土壤有机碳密度公式
大兴安岭不同森林群落植被多样性对土壤有机碳密度的影响

大兴安岭不同森林群落植被多样性对土壤有机碳密度的影响刘林馨;王健;杨晓杰;刘传照;王秀文【摘要】区域碳循环是全球变化研究中的核心内容,大兴安岭森林生态系统是对全球温度变化最敏感的植被类型之一,其植被多样性对土壤有机碳密度和碳循环具有重要影响,深入理解该区土壤有机碳密度分布特征对于未来区域生态环境的可持续发展具有重要的科学意义.采用野外调查和室内测试分析相结合的手段,研究了大兴安岭4种主要森林类型(针叶混交林、针阔混交林、阔叶混交林、落叶林)的植被多样性和土壤有机碳密度分布特征,并采用多因素方差分析确定植被类型和土层深度对土壤有机碳密度的交叉影响.结果表明,大兴安岭4种林型Margalef丰富度指数、Shannon-Wiener多样性指数和Mclntosh均匀度指数表现为落叶林>针阔混交林>阔叶混交林>针叶混交林;Simpson优势度指数则表现为针叶混交林>阔叶混交林>针阔混交林>落叶林;Cody指数表现为落叶林>针阔混交林>针阔混交林>针叶混交林;Sorenson指数表现为针叶混交林>阔叶混交林>针阔混交林>落叶林.土壤有机碳含量和有机碳密度均呈一致的变化规律,其中以表层土壤最高,随土壤深度的增加逐渐降低;随剖面深度的增加,土壤有机碳密度逐渐降低,以表层土壤(0~20 cm)有机碳密度最高,针叶混交林、针阔混交林、阔叶混交林、落叶林土壤有机碳密度分别占土壤剖面总有机碳密度的35.24%、31.61%、31.70%、32.39%.相关性分析表明,4种林型Margalef丰富度指数、Shannon-Wiener多样性指数、Cody指数和Sorenson指数与有机碳含量和有机碳密度呈显著或极显著的正相关;从相关系数绝对值来看,多样性指数与有机碳含量的相关系数高于有机碳密度的相关系数.双因素分析表明,林型对有机碳含量和有机碳密度具有显著的影响(P<0.05),林型×深度的交互作用对有机碳含量具有显著的影响(P<0.05);林型和林型×深度的交互作用对Margalef丰富度指数和Shannon-Wiener多样性指数具有显著的影响(P<0.05);林型对Cody指数和Sorenson指数具有显著的影响(P<0.05).综合分析表明,大兴安岭林型和土壤深度对土壤有机碳密度的影响存在一定的交互作用.【期刊名称】《生态环境学报》【年(卷),期】2018(027)009【总页数】7页(P1610-1616)【关键词】大兴安岭;森林群落;植被多样性;有机碳密度【作者】刘林馨;王健;杨晓杰;刘传照;王秀文【作者单位】齐齐哈尔大学生命科学与农林学院,抗性基因工程与寒地植物生物多样性保护黑龙江省重点实验室,黑龙江齐齐哈尔 161006;齐齐哈尔大学生命科学与农林学院,抗性基因工程与寒地植物生物多样性保护黑龙江省重点实验室,黑龙江齐齐哈尔 161006;齐齐哈尔大学生命科学与农林学院,抗性基因工程与寒地植物生物多样性保护黑龙江省重点实验室,黑龙江齐齐哈尔 161006;东北林业大学,黑龙江哈尔滨 150040;齐齐哈尔大学生命科学与农林学院,抗性基因工程与寒地植物生物多样性保护黑龙江省重点实验室,黑龙江齐齐哈尔 161006【正文语种】中文【中图分类】S714;X171.1生物多样性是维持生态系统持续生产力的基础,也是人类赖以生存的条件。
云南省主要森林土壤有机碳密度估测的初步研究

