高三数学知识点归纳概率

合集下载

概率知识点归纳总结高中

概率知识点归纳总结高中

概率知识点归纳总结高中概率是数学中一个重要的分支,它研究的是随机事件发生的可能性。

概率在日常生活中也有着广泛的应用,比如天气预报、赌博、金融投资等领域都离不开概率的运用。

在高中数学课程中,概率也是一个重要的内容,我们主要学习了基本概率、条件概率、独立事件、贝叶斯定理等知识点。

下面我们将对这些内容进行详细的归纳总结。

一、基本概率1.概率的定义和性质:概率是指一个随机实验的结果符合某种条件的可能性大小。

概率的性质包括非负性、规范性和可列可加性。

2.概率的计算:对于一个随机实验的样本空间S,如果事件A包含n个基本事件,那么事件A的概率P(A)可以用公式P(A)=n/N来计算,其中N为样本空间S中基本事件的总数。

3.事件的互斥与对立事件:互斥事件指两个事件不可能同时发生;对立事件指两个事件中至少有一个发生。

二、条件概率1.条件概率的定义:当事件B已经发生时,事件A发生的概率称为条件概率,记作P(A|B)。

条件概率的计算公式为P(A|B)=P(AB)/P(B)。

2.乘法定理:P(AB)=P(B)P(A|B)=P(A)P(B|A)。

3.全概率公式和贝叶斯定理:全概率公式用于求解事件A的概率,贝叶斯定理用于求解事件B发生的条件下,事件A发生的概率。

三、独立事件1.独立事件的定义和性质:事件A和事件B互相独立的条件是P(A|B)=P(A),P(B|A)=P(B),即事件A的发生与事件B的发生没有任何影响。

2.独立事件的乘法公式:若事件A和事件B是独立事件,则P(AB)=P(A)P(B)。

3.重复独立实验的概率:重复独立实验指多次独立且相同的实验,对于n次独立实验,事件A发生k次的概率为C(n,k)P(A)^k[1-P(A)]^(n-k),其中C(n,k)表示组合数。

四、随机变量及其分布1.随机变量的概念:随机变量是对随机事件结果的数学描述,它可以是离散型随机变量也可以是连续型随机变量。

2.离散型随机变量的分布:包括伯努利分布、二项分布、泊松分布等,每种分布都有其对应的概率质量函数和概率分布函数。

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。

(完整版)高三数学概率统计知识点归纳

(完整版)高三数学概率统计知识点归纳

概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x n S n -++-+-=Λ.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.一、 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

高中数学概率知识点总结

高中数学概率知识点总结

高中数学概率知识点总结一、概率的基本概念1.1 概率的定义在日常生活中,我们经常会遇到很多不确定的事件,比如掷骰子的结果、抽奖的中奖情况等等。

而概率就是用来描述这些不确定事件发生的可能性的。

概率可以理解为某件事情发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定会发生。

1.2 样本空间和事件在进行概率计算时,通常需要确定一个样本空间,即所有可能发生的结果的集合。

比如掷一枚骰子,样本空间为{1,2,3,4,5,6}。

事件则是样本空间的一个子集,表示我们关心的那部分结果。

比如“出现奇数点数”的事件为{1,3,5}。

1.3 古典概率和频率概率古典概率是指在所有可能结果等可能时,事件发生的概率即为事件发生的次数与样本空间元素总数的比值。

而频率概率是指在实际观察中,某一事件发生的次数与总次数的比值。

古典概率适用于理论计算,而频率概率适用于实际观测。

1.4 概率的性质概率具有以下几个重要性质:(1)非负性:任何事件的概率都大于等于0;(2)规范性:全集事件的概率为1;(3)可列可加性:对于两个互不相容的事件,它们的概率之和等于这两个事件并起来的概率。

二、概率的计算方法2.1 古典概率的计算在古典概率中,当每个事件发生的可能性相等时,概率等于事件发生的次数除以总事件数,即P(A)=n(A)/n(S)。

2.2 几何概率的计算几何概率是通过几何模型中的面积、长度或体积来计算概率的方法。

比如说,在一个正方形的面积中,事件发生的可能性可以表示为事件的面积与总面积的比值。

2.3 频率概率的计算频率概率是通过实验次数和事件发生次数的比值来计算概率的方法,即P(A)=n(A)/n。

2.4 排列和组合排列是指从n个不同元素中取出m个元素,按一定的次序排成一列,不同元素的个数为n!/(n-m)!。

组合是指从n个不同元素中取出m个元素,不考虑次序的情况,不同元素的个数为n!/(m!(n-m)!)。

(最全)高中数学概率统计知识点总结

(最全)高中数学概率统计知识点总结

概率与统计一、普通的众数、平均数、中位数及方差1、众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:x x x x1 2 nn②、加权平均数:xx x x1 12 2 n n1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差: 2 2 2 21s [(x x) ( x x)(x x) ]1 2 nn二、频率直方分布图下的频率1、频率=小长方形面积: f S y距 d ;频率=频数/ 总数2、频率之和:f1 f2 f 1;同时n S1 S2 S 1;n三、频率直方分布图下的众数、平均数、中位数及方差1、众数:最高小矩形底边的中点。

