高三数学概率表知识点归纳

合集下载

高三概率(理:立足文科)

高三概率(理:立足文科)

统计与概率专题(理科)【总知识脉络】概率概念随机事件必然事件不可能事件随机事件的概率等可能性事件的概率互斥事件互斥事件有一个发生的概率相互独立事件相互独立事件同时发生的概率计算频率与概率数理统计随机变量离散型随即变量随即变量的概率分布列数学期望方差连续型随即变量抽样方法系统抽样分层抽样简单随机抽样【知识梳理】一、离散型随机变量及其分布列、均值与方差1、随机变量、离散型随机变量的定义(1)随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。

(2)离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.2、离散型随机变量的分布列:(1)定义:一般的,设离散型随机变量X 可能取的值为12,,,,,i n x x x xX 取每一个值(1,2,)i x i =的概率()i i P x p ξ==,则称表为离散型随机变量X 的概率分布,简称分布列:(2)分布列性质:①0,1,2,i p i ≥= ;②12... 1.n p p p +++=3、两点分布与超几何分布(1)二点分布:如果随机变量X 的分布列为:其中01,1p q p <<=-,则称离散型随机变量X 服从参数p 的二点分布(2)超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取()n n N ≤件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为),2,1,0()(m k C C C k X P nNk n MN k M ===--, 其中{}min,m M n =,且*,,,,n N M N n M N N∈≤≤4、※均值与方差※则称1122()n n E X x p x p x p =+++为X 的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。