云南省主要森林土壤有机碳密度估测的初步研究秋新选;邓喜庆【摘要】根据全国林业碳汇计量监测体系建设2012年云南省试点项目及云南省第四次森林资源规划设计调查采集的169个森林土壤剖面资料,采用土壤类型法,对云南省9个主要森林土壤类型的有机碳密度进行研究分析.结果表明:不同土壤类型的土壤有机碳密度差异较大,从高到低依次为黄棕壤、棕壤、黄壤、暗棕壤、石灰土、红壤、赤红壤、砖红壤、紫色土,除紫色土与暗棕壤发生倒退变化外,排序与有机质含量一致.从纵向上比较,高海拔地区的林下土壤有机碳密度较高;从橫向上比较,云南森林土壤有机碳密度除暗棕壤外,其余均高于全国水平.【期刊名称】《林业调查规划》【年(卷),期】2018(043)004【总页数】4页(P7-9,15)【关键词】森林土壤;有机碳密度;土壤类型;土壤容重;有机质含量;云南省【作者】秋新选;邓喜庆【作者单位】云南省林业调查规划院,云南昆明 650051;云南省林业调查规划院,云南昆明 650051【正文语种】中文【中图分类】S714.5;S718.557森林土壤碳库是陆地生态系统中最大的碳库。
土壤碳库的变化对大气中CO2的影响较大,土地利用会引起土壤CO2释放,是影响全球气候变化的重要因素之一。
调查研究土壤碳储量对于全面评估森林生态系统的碳储量和碳汇功能,科学认识森林的功能价值具有重要意义。
土壤有机碳密度则是估算土壤碳库的重要参数,因此,开展森林土壤有机碳密度研究是估算土壤碳库储量的基础研究工作,作用十分重大。
云南省森林资源十分丰富,森林面积、蓄积大,森林覆盖率达59.30%,具有树木种类复杂、森林类型多样的特点。
森林土壤类型多样,涉及6个土纲、13个亚纲,有17个土类和35个亚类。
由于云南地形复杂多变,森林植被丰富多样,要对云南省森林土壤碳库进行估算,就要对森林土壤做大量的调查研究。
本文选择云南省分布较多的9个森林土壤类型,2012—2016年,通过对169个土壤剖面的调查,分析整理了砖红壤、赤红壤、红壤、黄壤、黄棕壤、棕壤、暗棕壤、紫色土和石灰土的土壤有机碳密度,为云南省森林土壤碳储量的估算提供基础研究成果。
4种典型地带性森林生态系统碳含量与碳密度比较

4种典型地带性森林生态系统碳含量与碳密度比较王斌;杨校生【摘要】以中国生态系统研究网络长期定位观测的热带、亚热带和温带地区4种地带性顶级森林群落类型,即西双版纳热带季节雨林、鼎湖山亚热带常绿阔叶林、哀牢山中山湿性常绿阔叶林和长白山阔叶红松林为基础,分析比较4种森林类型的碳含量和碳密度及其空间分布格局.结果表明,哀牢山和长白山植被碳含量略高于西双版纳和鼎湖山,植被碳含量从大到小依次为乔木层、灌木层和草本层;西双版纳总碳密度为250.78 t/hm2,鼎湖山为248.72 t/hm2,哀牢山为530.13 t/hm2,长白山为254.67 t/hm2,其中西双版纳、鼎湖山和长白山植被层碳密度高于土壤层碳密度,而哀牢山土壤层碳密度要高于植被层碳密度.【期刊名称】《湖南农业大学学报(自然科学版)》【年(卷),期】2010(036)004【总页数】7页(P464-469,473)【关键词】地带性森林;碳含量;碳密度【作者】王斌;杨校生【作者单位】中国林业科学研究院,亚热带林业研究所,浙江,富阳,311400;中国林业科学研究院,亚热带林业研究所,浙江,富阳,311400【正文语种】中文【中图分类】Q948.1随着全球气候问题日益严峻,陆地生态系统在全球碳循环动力学中的作用受到越来越多的重视.森林维持的植被碳库约占全球植被碳库的86%[1],维持的土壤碳库约占全球土壤碳库的73%[2].同时,森林生态系统具有较高的生产力,每年固定的碳约占整个陆地生态系统的2/3[3-4],因此,森林状况很大程度上决定了陆地生物圈是碳源还是碳汇[5].近年来,很多学者采用不同方法对森林生态系统碳含量与碳密度及其空间差异进行研究,并取得了一系列研究成果[6-13].已有研究表明,中国森林植被碳库主要集中在东北和西南地区,平均碳密度以西南、东北以及西北地区较高[14-15].中国土壤碳密度大致是东部地区随纬度的增加而递增,北部地区随经度减小而递减,西部地区随纬度减小而增加,最高土壤碳密度出现在寒冷的东北地区和青藏高原东南缘[16-17].由于采用的方法不同,加上森林生态系统碳密度和碳储量的空间异质性以及随时间变化的复杂性,对中国森林植被和土壤碳库的估算还存在较大的差异[15-19].