分式的基本性质 教学设计

合集下载

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。

内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。

二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。

2. 学会简化分式,并能运用简化后的分式解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。

三、教学难点与重点教学难点:分式的基本性质的理解与应用。

教学重点:分式的定义、简化分式的方法以及分式的实际应用。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件。

2. 学具:学生用书、练习本、计算器。

五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。

2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。

(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

(3)简化分式:讲解如何将分式简化,并举例说明。

3. 例题讲解结合教材例题,详细讲解分式的简化过程。

4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。

(2)小组讨论,解决实际问题,培养学生的合作意识。

5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。

2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。

八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。

重点和难点解析1. 分式的基本性质的理解与应用。

2. 简化分式的方法。

3. 实际问题的解决。

4. 板书设计。

5. 作业设计与答案。

一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。

分式的基本性质 优秀教案

分式的基本性质 优秀教案

分式的基本性质教学 目标知识与技能1.使学生理解分式的基本性质,并会运用分式的基本性质将分式进行变形;2.利用分式的基本性质归纳,归纳理解粉饰的变号法则,并灵活应用。

过程与方法通过对比分数和分式基本性质的异同点,渗透类比的思想方法。

情感态度与价值观通过学习中的研究、讨论、交流,提高学生的学习能力和与人合作、交流的能力。

并体会发现、成功的美。

教学重点: 正确理解分式的基本性质。

教学难点: 运用分式的基本性质,将分式进行变形。

教学方法: 启发式教学过程教学活动学生活动 教学意图 (一)引导学生复习分式的有关概念1.指定两名学生就下列各式分别回答哪些是整式、分式,请其他学生判断其答案的正误,并说明原因。

52+x , mn, 2a-3b , 32-y y ,)2)(1(92---x x x , 53-2.指定学生分别回答上列各分式何时有意义,请其他学生判断其答案的正误,并说明原因。

(二)讲解分式的基本性质1.引导学生回忆分式的意义是对照分数的意义明确的,因此继续学习分式的知识也对照着分数的知识来学习。

再使学生回忆分数的知识;约分、通分、加减、乘除法等,都是以分数的基复习与分数进与分数类比,培养学生独立获取知识的能力。

本性质为根据,从而引出继续学习分式的知识,也从学习分式的基本性质开始。

2.指定学生叙述分数的基本性质,并以21等为例说明:MM ⨯⨯==-⨯-⨯=⨯⨯=21)3(2)3(1222121 (M 表示不等于零的数)MM ⨯⨯==-⨯-⨯=⨯⨯=32)3(3)3(2232232 (M 表示不等于零的数)MB M A B A B A B A ⨯⨯==-⨯-⨯=⨯⨯= )3()3(22 上式当BA表示分数时,M 是不等于零的数;若BA表示的是分式,则M 可以表示不等于零的整式。

以“把各式中的‘×’号换成‘÷’号,还对吗?”提问,指定学生回答,订正后明确M B MA B A ÷÷=。

八年级数学上册《分式的基本性质》教案、教学设计

八年级数学上册《分式的基本性质》教案、教学设计
-设计意图:使学生在实践中掌握分式的运算方法,提高学生的运算能力。
6.课后拓展:布置具有挑战性的拓展题,鼓励学生进行深度思考,提高学生的数学思维能力。
-设计意图:培养学生的创新意识,提高学生的数学素养。
7.教学评价:结合课堂表现、练习成绩和课后拓展成果,全面评价学生的学习效果。
-设计意图:关注学生的全面发展,激发学生的学习积极性,提高教学质量。
-设计意图:从生活实例出发,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.问题驱动:提出问题“分数可以表示什么?分式与分数有什么联系和区别?”让学生思考并回答,为新课的学习做好铺垫。
(二)讲授新知
1.分式的定义:讲解分式的概念,强调分式的三个要素:分子、分母和分数线。通过具体实例,解释分式的意义和表示方法。
-题目2:(x^3 - 2x^2 + x) / (x^2 - 1) × (x^2 + 1) / (x - 1)
-设计意图:通过拓展挑战题,锻炼学生的运算能力,提高学生的数学思维。
4.小组合作题:分组讨论并完成以下问题:
-问题:已知一个分数的分子和分母分别是两个连续的整数,且它们的和为17,求这个分数。
八年级数学上册《分式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的定义,掌握分式的表示方法,能够正确书写分式。
2.掌握分式的基本性质,如约分、通分、乘除法则等,并能够灵活运用这些性质解决相关问题。
3.能够运用分式进行简单的代数运算,解决实际问题,提高学生的运算能力和解决问题的能力。
-分式的基本性质有哪些?
-分式的运算方法有哪些?
-如何运用和评价。
-设计意图:通过小组讨论,培养学生的合作精神和交流能力,提高学生对分式知识的理解。

新人教版八年下《分式的基本性质》word教案2篇

新人教版八年下《分式的基本性质》word教案2篇

课 题:16.1.2分式的基本性质(1)教学目标:1.理解分式的基本性质.2.会用分式的基本性质将分式变形.教学重点:理解分式的基本性质. 分式的分子、分母和分式本身符号变号的法则。

