考研数学一的各章节知识点

合集下载

考研数学知识点汇总

考研数学知识点汇总

考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。

考研数学一全部知识点总结(8K打印)

考研数学一全部知识点总结(8K打印)

U ( x0 , )
o
,
4. 海 涅 (Heine) 归 结 原 则 : lim f ( x ) A 的 充 要 条 件 是 : 对 于 任 何 满 足
x x0
2 tan 1 tan 2 1 2 2 sin cos [sin( ) sin( )] cos 2 2cos 1 1 2sin 2 2 1 tan 1 cos 2 sin 2 cos sin [sin( ) sin( )] 1 tan 2 2 2tg ctg 2 1 1 ctg 2 cos cos [cos( ) cos( )] tg 2 2 1 tg 2ctg 2 sin 2 2sin cos
1 sin 3 3sin 4sin sin sin [cos( ) cos( )] 2 cos 3 4cos3 3cos
3
limxn x0 的数列{xn},都有 lim f ( xn ) A 。
n n
归结原则对于验证函数在某点没有极限是较方便的, 例如可以挑选一个 收敛于该点的自变量 x 的数列{xn},而相应的函数值数列{f(xn)}却不收敛;或 者选出两个收敛于该点的数列{xn},{x’n},而相应的函数值数列{f(xn)},{f(xn)} 却具有不同的极限。 1.4 无穷小与无穷大 若 lim ( x) l , 当 时 , 则 称 x→x0 时 称 α(x) 是 β(x) 的 l 0 x x0 ( x )
(3)对于
f ( x) f ( x0 ) lim g ( x), x x0 (1) f ( x)很复杂,按定义求,f ( x0 ) x x0 x x0 f ( x) , A,x x0 (2)否则,先求出f ( x),再求 lim f ( x)

考研数学(一)真题知识点分布总结

考研数学(一)真题知识点分布总结

考研数学(一)真题知识点分布总结科目/知识题型点高等数学线性代数概率论与数理统计选择题 1. 渐近线的计算2. 函数图形的凹凸性3. 交换累次积分的次序与坐标系的转换4. 定积分的计算5. 数值型行列式的计算6. 向量组的线性无关7. 概率的基本公式8. 随机变量函数的期望、方差填空题9. 曲面的切平面10. 函数的周期性11. 变量替换求解微分方程12. 斯托克斯公式13. 惯性指数14. 无偏估计解答题15. 等价无穷小代换求极限16. 函数的极值17. 二阶偏导数、二阶常系数非齐次线性微分方程18. 曲面积分的计算19. 级数收敛的比较判别法20. 齐次线性方程组的基础解系、非齐次线性方程组的通解21. 矩阵可相似对角化的充要条件22. 随机变量函数的分布、随机变量的数学期望23. 随机变量的数学期望、最大似然估计、辛钦大数定律科目/知识题型点高等数学线性代数选择题 1. 高阶无穷小2. 渐近线的计算3. 函数图形的凹凸性4. 曲率半径5. 等价无穷小、洛必达法则6. 多元函数的最值7. 数值型行列式的计算8. 向量组的线性无关填空题9. 反常积分的计算10. 函数的周期性11. 多元函数的全微分12. 坐标系的变换、导数的几何意义13. 质心14. 惯性指数解答题15. 等价无穷小代换求极限16. 函数的极值17. 二重积分的计算(轮换对称性)18. 二阶偏导数、二阶常系数非齐次线性微分方程19. 函数单调性的判别20. 平面图形的面积21. 旋转体的体积22. 齐次线性方程组的基础解系、非齐次线性方程组的通解23. 矩阵可相似对角化的充要条件科目/知识题题点高等数学线性代数概率论与数理统计选择题 1. 极限的概念2. 渐近线的计算3. 高阶无穷小4. 函数图形的凹凸性5.数值型行列式的计算6. 向量组的线性无关7. 概率的基本公式8. t分布填空题9. 导数的经济意义10. 平面图形的面积11. 定积分的分部积分法12. 交换累次积分的次序、二重积分的计算13. 惯性指数14. 随机变量的数学期望解答题15. 等价无穷小代换求极限16. 二重积分的计算(轮换对称性)17. 多元函数的偏导数、一阶线性微分方程18. 幂级数的收敛域、和函数19. 函数单调性的判别20. 齐次线性方程组的基础解系、非齐次线性方程组的通解21. 矩阵可相似对角化的充要条件22. 随机变量函数的分布、随机变量的数学期望23. 二维离散型随机变量的概率分布、概率的计算。