相对于区域尺度的研究而言,目前还很少利用样地资料研究不同气候带森林生态系统碳含量与碳密度及其空间差异,因此,采用实测数据及能够定量确定陆地生态系统碳循环的通用方法,研究不同森林类型的碳含量和碳密度,对于提高中国森林生态系统碳循环研究水平具有重要意义.近几年,中国生态系统研究网络(CERN)在单站水平上取得了很大的进展,但单站的长期定位监测、试验和研究具有明显的局限性,而多站按照统一规范开展的联网监测、试验和研究,可以揭示出更具普遍性的规律,解决地学和生物学等领域中更具复杂性的问题[20].笔者利用CERN长期定位观测的热带、亚热带和温带地区4种地带性顶级森林群落类型,即西双版纳热带季节雨林、鼎湖山亚热带常绿阔叶林、哀牢山中山湿性常绿阔叶林和长白山阔叶红松林资料,分析比较4种森林类型的碳含量和碳密度分配特征及其差异,以期进一步了解中国不同气候区森林生态系统的碳循环及其对气候变化的响应.1 样地自然条件概况4个样地均是CERN长期定位观测样地,分别属于西双版纳热带雨林生态系统研究站、鼎湖山森林生态系统研究站、哀牢山森林生态系统研究站和长白山森林生态系统研究站,样地保护完好,无放牧及森林砍伐,人为干扰活动较少.热带季节雨林样地位于西双版纳勐仑自然保护区北片的核心地带,是热带北缘的顶级群落类型,以绒毛番龙眼(Pometia tomentosa)、千果榄仁(Terminalia myriocarpa Huerch)为标志种;灌木层主要由乔木的幼树组成,较常见的灌木种类有染木(Saprosma ternatum)、包疮叶(Measa indica)、锈毛杜茎山(Measa permollis)等;草本层主要由乔木的幼苗和蕨类植物组成,较常见的草本种类有楼梯草(Elatostema parvum)、山壳骨(Pseudoranthemum malaccense)、莠竹(Microstegium ciliatum)等;凋落物厚度0~3 cm.亚热带季风常绿阔叶林样地位于鼎湖山自然保护区内,植被保护良好,属群落演替顶级阶段,乔木层优势种为锥栗(Castanopsis chinensis)、荷木(Schima superba)、云南银柴(Aporosa yunnensis)等;林下灌木以光叶山黄皮(Randia canthioides)、柏拉木(Blastus cochinchinensis)、黄果厚壳桂(Cryptocarya concinna)为主;草本以沙皮蕨(Hemigramma decurrins)为主,层间植物比较丰富;凋落物厚度0~3 cm.中山湿性常绿阔叶林样地位于哀牢山徐家坝中心地带,属亚热带山地气候,干雨季分明,群落演替稳定,乔木树种主要由壳斗科(Fagaceae)、茶科(Theaceae)、樟科(Lauraceae)及木兰科(Magnoliaceae)组成;灌木层主要以禾本科的箭竹(Fargesia spathacea)为优势种并组成显著层片;草本以滇西瘤足蕨(Plagiogyria communis)、钝叶楼梯草(Elatostema obtusum)为主;凋落物厚度0~5 cm.阔叶红松林样地位于吉林省安图县二道白河镇,为原始森林干扰后自然演替的顶级群落,乔木层优势种为红松(Pinus koraiensis)、紫椴(Tilia amurensis)、假色槭(Acer pseudosieboldianum)等;林下灌木以东北山梅花(Philadelphus schrenkii)和光萼溲疏(Deutzia glabrata)为主;草本以毛缘苔草(Carex pilosa)、丝引苔草(Carex remotiuscula)为主;枯枝落叶及腐殖质层厚度0~11 cm.各样地的具体地理环境条件见表1.