教学难点:灵活应用分式的基本性质将分式变形。

利用分式的变号法则,把分子或分母是多项式的变形。

教学突破:灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.教学方法:类比学习、引导启发、讲练结合、归纳导学过程:一 预习完成1.请同学们考虑: 与 相等吗? 与 相等吗?为什么? 2.说出 与 之间变形的过程,与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 分式的基本性质:分式的分子、分母同乘以(或除以)同一个整式,使分式的值不变. 可用式子表示为:B A =C B C A ••B A =C B C A ÷÷(C ≠0) (预设:学生对C ≠0理解不容易掌握,且在运用中容易出错,提醒学生多思考,深入理解。

)二 探索建模(一)、分式性质的应用1、提出问题:P5例2.填空。

2、学生独立思考,再小组交流谈话,完成以下问题:4320152498343201524983(1)、你是怎样观察完成等式前后式子变化的?第(2)小题最后一题为什么要加b ≠0?(2)、你在遇着同样问题时,能否轻松解决了?(二)、分式的分子、分母和分式本身符号变号的法则补充例.不改变分式的值,使下列分式的分子和分母都不含“-”号. a b56--, y x 3-, n m --2, n m 67--, y x 43---。

引导学生分析:每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.三 训 练 1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x - 2.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317ba --- (3) 2135x a -- (4)mb a 2)(-- 3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)13232-+---a a a a (2)32211x x x x ++-- (3)1123+---a a a 4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)b a b a +---2 (2)yx y x -+--32课 题:16.1.2分式的基本性质(2.通分、约分)教学目标:会用分式的基本性质将分式变形,正确进行分式的通分和约分。

15.1.2分式的基本性质(教案)

15.1.2分式的基本性质(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、基本性质和它在实际问题中的应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在完成“15.1.2分式的基本性质”这一章节的教学后,我对自己的一些教学方法和学生的反馈进行了思考。我发现,分式的概念和性质对于学生来说并不容易掌握,尤其是分式运算的法则,学生在实际操作中容易混淆和出错。
3.数学抽象能力:让学生从具体实例中抽象出分式的性质,提高数学抽象思维能力。
4.数学运算能力:掌握分式运算的法则,培养学生准确、熟练地进行分式计算的能力。
5.团队合作与交流能力:在小组讨论和问题解决过程中,培养学生与人合作、表达和倾听他人意见的能力,提高学生的沟通与协作素养。
三、教学难点与重点
1.教学重点
-分式的定义:理解分式的概念,明确分子与分母的关系,以及分式表示的数学意义。
-分式的性质:掌握分式的分子分母同时乘以(或除以)同一个非零数或分式时,分式的值不变的规律。
-分式运算的法则:熟练运用分式乘法、分式除法、分式乘除混合运算的法则进行计算。
举例解释:
-通过具体实例(如分数的表示),让学生理解分式的定义,强调分式表示的是一种比例关系。
-通过数学推导和实例演示,让学生掌握分式性质中的“不变性”,并能够运用这一性质简化分式计算。
-通过实际计算题,让学生在实践中掌握分式运算的法则,如分式乘法中,分子乘以分子,分母乘以分母等。
2.教学难点
-分式性质的运用:学生在运用分式性质时,往往难以灵活运用,特别是涉及到分式的乘除运算。
-分式运算的符号处理:学生在进行分式运算时,容易混淆乘除符号,导致计算错误。

分式的基本性质教案

分式的基本性质教案

分式的基本性质优秀教案一、教学内容本节课我们将探讨《数学》教材第十五章第一节“分式的基本性质”。

具体内容包括分式的定义、分式的基本性质、分式的乘除法运算以及分式的约分。

二、教学目标1. 理解并掌握分式的定义及基本性质。

2. 学会分式的乘除法运算,并能熟练运用。

3. 能够对分式进行约分,并解释其约分原理。

三、教学难点与重点教学难点:分式的乘除法运算及约分。

教学重点:分式的定义、基本性质以及相关运算法则。

四、教具与学具准备1. 教具:PPT、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中分式的应用,如分数蛋糕、速度等,引发学生对分式的兴趣。

2. 分式的定义及性质(10分钟)讲解分式的定义,并通过例题讲解分式的基本性质。

3. 分式的乘除法运算(15分钟)介绍分式的乘除法运算规则,并进行例题讲解。

接着,布置随堂练习,让学生独立完成。

4. 分式的约分(10分钟)讲解分式约分的原理及方法,并进行例题演示。

随后,让学生进行随堂练习。

5. 小结与巩固(5分钟)6. 互动环节(10分钟)学生提问,教师解答。

针对学生在学习过程中遇到的问题进行解答。

七、作业设计1. 作业题目:2. 答案:(1)2(2)5/4(3)3/2八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对分式的定义、基本性质及运算法则有了更深入的理解,但仍有个别学生在约分环节存在困难,需要在课后进行个别辅导。