高三文科数学概率知识点

高三文科数学概率知识点

高三文科数学概率知识点概率是数学中一个重要的分支,也是高中数学中的一门重要课程,它研究的是不确定事件发生的可能性。

在高三文科数学中,概率作为其中的一部分内容,涵盖了很多重要的知识点。

本文将针对高三文科数学中的概率知识点进行详细论述。

一、基本概率规则在概率的计算中,我们首先要掌握的是基本概率规则。

基本概率规则包括等可能概型、互斥事件与对立事件等概念。

等可能概型指的是实验中每个基本结果发生的概率相等的情况。

例如,掷一个均匀的六面骰子,每个面出现的概率都是1/6。

互斥事件指的是两个事件不能同时发生的情况。

例如,投篮比赛中不同队员投进的概率是互斥事件。

对立事件指的是两个事件至少有一个发生的情况。

例如,掷一个均匀的六面骰子,出现奇数点数和出现偶数点数是对立事件。

二、概率计算方法在计算概率时,我们有多种方法可供选择,如频率法、古典概型法、几何概型法等。

频率法是通过重复实验的统计结果来估计概率。

例如,我们可以通过掷一枚硬币多次,统计正面朝上的次数来估计正反面朝上的概率。

古典概型法适用于每个基本结果发生的概率相等的情况。

例如,两个均匀的骰子同时掷出,计算两个骰子之和为7的概率。

几何概型法适用于几何空间问题。

例如,在一个圆盘内随机放置一个点,计算该点落在一个扇形区域内的概率。

三、条件概率条件概率是指在某个条件下事件发生的概率。

例如,某次抽奖中,已知甲中奖的概率为1/10,已知乙中奖的概率为1/5,求在乙中奖的条件下,甲中奖的概率。

条件概率的计算方法可以通过乘法定理来实现。

乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生条件下发生的概率。

四、独立事件独立事件是指两个事件的发生与否相互独立,即一个事件的发生不会影响到另一个事件的发生。

例如,掷一颗骰子,第一次掷得6点,第二次掷得1点的概率。

独立事件的概率计算方法可以通过乘法定理来实现。

乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

高三数学知识点归纳概率

高三数学知识点归纳概率

高三数学知识点归纳概率概率是数学中一个非常重要的分支,它可以帮助我们理解事件发生的可能性。

在高三数学中,概率是一个必学的知识点。

本文将对高三数学概率知识点进行归纳总结,旨在帮助高三学生加深对概率的理解和掌握。

一、基础概念概率是指事件发生的可能性,用来表征事件的随机性。

它的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。

常用的求概率的方法有频率法、几何法和古典概型法等。

二、事件的概率计算1.频率法频率法是通过实验的次数和结果的出现次数来计算概率的方法。

当实验的次数足够多时,事件发生的频率将逼近其概率。

2.几何法几何法是通过对样本空间的几何图形进行面积比较来计算概率。

对于连续型随机事件,可以使用几何法计算概率。

3.古典概型法古典概型法适用于样本空间元素个数有限且等可能的随机事件。

通过计算事件的有利结果个数与总结果个数之比来计算概率。

三、概率的性质与公式1.加法公式对于两个互斥事件A和B,其概率之和等于两个事件分别发生的概率之和。

2.乘法公式对于两个独立事件A和B,其同时发生的概率等于两个事件分别发生的概率之积。

3.全概率公式全概率公式是在事件A的基础上,将样本空间划分为若干互斥事件,并计算这些事件的概率之和等于事件A的概率。

4.条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

通过条件概率,我们可以计算两个事件的相关性。

四、排列与组合排列与组合是概率中常见的计数方法。

排列是指从n个不同元素中选取m个元素按照一定顺序排列的方法数,计算公式为P(n,m)=n!/(n-m)!。

组合是指从n个不同元素中选取m个元素并不考虑顺序的方法数,计算公式为C(n,m)=n!/[(n-m)!m!]。

五、常见的概率模型1.简单随机抽样简单随机抽样是指从总体中随机选择样本的抽样方法,其样本容量n较小时,可以近似认为是简单随机抽样,使用古典概型法计算概率。

2.二项分布二项分布是一种离散型概率分布,适用于只有两种可能结果的重复试验。

(完整版)高三数学概率统计知识点归纳

(完整版)高三数学概率统计知识点归纳

概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x n S n -++-+-=Λ.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.一、 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

[数学]高三文科数学概率复习课

[数学]高三文科数学概率复习课

1. “一个骰子掷一次得到6的概率是
1 6
,这说明一个骰子掷6次会出现一
1
次6”,这种说法对吗?请说明你的理由. 解析:这种说法是不对的.虽然每次掷骰子出现6点的概率是 6,但连续
掷6次骰子不一定会1,2,3,4,5,6各出现一次,可能出现某个数的次数多
一些,其他的数少一些,这正好体现了随机事件发生的随机性.但随着试 验次数的增加,出现1,2,3,4,5,6各数的频率大约相等,即都为试验次数 的
1
女孩 P
2
2002
2003 2004 2005 2006 5年总计
0.516
0.518 0.515 0.518 0.516 0.517
0.484
0.482 0.485 0.482 0.484 0.483
2. 某批乒乓球产品质量检查结果如下表所示: 抽取球数n 50 100 200 500 1000 2000
题型二
随机事件的概率问题
例2某地区近5年出生婴儿的调查表如下:
出生数 出生年份 2002 男孩 m
1
共计n=
2
出生频率 男孩 P
1
女孩 m
m m
1
2
女孩 P
2
52807
49473
102280
2003
2004 2005 2006 5年总计
51365
49698 49654 48243 251767
47733
概率复习课
第三章
第1课时
基础梳理
1. 事件 (1)必然事件:
概率
随机事件的概率
在条件S下, 一定会发生的事件,叫做相对于条件S的必然事件. (2) 不可能事件: 在条件S下, 一定不会发生 的事件,叫做相对于条件S的不可能事件. (3) 确定事件: 必然事件与不可能事件 统称为相对于条件S的确定事件. (4) 随机事件 在条件S下, 可能发生也可能不发生 的事件,叫做相对于条件S的随机事件.