表 1 样地的基本情况Table 1 Description of study plots样地森林类型平均林龄/年面积/ m2海拔高度/ m 地理位置坡度/(°)年均气温/℃>10 ℃年积温/℃年均降水量/mm年均相对湿度/%西双版纳季节雨林150****073021°57′39.4″N,101°12′00.4″E 22 21.8 4 387.9 1 506.3 86鼎湖山常绿阔叶400 2 500 300 23°10′9.9″N,112°32′22.64″E 30 21.0 7 495.7 1 996.0 80哀牢山中山湿性130 10 000 2 488 24 °32′53″N,101°01′41″E 15 11.0 3 420.0 1 931.1 86长白山阔叶红松140 1 600 784 42°24′11″N,128°05′44″E 2 3.50 2 335.0 750.0 712 研究方法2.1 生物量估算及碳含量测定研究数据来自CERN所属西双版纳站、鼎湖山站、哀牢山站和长白山站提交的2004—2005年的定位观测数据,所有数据调查均按照CERN长期定位观测技术标准执行.由于4个台站已经按照要求统一建立了对应样地各树种的生物量估算模型(约60个树种、240个方程),本研究借用这些已建立的模型计算4种森林类型的生物量.哀牢山的凋落物现存量每隔4月调查1次,西双版纳每隔3月调查1次,鼎湖山每年12月调查1次,长白山每年8月调查1次.植被层碳含量测定是在永久样地的外围按照每层的优势种,每种选择2~3株,乔木分树干、枝、叶、根;灌木分茎、叶、根;草本分地上、地下部分层采样.在凋落物现存量调查的样地内,凋落枝、叶各取约 200 g样品.将土壤层划分为 5个层次(0~10 cm、>10~20 cm、>20~40 cm、>40~60 cm、>60~100 cm)分层采样.对土壤样品按粒级分类,计算粒径>2 mm的石砾含量.所有样品烘干至恒重,测定含水量,磨碎后,用K2Cr2O7容量法测定碳含量;同时按10 cm一个等级测定0~100 cm各土层容重[21-22].2.2 土壤有机碳密度计算土壤有机碳密度是由土壤有机碳含量、土壤容重以及土体中粒径>2 mm石砾的体积分数共同确定的,其计算公式参见文献[23].2.3 碳密度估算生态系统总的碳密度由3部分组成,即植被层、凋落物层和土壤层,其中植被层主要由乔木、灌木和草本组成,凋落物层主要由枯枝落叶层和半分解层组成,土壤层则主要由腐殖质层和矿质土层组成.根据测定的不同层次的碳含量和生物量(或土壤容重),估算森林生态系统总的碳密度.3 结果与分析3.1 生物量组成不同森林类型各层生物量结果见表2.表 2 不同森林类型各层生物量Table 2 Biomass composition in different layers of four forest type t/hm2样地干枝叶根枝叶根地上部地下部枯枝枯叶乔木层生物量灌木层生物量草本层生物量凋落物层生物量西双版纳 222.76 35.28 4.20 63.10 1.18 0.21 0.40 0.60 0.49 0.51 1.62鼎湖山 164.99 87.99 6.53 57.54 0.29 0.17 0.21 0.66 0.37 0.84 1.84哀牢山 310.66 62.34 3.18 89.94 3.19 0.50 0.96 0.48 0.36 4.56 3.25长白山 164.94 29.22 4.11 58.80 3.50 0.49 1.79 0.10 0.15 4.55 10.10从表2可以看出,4种森林类型植被层生物量从大到小依次为哀牢山、西双版纳、鼎湖山和长白山,热带亚热带森林植被层生物量高于温带森林,但不同层次之间有所区别,乔木层和草本层的变化规律基本一致,灌木层则相反.4种森林类型凋落物现存量从大到小依次为长白山、哀牢山、鼎湖山和西双版纳,温带森林凋落枝叶现存量明显高于热带亚热带森林,与已有研究结论[24]基本一致.全球热带雨林平均生物量约为450 t/hm2,热带季雨林和常绿林约为 350 t/hm2,温带落叶针阔混交林约为280 t/hm2[25].