2021考研数学:高等数学每章知识点汇总

2021考研数学:高等数学每章知识点汇总

2021考研数学:高等数学每章知识点汇总第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。

2.会建立简单应用问题中的函数关系式。

3.了解函数的奇偶性、单调性、周期性、和有界性。

4.掌握基本初等函数的性质及图形。

5.理解复合函数及分段函数的相关概念,了解反函数及隐函数的概念。

6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。

7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存有与左右极限间的关系。

8.掌握极限存有的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

9.掌握极限性质及四则运算法则。

10.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。

3.会求隐函数和参数方程所确定的函数以及反函数的导数。

4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

第三章:微分中值定理与导数的应用1.熟练使用微分中值定理证明简单命题。

2.熟练使用罗比达法则和泰勒公式求极限和证明命题。

3.了解函数图形的作图步骤。

了解方程求近似解的两种方法:二分法、切线法。

4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。

第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。

2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。

4.掌握不定积分的换元积分法。

第六章:定积分的应用1.掌握用定积分计算一些物理量(功、引力、压力)。

2.掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积和侧面积、平行截面面积为已知的立体体积)及函数的平均值。

考研数学一每年必考的知识点

考研数学一每年必考的知识点

考研数学一每年必考的知识点考研数学一每年必考的重点一元函数微分学:隐函数求导、曲率圆和曲率半径;一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理;多元函数积分学:三重积分、第一型曲线积分、第二型曲线积分、第一型曲面积分、第二型曲面积分、格林公式、高斯公式、斯托克斯公式、散度、旋度;无穷级数:傅里叶级数;微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。

以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。

其中:多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,2017年考查了第一型曲面积分及投影曲线,散度旋度常见于小题。

无穷级数中的傅里叶级数考过解答题也考过小题,31年真题中考过4次大题,6次小题。

多元函数微分学中考点常见于小题,切线和法平面,切平面和法线尤其喜欢出填空题,隐函数存在定理考过选择题。

微分方程中可降阶出现频率较高,常在微分方程的应用题中出现,欧拉方程单独直接考查出现过1次。

一元微分学中的曲率常见于小题如选择题填空题,隐函数求导属于常考题型,是一种计算工具,常与其他考点结合考查,如与极值、拐点相结合。

一元积分学中的物理应用:功、压力、质心等考频不高,考过3次。

由于这些考点属于数一单有的,也是考官比较青睐的内容,难度不大,只要我们复习到了就能拿分,所以希望大家引起重视。

考研数学线性代数考点预测:向量的数学定义首先回顾一下,在中学我们是如何表示向量的。

中学数学中主要讨论平面上的向量。

平面上的向量是可以平行移动的。

两个相互平行且长度相等的向量我们认为是相等的。

好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。

考研数学一全部知识点总结

考研数学一全部知识点总结

考研数学一全部知识点总结考研数学一是考研数学中难度较大的一门科目,涵盖了众多的知识点。

以下是对考研数学一全部知识点的总结:一、高等数学1、函数、极限、连续函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性。

数列极限与函数极限的定义及其性质,函数的左极限和右极限。

无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较。

极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则。

两个重要极限:sin x/x → 1(x → 0),(1 + 1/x)^x → e(x → ∞)。

函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。

2、一元函数微分学导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系。

导数的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法。

高阶导数的概念,某些简单函数的 n 阶导数。

微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。

洛必达法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线。

3、一元函数积分学原函数和不定积分的概念,不定积分的基本性质,基本积分公式。

定积分的概念和基本性质,定积分中值定理。

积分上限的函数及其导数,牛顿莱布尼茨公式,不定积分和定积分的换元积分法与分部积分法。

反常积分的概念和计算,定积分的应用(平面图形的面积、旋转体的体积、功、引力、压力等)。

4、向量代数和空间解析几何向量的概念,向量的线性运算,向量的数量积和向量积,向量的混合积。

两向量垂直、平行的条件,两向量的夹角。

向量的坐标表达式及其运算,单位向量,方向余弦,向量的模。

平面方程和直线方程,平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件,点到平面和点到直线的距离。

曲面方程和空间曲线方程,常见的曲面(如球面、柱面、旋转曲面)和空间曲线(如空间曲线在坐标面上的投影曲线)。

考研数学一高数重点及题型

考研数学一高数重点及题型

考研数学一高数重点及题型考研数学一高数重点及题型考研数学一高等数学重要考点及题型章节知识点题型第一章函数、极限、连续等价无穷小代换、洛必达法那么、泰勒展开式求函数的极限函数连续的概念、函数连续点的类型判断函数连续性与连续点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的.极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第五章多元函数微分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系多元复合函数、隐函数的求导法求偏导数,全微分第六章多元函数积分学格林公式、平面曲线积分与途径无关的条件平面第二型曲线积分的计算,平面曲线积分与途径无关条件的应用高斯公式计算第二型曲面积分二重积分的概念、性质及计算二重积分的计算及应用第七章无穷级数级数的根本性质及收敛的必要条件,正项级数的比拟判别法、比值判别法和根式判别法,交织级数的莱布尼茨判别法数项级数敛散性的判别傅里叶级数、正弦级数和余弦级数,狄利克雷定理将函数展开为傅里叶级数、正弦级数和余弦级数,写出傅里叶级数的和函数的表达式第八章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题。