高考数学知识点解析全概率公式与逆概率公式

高考数学知识点解析全概率公式与逆概率公式

高考数学知识点解析全概率公式与逆概率公式高考数学知识点解析:全概率公式与逆概率公式在高考数学中,概率是一个重要的考点,而全概率公式与逆概率公式更是其中的难点和重点。

理解并熟练运用这两个公式,对于解决复杂的概率问题具有关键作用。

首先,我们来认识一下什么是全概率公式。

假设事件B 可以在多种不同的情况下发生,而这些情况分别为A1,A2,A3,……,An ,且这些情况两两互斥,并且它们的并集构成了整个样本空间。

同时,已知在每种情况 Ai 下事件 B 发生的概率为P(B|Ai) ,以及每种情况 Ai 本身发生的概率 P(Ai) 。

那么事件 B 发生的概率 P(B) 就可以通过全概率公式来计算:P(B) = P(A1)×P(B|A1) + P(A2)×P(B|A2) +… + P(An)×P(B|An)为了更好地理解全概率公式,我们来看一个具体的例子。

假设某学校有三个年级,高一年级有 500 名学生,高二年级有 600名学生,高三年级有 400 名学生。

在某次考试中,高一年级学生的优秀率为 30%,高二年级学生的优秀率为 40%,高三年级学生的优秀率为 50%。

现在随机抽取一名学生,求这名学生考试优秀的概率。

在这里,事件 B 就是抽取的学生考试优秀,情况 A1、A2、A3 分别是抽取到高一年级、高二年级、高三年级的学生。

P(A1) = 500 /(500 + 600 + 400) = 5 / 15,P(B|A1) = 30% = 03 ;P(A2) = 600/ 1500 = 6 / 15 ,P(B|A2) = 04 ;P(A3) = 400 / 1500 = 4 / 15 ,P(B|A3) = 05 。

根据全概率公式,P(B) =(5 / 15)×03 +(6 / 15)×04 +(4 /15)×05 = 04 。

接下来,我们再看看逆概率公式,也称为贝叶斯公式。

高三数学概率知识点

高三数学概率知识点

高三数学概率知识点数学概率是数学中的一个重要分支,它是研究随机现象的发生规律以及概率大小的学科。

在高三数学中,概率是一个重要的考点,也是学生们常常会遇到的知识点。

今天,我们就来一起回顾和探讨一下高三数学中的概率知识点。

一、概率的基本概念概率是指一个事件在相同条件下的重复实验中发生的频率。

它的取值范围是0到1之间,其中0表示不可能发生,1表示必然发生。

概率可以通过观察频率或者运用数学工具进行计算。

二、事件与样本空间在概率问题中,我们关心的是事件的发生情况。

事件是样本空间的一个子集,样本空间是指这个随机现象可能的所有结果的集合。

例如,掷一次骰子所得的点数是一个事件,而骰子的点数集合就是样本空间。

三、事件的概率计算计算事件的概率是概率论的核心内容,常见的计算方法有以下几种:1. 通过定义计算:根据概率的定义,事件发生的概率等于事件包含的有利结果数目除以样本空间的结果数目。

2. 研究大量试验:通过大量试验的结果,观察事件发生的频率,可以估计事件的概率。

3. 利用计数方法:对于简单事件,可以利用计数方法来计算概率。

例如,求扑克牌中红桃的概率可以通过计算红桃的数量除以总牌数来得到。

四、事件间的关系事件间的关系主要有包含关系、互斥关系和对立关系。

1. 包含关系:一个事件包含另一个事件,表示成A包含于B,当且仅当A发生必然导致B发生。

2. 互斥关系:两个事件不可能同时发生,称为互斥事件。

3. 对立关系:两个事件互不包含,也不互斥,称为对立事件。

五、概率的运算规则概率运算规则包括加法规则和乘法规则。

1. 加法规则:对于互斥事件,其概率等于各事件之概率的和。

2. 乘法规则:对于两个事件相继发生的情况,其概率等于两个事件的概率的乘积。

六、条件概率条件概率是指在已知某一事件发生的前提下,另一事件发生的概率。

条件概率的计算可以使用乘法公式,其中分子为两个事件同时发生的概率,分母为已知事件发生的概率。

七、独立事件两个事件相互独立的意思是,一个事件的发生不会对另一个事件的发生产生影响。

高三数学(概率统计部分)整理

高三数学(概率统计部分)整理

高三数学(概率统计部分)整理 概率统计是历年高考的热点内容之一,考查方式多样,难度中等,主要考查概率与统计的基本概念、公式以及基本技能、方法,以及分析问题、解决问题的能力.通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。