本研究中,西双版纳、鼎湖山和长白山的生物量稍低于全球平均水平,而哀牢山中山湿性常绿阔叶林生物量则高于全球平均水平.3.2 植被层碳含量和碳密度不同森林类型植被层碳含量和碳密度计算结果列于表3和表4.从表3可以看出,4种森林类型植被层碳含量在不同器官和不同层次中的分配不同,西双版纳和鼎湖山乔木层树干的碳含量最高,灌木层根的碳含量最高,而哀牢山和长白山乔木层叶的碳含量最高,灌木层茎的碳含量最高;除鼎湖山草本层叶的碳含量大于根的外,其他3种森林类型均是根的碳含量大于叶的.碳含量在不同层次植被的分布有较明显的规律,从大到小依次为乔木层、灌木层和草本层.目前通过植被碳含量实测值来估算碳密度的例子不多,学者们通常采用碳转换系数(0.45或0.50)来估算[5-6].本研究结果表明,由于树种组成以及种群结构的不同,不同气候区植被的碳转换系数略有不同,4种森林类型中哀牢山和长白山的碳转换系数略高于西双版纳和鼎湖山.表 3 不同森林类型植被层碳含量Table 3 Carbon content of plant in different forest types g/kg长白山站乔木层采样时未区分干和枝;全林加权平均碳含量=总碳密度/总生物量.样地乔木层碳含量灌木层碳含量草本层碳含量全林加权平均干枝叶根茎叶根叶根西双版纳 472.50 467.10 462.82 470.48 463.61 458.12 466.51 424.15 449.69 471.24鼎湖山 478.07 463.15 434.29 456.01 449.49 448.40 452.83 428.12 410.14 468.86哀牢山 508.61 508.67 529.01 503.63 504.21 469.19 501.07 471.67 471.83 507.62长白山 490.85 529.26487.78 493.36 433.81 464.53 407.11 428.38 490.42表 4 不同森林类型植被层碳密度Table 4 Carbon density of plant in different forest types t/hm2样地干枝叶根茎叶根叶根全林合计乔木层碳密度灌木层碳密度草本层碳密度西双版纳 105.25 16.48 1.94 29.69 0.55 0.10 0.19 0.25 0.22 154.67鼎湖山 78.88 40.75 2.84 26.24 0.13 0.08 0.10 0.28 0.15 149.45哀牢山 158.00 31.71 1.68 45.30 1.61 0.23 0.48 0.22 0.17 239.40长白山 95.31 2.17 28.68 1.73 0.21 0.83 0.04 0.06 129.03从表4可以看出,4种森林类型中,哀牢山碳密度最高,其次是西双版纳和鼎湖山,长白山碳密度最低.碳密度从大到小依次为乔木层、灌木层和草本层.赵敏[19]利用中国第4次(1989—1993年)森林资源调查资料,估算中国森林植被的平均碳密度为41.321 t/hm2;周玉荣[5]应用相同的森林资源调查资料,估算植被的平均碳密度为57.07 t/hm2;本研究4种森林类型的平均碳密度为168.137 t/hm2,从中可以看出,随着植被的保护和演替发育,中国森林将发挥巨大的碳汇作用.王绍强等[26]通过对中国陆地自然植被碳含量空间分布特征的研究,认为中国陆地总体上表现出东部地区植被碳密度和碳含量随纬度增加而降低的趋势;李海涛等[27]对赣中亚热带森林植被碳密度的空间变化规律研究结果也表明,植被的碳密度与纬度存在显著的相关关系,随着纬度增加植被碳密度递减.从本研究结果来看,除哀牢山乔木层碳密度较高、鼎湖山灌木层碳密度较低之外,4种森林类型不同层次碳密度地带性变化的总趋势是乔木层和草本层的碳密度随纬度增加而降低,灌木层的碳密度随纬度增加而增加.3.3 凋落物层碳含量和碳密度不同森林类型凋落物层碳含量和碳密度计算结果如表5所示.