越来越近,我们在学习数学概率的时候,需要掌握一些重要的知识点。
店铺为大家精心准备了考研数学概率复习指南攻略,欢迎大家前来阅读。
考研数学概率重点知识一、随机事件与概率重点难点:重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算常考题型:(1)事件关系与概率的性质(2)古典概型与几何概型(3)乘法公式和条件概率公式(4)全概率公式和Bayes公式(5)事件的独立性(6)贝努利概型二、随机变量及其分布重点难点重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布常考题型(1)分布函数的概念及其性质(2)求随机变量的分布律、分布函数(3)利用常见分布计算概率(4)常见分布的逆问题(5)随机变量函数的分布三、多维随机变量及其分布重点难点重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布难点:多维随机变量的描述方法、两个随机变量函数的分布的求解常考题型(1)二维离散型随机变量的联合分布、边缘分布和条件分布(2)二维离散型随机变量的联合分布、边缘分布和条件分布(3)二维随机变量函数的分布(4)二维随机变量取值的概率计算(5)随机变量的独立性四、随机变量的数字特征重点难点重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数难点:各种数字特征的概念及算法常考题型(1)数学期望与方差的计算(2)一维随机变量函数的期望与方差(3)二维随机变量函数的期望与方差(4)协方差与相关系数的计算(5)随机变量的独立性与不相关性五、大数定律和中心极限定理重点:中心极限定理难点:切比雪夫不等式、依概率收敛的概念。
考研数学概率知识点总结

考研数学概率知识点总结概率是数学中一个非常重要的概念,在考研数学中也是一个必考的知识点。
概率论是数学的一个分支,研究随机现象的规律性和统计规律性。
考研数学中的概率知识点主要包括基本概率公式、条件概率、随机变量和概率分布、大数定律和中心极限定理等内容。
本文将对这些知识点进行总结和梳理,帮助考生更好地理解和掌握这些知识。
一、基本概率公式1.1 基本概率公式的含义基本概率公式是描述事件发生概率的基本规律,通过公式可以计算事件发生的概率,是概率论中最常用的基本概念之一。
1.2 基本概率公式的公式设A为一个随机事件,P(A)表示事件A发生的概率,则基本概率公式为:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的样本点个数,n(S)表示样本空间Ω的样本点个数。
1.3 基本概率公式的应用基本概率公式可以应用于各种随机事件的概率计算,如掷骰子、抽扑克牌等。
通过基本概率公式,可以准确地计算出事件发生的概率,为后续的概率计算提供基础。
二、条件概率2.1 条件概率的定义条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率可以表示为P(A|B)。
2.2 条件概率的公式条件概率的公式为:P(A|B) = P(AB) / P(B)其中,P(AB)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
2.3 条件概率的性质条件概率具有以下性质:(1)非负性:条件概率始终为非负数。
(2)规范性:如果事件A包含在事件B中,那么P(A|B) = 1。
(3)对称性:P(A|B) ≠ P(B|A)。
(4)加法规则:P(A ∪ B) = P(A) + P(B) - P(AB)。
三、随机变量和概率分布随机变量是指在一次试验中所观察到的随机现象的数值结果,它的取值依赖于试验的结果。
概率分布是描述随机变量取值概率的规律性。
在考研数学中,常见的随机变量包括离散型随机变量和连续型随机变量。
3.1 离散型随机变量离散型随机变量是指在一次试验中所观察到的结果有限且可数,其概率分布可以通过概率质量函数(PMF)来描述。