2、平均数:x x f x f x f x f1 12 23 3 n n x x S x S x S x S1 12 23 3 n n3、中位数:从左到右或者从右到左累加,面积等于0.5 时x 的值。

4、方差: 2 2 2 2s ( x x) f ( x x) f ( x x) f1 12 2 n n四、线性回归直线方程:y?b?x a?其中:?bn n(x x)( y y)x y nxyi i i ii 1 i 1n n2 2 2(x x)x nxi ii 1 i 1, a?y b?x1、线性回归直线方程必过样本中心( x,y);2、b?0:正相关;b?0:负相关。

3、线性回归直线方程:y?b?x a?的斜率b?中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:? ?e y y (残差=真实值—预报值)。

分析:e?越小越好;i i i i2、残差平方和:i n12 ( ?)y y ,i i分析:①意义:越小越好;②计算:i n12 2 2 2 (y y?) (y y?) ( y y?) (y y?)i i 1 1 2 2 n n3、拟合度(相关指数):n( y y )?2i i2 i 1R 1n2( y y)ii 1,分析:①. 2 0,1R 的常数;②. 越大拟合度越高;4、相关系数:rn n(x x)( y y) x y nx yi i i ii 1 i 1n n n n2 2 2 2 (x x) ( y y) (x x) ( y y)i i i ii 1 i 1 i 1 i 1分析:①. r [ 1,1]的常数;②. r 0: 正相关;r 0: 负相关③. r [0,0.25] ;相关性很弱;r (0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验1、2× 2 列联表:x1 x 合计22 、独立性检验公式n ( a d b c )①.k y a b a b 1ycd c d 2合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤2n( a d bc)①.计算观察值k : k;(a b )(c d )(a c)( b d)②.查找临界值k:由犯错误概率P,根据上表查找临界值0 k ;③.下结论:k k :即犯错误概率不超过P 的前提下认为:, 有1-P 以上的把握认为:;k k :即犯错误概率超过P的前提认为:, 没有1-P 以上的把握认为:;【经典例题】题型1 与茎叶图的应用例1(2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。

4、对立事件对立事件是指两个事件必有一个发生的互斥事件。

例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。

而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。

对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。

2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。

5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。

相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。

2)必然事件与任何事件都是相互独立的。

3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。

6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。

如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。

高考数学中的概率知识点总结

高考数学中的概率知识点总结

高考数学中的概率知识点总结概率是高中数学中的一个重要知识点,也是高考数学题中的常见考点。

要想在高考中拿到好成绩,掌握概率知识点是必不可少的。

本文将从概率的基本概念、概率的分类、概率的基本性质、条件概率、独立性等方面进行总结。

一、概率的基本概念概率是指某种事件发生的可能性大小。

在数学上,概率可以用一个介于0和1的数来表示,其中0表示不可能发生,1表示一定会发生。

如果一个事件发生的概率为p,那么其对立事件不发生的概率为1-p。

二、概率的分类在概率中,事件可以分为等可能事件和不等可能事件。

等可能事件是指在所有可能发生的情况下,每种情况发生的可能性相等。

例如,掷一枚硬币的正反面就是等可能事件。

而不等可能事件则是指每种情况发生的可能性不相等,例如抽奖等。

三、概率的基本性质概率具有以下几个基本性质:1. 非负性:任何事件的概率都不会是负数。

2. 规范性:所有可能发生事件的概率之和为1。

3. 加法性:对于两个不相交事件A和B,它们的联合概率就是它们各自的概率之和。

四、条件概率条件概率是指在一个事件已经发生的条件下,其他事件发生的概率。

在数学上,条件概率可以用P(A|B)来表示,其中A和B均为事件,而P(A|B)表示在B发生的条件下,A发生的概率。

五、独立性在概率中,独立性是指事件A和事件B的发生互相独立,即事件A的发生不会影响事件B的发生,反之亦然。

在数学上,如果事件A和事件B是独立的,则有P(A∩B) = P(A)P(B)。

六、概率的应用概率的应用非常广泛,主要包括以下几个方面:1. 投资决策:在投资决策中,需要根据不同投资方案的预期收益和风险概率来进行决策。

2. 保险与风险管理:保险公司需要根据不同客户的风险概率来确定保险金额和保险费用,减少损失。

3. 统计学:在统计学中,概率是一种重要的工具,被广泛应用于抽样、调查和数据分析等领域。

综上所述,概率是高考数学中的一个重要知识点。

掌握概率的基本概念、分类、基本性质、条件概率和独立性,能够帮助我们更好地理解各种概率题目,并在高考数学考试中取得更好的成绩。

高中数学 概率与统计知识点总结

高中数学 概率与统计知识点总结

高中数学概率与统计知识点总结概率与统计一、概率及随机变量的分布列、期望与方差1.概率及其计算概率是指某个事件发生的可能性大小,可以用数值表示。

计算概率时,可以采用几个互斥事件和事件概率的加法公式。

如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。

如果事件A1,A2,…,An两两互斥,则事件A1+A2+…+An发生的概率等于这n个事件分别发生的概率的和,即P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。