表 5 不同森林类型凋落物层的碳含量和碳密度Table 5 Carbon content and carbon density of litterfall in different forest types碳含量/(g·kg-1)碳密度/(t·hm-2)样地凋落枝凋落叶加权平均凋落枝凋落叶合计西双版纳458.33 467.17 465.05 0.23 0.76 0.99鼎湖山 471.44 528.00 507.46 0.39 0.97 1.36哀牢山 526.44 546.25 533.93 2.40 1.77 4.17长白山 471.94 512.16 499.66 2.15 5.17 7.32从表5可以看出,4种森林类型凋落叶的碳含量均高于凋落枝,哀牢山凋落枝和凋落叶的碳含量最高,西双版纳凋落枝和凋落叶的碳含量最低.和植被乔木层、灌木层枝叶碳含量的平均值相比,叶凋落物的碳含量增加,而枝在凋落后的变化情况不同,鼎湖山和哀牢山的碳含量增加,西双版纳和长白山的碳含量降低.从4种森林类型分布的纬度梯度来看,凋落物层碳密度随纬度增加而增加的趋势明显,温带针阔混交林凋落物碳密度明显高于热带亚热带阔叶林.吕晓涛[28]采用森林年凋落量计算西双版纳热带季节雨林凋落物层的碳密度为4.835 t/hm2,远高于本研究结论.考虑到热带季节雨林凋落物分解迅速,笔者认为采用凋落物现存量表示凋落物层的碳密度更合理.3.4 土壤层的碳含量和碳密度不同森林类型土壤层的碳含量和碳密度计算结果列于表6和表7.表 6 不同森林类型土壤层的碳含量Table 6 Carbon content of soil in different forest types样地 0~10 cm >10~20 cm >20~30 cm >30~40 cm >40~50 cm >50~60 cm>60~70 cm >70~80 cm >80~90 cm >90~100 cm 碳含量/ (g·kg-1)西双版纳 17.34 10.31 7.17 7.17 4.78 4.78 4.43 4.43 4.43 4.43鼎湖山 31.40 11.89 10.21 10.21 5.18 5.18 5.15 5.15哀牢山 122.05 82.34 58.94 58.94 40.87 40.87 29.62 29.62 29.62 29.62长白山 104.70 17.70 4.95 3.87 3.87 3.43 3.43 3.60 3.60 3.60表 7 不同森林类型土壤层的碳密度Table 7 Carbon density of soil in different forest types t/hm2样地 0~10 cm >10~20 cm >20~30 cm >30~40 cm>40~50 cm>50~60 cm>60~70 cm>70~80 cm>80~90 cm >90~100 cm 合计碳密度西双版纳 21.10 13.62 10.38 10.63 6.74 7.07 6.56 6.28 6.28 6.45 95.11鼎湖山 28.79 14.86 12.69 12.69 7.94 7.94 6.50 6.50 97.91哀牢山51.60 40.90 32.48 31.23 25.15 26.92 19.61 19.22 19.69 19.76 286.56长白山47.81 22.66 7.97 6.48 6.17 5.42 5.33 5.57 5.49 5.42 118.324种森林类型中,哀牢山中山湿性常绿阔叶林和长白山阔叶红松林具有较明显的腐殖质层,0~10 cm土层内的碳含量主要反映的是土壤腐殖质层的碳含量情况.从表6可以看出,4种森林类型0~100 cm(鼎湖山80 cm)土层的平均碳含量从大到小依次为哀牢山、鼎湖山、长白山和西双版纳.