考研数一归纳知识点

考研数一归纳知识点

考研数一归纳知识点考研数学一(高等数学)是考研数学中难度较大的科目,它涵盖了高等数学的多个重要领域。

以下是考研数学一的归纳知识点:1. 函数、极限与连续性:- 函数的概念、性质和分类。

- 极限的定义、性质和求法。

- 函数的连续性及其判断方法。

2. 导数与微分:- 导数的定义、几何意义和物理意义。

- 基本导数公式和导数的运算法则。

- 高阶导数的概念和求法。

- 微分的概念和微分中值定理。

3. 积分学:- 不定积分和定积分的概念、性质和计算方法。

- 换元积分法和分部积分法。

- 定积分的应用,如面积、体积和物理量的计算。

4. 级数:- 级数的概念、收敛性判断。

- 正项级数的收敛性判断方法,如比较判别法和比值判别法。

- 幂级数和泰勒级数。

5. 多元函数微分学:- 多元函数的概念、偏导数和全微分。

- 多元函数的极值问题和条件极值问题。

6. 重积分与曲线积分:- 二重积分和三重积分的概念和计算方法。

- 对坐标的曲线积分和曲面积分。

7. 常微分方程:- 一阶微分方程的解法,如可分离变量方程、线性微分方程等。

- 高阶微分方程的解法,如常系数线性微分方程。

8. 解析几何:- 空间直线和平面的方程。

- 空间曲线和曲面的方程。

9. 线性代数:- 矩阵的运算、行列式、特征值和特征向量。

- 线性空间和线性变换的概念。

- 线性方程组的解法。

10. 概率论与数理统计:- 随机事件的概率、条件概率和独立性。

- 随机变量及其分布,包括离散型和连续型随机变量。

- 数理统计中的参数估计和假设检验。

结束语:考研数学一的知识点广泛且深入,要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。

因此,考生在复习过程中需要注重理解、练习和总结,以提高解题能力和应试技巧。

希望以上的归纳能够帮助考生更好地准备考研数学一的考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学一的各章节知识点
考研数学一的各章节知识点,更多考研数学复习指导、考研数学备考经验、考研历真题及答案等信息,请及时关注考研数学一有高等数学、线性代数、概率论与数理统计三部分内容。

下面就为各位考生预测一下考研数学一的高等数学、线性代数、概率论与数理统计三部分中有哪些可能考察的知识点,希望大家学业有成,工作顺利
一、高等数学考点函数、极限、连续:
(1)无穷小量、无穷小量的比较方法、用等价无穷小量求极限;(2)函数连续性、判别函数间断点的类型;(3)闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。

一元函数微分学:(1)罗尔定理、拉格朗日中值定理、泰勒定理、柯西中值定理;(2)用洛必达法则求未定式极限;
(3)用导数判断函数的单调性和求函数极值、最大值和最小值;(4)求函数图形的拐点及水平、铅直和斜渐近线;(5)计算曲率和曲率半径。

一元函数积分学:(1)求变上限积分函数的导数、牛顿-莱布尼兹公式;(2)计算反常积分;
(3)用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

向量代数和空间解析几何:(1)求平面方程和直线方程;(2)求简单的柱面和旋转曲面的方程。

多元函数微分学:(1)求多元复合函数一阶、二阶偏导数;(2)求多元隐函数的偏导数;
(3)求空间曲线的切线和法平面及曲面的切平面和法线的方程;(4)求简单多元函数的最大值和最小值。

(1)计算二重积分、三重积分;(2)计算两类曲线积分、曲面积分;(3)格林公式、高斯公式;
(4)用重积分、曲线积分、曲面积分求一些几何量和物理量。

无穷级数:
(1)任意项级数绝对收敛与条件收敛;(2)函数项级数的收敛域及和函数;(3)幂级数的收敛半径、收敛区间及收敛域;(4)常用函数的麦克劳林展开式。

常微分方程:
(1)变量可分离的微分方程及一阶线性微分方程;(2)二阶常系数齐次线性微分方程;(3)用微分方程解决一些简单的应用问题。

二、线性代数考点
(1)行列式的常见求法;(2)用伴随矩阵求逆矩阵,用初等变换求矩阵的秩和逆矩阵;
(3)求向量组的秩、矩阵的秩与其行(列)向量组的秩之间的关系、求过渡矩阵、正交矩阵;(4)非齐次线性方程组解的结构及通解;(5)求矩阵的特征值和特征向量、将矩阵化为相似对角矩阵;(6)用正交变换化二次型为标准形。

三、概率论与数理统计考点
(1)全概率公式、贝叶斯公式;
(2)0-1 分布、二项分布、泊松分布的应用、均匀分布、正态分布、指数分布及其应用、求随机变量函数的分布;
(3)二维连续型随机变量的概率密度、边缘密度和条件密度、求两个随机变量简单函数的分布;
(4)求随机变量的数学期望;
(5)验证估计量的无偏性、求单个正态总体的均值和方差的置信区间、求两个正态总体的均值差和方差比的置信区间。

相关文档
最新文档