以排列和概率统计知识为工具,考查概率的计算、随机变量的概率分布、均值、方差、抽样方法、样本频率估计、线性回归方程、独立性检验、随机变量的分布列、期望、方差等内容.考点1. 求等可能性事件、互斥事件和相互独立事件的概率(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B );特例:对立事件的概率:P (A )+P (A )=P (A +A )=1.(3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题的一般步骤:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 注意:(1)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.(2)在几何概型中注意区域是线段,平面图形,立体图形.(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(4)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(5)辨别清楚条件概率问题,两种计算方法,合理选用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学概率表知识点归纳概率是数学中一门重要的分支,也是高中数学必学内容之一。

在高三数学中,概率是一个相对简单但又不容忽视的知识点。

在复习过程中,归纳概率表的知识点能够帮助学生更好地理解和记忆概率相关概念和公式。

下面是对高三数学概率表知识点的归纳总结。

1. 基本概念
概率是描述某一事件发生可能性大小的数值。

其中,事件是指某一结果或结果集合。

2. 概率的表示方法
概率的表示可以有三种方式:
- 百分数表示法:用百分比来表示概率,如75%
- 小数表示法:用小数来表示概率,如0.75
- 分数表示法:用分数表示概率,如3/4
3. 必然事件和不可能事件
必然事件是概率为1的事件,不可能事件是概率为0的事件。

4. 事件的互斥和对立
互斥事件是指两个事件不能同时发生,对立事件是指两个事件只能有一个发生。

互斥事件的概率为两个事件概率之和,对立事件的概率为1减去事件的概率。

5. 事件的组合
事件的组合包括并、交、差等运算。

- 并事件的概率为两个事件概率之和减去交事件的概率;
- 交事件的概率为两个事件概率之和减去并事件的概率;
- 差事件的概率为一个事件发生的概率减去另一个事件发生的概率。

6. 条件概率
条件概率是指在另一个事件已经发生的条件下,某一事件发生的概率。

条件概率的计算公式为:P(A|B) = P(AB) / P(B)。

7. 乘法定理
乘法定理是指两个独立事件同时发生的概率等于各自发生的概率的乘积。

乘法定理可以推广到多个事件同时发生的情况。

8. 全概率公式和贝叶斯定理
全概率公式和贝叶斯定理是在条件概率的基础上,分别用于计算事件的概率。

全概率公式用于计算未知事件的概率,贝叶斯定理用于在已知某个事件发生的条件下计算其他事件发生的概率。

9. 排列和组合
排列是指从n个不同元素中取出m个元素进行排序的方法数,排列的计算公式为A(n, m) = n! / (n-m)!;
组合是指从n个不同元素中取出m个元素进行组合的方法数,组合的计算公式为C(n, m) = n! / (m!(n-m)!)。

10. 投掷硬币和骰子的概率
投掷硬币和骰子是概率中的经典问题,可以通过概率表来总结其相关知识点,包括事件的概率、互斥事件的概率、并事件的概率等。

这是对高三数学概率表知识点的归纳总结。

通过整理和总结,学生可以更加系统地学习和掌握概率相关知识,提高解题能力和应用能力。

在备考过程中,将重点概率知识点整理成表格,并进行反复记忆和巩固,有助于强化对知识点的理解和掌握。

祝愿同学们在高考中取得优异的成绩!。

相关文档
最新文档