如果事件B与事件A互为对立事件,则P(A)=1-P(B)。

2.随机变量的分布列、期望与方差随机变量是指在随机试验中可能出现的各种结果所对应的变量。

常用的离散型随机变量的分布列包括二项分布和超几何分布。

二项分布指在n次独立重复试验中,事件A发生k次的概率为C(n,k)p^k(1-p)^(n-k),事件A发生的次数是一个随机变量X,其分布列为X~B(n,p)。

超几何分布指在含有M件次品的N件产品中,任取n件,其中恰有X件次品的概率为C(M,k)C(N-M,n-k)/C(N,n),其中m=min(M,n),且n,N,M,N∈N*,称随机变量X的分布列为超几何分布列,称随机变量X服从超几何分布。

2.条件概率及相互独立事件同时发生的概率条件概率是指在已知事件A发生的条件下,事件B发生的概率。

一般地,设A,B为两个事件,且P(A)>0,则P(B|A)=P(AB)/P(A)。

在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n(AB)/n(A)。

相互独立事件是指两个或多个事件之间互不影响,即其中一个事件的发生不会影响其他事件的发生。

如果A,B相互独立,则P(AB)=P(A)P(B)。

如果A与B相互独立,则A与B,A与B,A与B也都相互独立。

3.独立重复试验与二项分布独立重复试验是指在一系列相互独立的试验中,每个试验的结果只有两种可能,即成功或失败。

在n次独立重复试验中,事件A发生k次的概率为C(n,k)p^k(1-p)^(n-k),事件A发生的次数是一个随机变量X,其分布列为X~B(n,p)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学知识点归纳概率
概率是数学中一个非常重要的分支,它可以帮助我们理解事件
发生的可能性。

在高三数学中,概率是一个必学的知识点。

本文
将对高三数学概率知识点进行归纳总结,旨在帮助高三学生加深
对概率的理解和掌握。

一、基础概念
概率是指事件发生的可能性,用来表征事件的随机性。

它的取
值范围是0到1之间,其中0表示不可能事件,1表示必然事件。

常用的求概率的方法有频率法、几何法和古典概型法等。

二、事件的概率计算
1.频率法
频率法是通过实验的次数和结果的出现次数来计算概率的方法。

当实验的次数足够多时,事件发生的频率将逼近其概率。

2.几何法
几何法是通过对样本空间的几何图形进行面积比较来计算概率。

对于连续型随机事件,可以使用几何法计算概率。

3.古典概型法
古典概型法适用于样本空间元素个数有限且等可能的随机事件。

通过计算事件的有利结果个数与总结果个数之比来计算概率。

三、概率的性质与公式
1.加法公式
对于两个互斥事件A和B,其概率之和等于两个事件分别发生
的概率之和。

2.乘法公式
对于两个独立事件A和B,其同时发生的概率等于两个事件分
别发生的概率之积。

3.全概率公式
全概率公式是在事件A的基础上,将样本空间划分为若干互斥
事件,并计算这些事件的概率之和等于事件A的概率。

4.条件概率
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

通过条件概率,我们可以计算两个事件的相关性。

四、排列与组合
排列与组合是概率中常见的计数方法。

排列是指从n个不同元素中选取m个元素按照一定顺序排列的方法数,计算公式为
P(n,m)=n!/(n-m)!。

组合是指从n个不同元素中选取m个元素并不考虑顺序的方法数,计算公式为C(n,m)=n!/[(n-m)!m!]。

五、常见的概率模型
1.简单随机抽样
简单随机抽样是指从总体中随机选择样本的抽样方法,其样本容量n较小时,可以近似认为是简单随机抽样,使用古典概型法计算概率。

2.二项分布
二项分布是一种离散型概率分布,适用于只有两种可能结果的重复试验。

它的概率计算公式为P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n为试验次数,k为事件发生的次数,p为事件发生的概率。

3.泊松分布
泊松分布是一种离散型概率分布,适用于某段时间或某个空间单位内随机事件发生的次数。

它的概率计算公式为
P(X=k)=(lambda^k * e^(-lambda))/k!,其中lambda为单位时间或者单位空间内事件发生的平均次数。

总结:
通过对高三数学概率知识点的归纳总结,我们可以更好地理解和掌握概率的概念、计算方法以及常见的概率模型。

在备战高考的过程中,熟练掌握概率知识对于解决数学问题至关重要。

希望同学们通过学习和实践,能够在高三数学中取得优异的成绩。

相关文档
最新文档