2. 拓展延伸:鼓励学生探索分式在其他数学领域的应用,如函数、不等式等,提高学生的综合运用能力。

重点和难点解析:1. 分式的定义及性质2. 分式的乘除法运算3. 分式的约分4. 互动环节5. 作业设计一、分式的定义及性质分式的定义:分式是由两个整式相除得到的表达式,其中被除数称为分子,除数称为分母。

分式的基本性质包括:1. 分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。

《分式的基本性质》教学设计五篇范文

《分式的基本性质》教学设计五篇范文

《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。

3、教学目标(1)了解分式的基本性质。

灵活运用“性质”进行分式的变形。

(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

(3)通过探索分式的基本性质,积累数学活动经验。

(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

4、教学重难点分析重点:理解并掌握分式的基本性质。

难点:灵活运用分式的基本性质,进行分式化简、变形。

二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。

学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。

学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

同时强化了学生以旧知识类比得出新知识的能力。

三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。

2. 能够运用约分与通分的方法对分式进行运算。

3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。

三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。

难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。

2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。

(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。

(3)通过例题讲解,演示如何运用基本性质简化分式。

3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。

4. 例题讲解:(1)分式的乘除法运算。

(2)分式的乘方运算。

(3)含有绝对值的分式简化。

5. 课堂小结:六、板书设计1. 分式的定义与结构。

2. 分式的基本性质。

3. 分式的约分与通分。

4. 分式的乘除法及乘方运算。

5. 例题及解题步骤。

七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。

(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。

(3)计算分式的乘方:(x^24)/(x+2)^2。

2. 答案:(1)1/(2x4)。

(2)3x(x2)/(2(x+2)(x2))。

(3)(x2)^2/(x+2)^2。

八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的基本性质教学设计
教学设计思想
通过类比分数的基本性质及分数的约分、通分,推测出分式的基本性质、约分和通分,通过例题、练习来巩固这些知识点。

教学目标
知识与技能
1.总结分式的基本性质;
2.利用分式的基本性质对分式进行“等值”变形;
3.说出分式通分、约分的步骤和依据,总结分式通分、约分的方法;
4.说出最简分式的意义,能将分式化为最简分式。

过程与方法
经历与他人合作探究分式的基本性质及应用的过程,通过类比分数的基本性质,推测出分式的基本性质。

情感态度价值观
体会知识点之间的联系,在已有数学经验的基础上,提高学数学的乐趣。

教学重点、难点
重点:1.分式的基本性质;2.利用分式的基本性质约分、通分;3.将一个分式化简为最简分式、将分式通分。

难点:分子、分母是多项式的分式的约分和通分。

教学方法
启发引导,讲练结合
教学媒体
课件
课时安排
1课时
教学设计过程
(一)复习引入
1.分式的定义;
2.分数的基本性质?有什么用途?
通过回顾我们可以得出:
一般地,对于任意一个分数a
b 有
a a c a a c ,(c 0)
b b
c b b c ⋅÷==≠⋅÷,其中a ,b ,c 是数。

(二)讲授新课
活动1
思考:
1.类比分数的基本性质,你能想出分式有什么性质吗?
2.怎样用式子表示分式的基本性质?
通过类比分数的基本性质,我们可以推想出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。

用式子表示为:
A A C A A C ,(C 0)A
B
C B B C B B C ⋅÷==≠⋅÷其中、、是整式。

活动2
例2 填空
222222a b ()2a b ()(1)
,;ab a b a a b
x +xy x y x ()(2),x ()x 2x x 2+-==+==-- 仔细分析,看分母如何变化,是“多”还是“少”?想分子如何变化;看分子如何变化,是“多”了还是“少”了,想分母如何变化。

解答见教科书7~8页。

活动3
思考
1.类比分数的基本性质的用途(通分和约分),思考分式的基本性质会有什么用途呢?
2.有上例你能想出如何对分式进行通分和约分吗?
学生自主学习教科书8~9页中有关通分与约分的定义,类比分数的通分与约分,思考怎样对分式进行通分与约分。

老师启发引导,学生小组讨论,总结出分式应如何进行约分与通分。

例3 约分
2322225a bc x 9(1);(2)15ab c x +6x+9--
重点关注:
1.约分的依据。

2.约分的关键是公因式。

3.公因式如何确定。

4.约分后的最后结果应为最简分式。

即:分子、分母没有公因式。

(化为最简分式有什么意义?)
例4 通分
阅读教科书上9页的有关最简公分母的定义。

223a b 2x 3x (1);(2).2a b ab c x 5x 5--+与与
重点关注:
1.通分的依据。

2.通分的关键是确定几个分式的公分母。

3.如何确定几个分式的公分母。

活动4
思考:
1.分数和分式在约分和通分的做法上有什么共同点?
2.这些做法根据了什么原理?
通过本思考,进一步理解分数与分式的联系,学生对分数已有一定的认识基础。

通过分式与分数的类比,将有助于理解掌握新内容,进一步发展学生的抽象思维能力。

播放课件
(三)练习
教科书10页的练习。

(四)小结
学生思考,试着独立完成,然后再分组讨论、交流本节所学的内容:
1.分式的基本性质。

2.分式的约分方法。

(五)板书设计。

相关文档
最新文档