随着采样深度增加,土壤层碳含量逐渐降低,其中长白山腐殖质层(0~10 cm)到矿质土层(>10~20 cm)的碳含量降低最明显,相差6倍左右.从20 cm开始,不同采样深度土壤层的碳含量从大到小依次是哀牢山、鼎湖山、西双版纳和长白山,并且长白山矿质土层的碳含量要明显小于其他3种森林类型.中国土壤有机碳库的分布格局存在由热带雨林到北方针叶林之间土壤碳密度随纬度升高而增加的趋势[16].从表7可以看出,除哀牢山外,本研究支持这一结论.形成这种格局主要是由于热带亚热带地区高温多湿,使得土壤微生物活动加剧,土壤中有机质易于分解,而温带阔叶红松林全年平均气温较低,凋落物C/N比值高,不易分解,土壤表层的腐殖质积累过程明显,从而使得土壤有机碳积累多.全球土壤平均碳密度约为 104.00~107.70 t/hm2[29-30].王绍强等[16]应用中国第1次土壤普查资料估算中国陆地生态系统土壤有机碳平均密度为108.30t/hm2.从表7可以看出,西双版纳和鼎湖山土壤碳密度低于全国平均值,而哀牢山和长白山高于全国平均值.4种森林类型总的土壤碳密度平均值为149.473 t/hm2,是全球以及中国土壤碳密度平均值的1.4倍左右.从森林演替角度来看,中国森林土壤具有一定碳汇能力.3.5 总碳密度比较不同森林类型总碳密度计算结果如表 8所示.从大到小依次为哀牢山、长白山、西双版纳和鼎湖山,哀牢山中山湿性常绿阔叶林的碳密度最高,其他3种森林类型总的碳密度相差不大.西双版纳、鼎湖山和长白山植被层的碳密度高于土壤层的碳密度,而哀牢山土壤层的碳密度要高于植被层的碳密度.表 8 4种森林类型不同层次的碳密度Table 8 Carbon density of different layers in four forest types t/hm2碳密度样地植被层凋落物层土壤层合计西双版纳 154.67 1.00 95.11 250.78鼎湖山 149.45 1.36 97.91 248.72哀牢山239.40 4.17 286.56 530.13长白山 129.03 7.32 118.32 254.674 小结不同森林生态系统碳含量和碳密度通常存在较大差异.受研究条件限制,已有关于森林生态系统碳密度地带性分布规律研究中[16,26-27],很少从样地角度研究这种差异,这主要是因为在某一区域范围内,森林生态系统的碳密度受林分和立地因子的影响,各森林类型的主要林分因子(如林分年龄)和立地因子(如海拔、坡度)存在较大差异,使结果不存在可比性.本研究所选的4种森林类型,均属于地带性顶级森林群落类型,碳密度可认为是相同气候条件下森林生态系统可蓄积的最大碳量,因此,4种森林类型碳含量和碳密度的差异,对于研究森林生态系统碳密度的地带性分布规律具有一定指导意义.同时,通过将这些森林生态系统的观测数据与当地干扰程度不同的森林生态系统进行比较,可用于指导区域森林的保护、经营和管理,使其蓄积更多的碳,这对减缓全球大气CO2浓度升高也有着重要意义.通过与已有研究结论的比较可以看出,无论是从植被层的碳密度还是从土壤层的碳密度来看,中国森林植被都具有巨大的碳汇潜力,因此,合理经营与管理现有森林植被意义重大.衷心感谢中国生态网络研究中心提供数据支持.英文编辑:胡东平【相关文献】[1] Woodwell G M,Whittaker R H,Reiners W A,et al. The biota and the world carbon budget[J].Science,1978,199:141-146. [2] Post W M,Emanuel W R,Zinke P J,et al.Soil carbon pools and world life zones[J].Nature,1982,298:156-159.[3] Kramer P J.Carbon dioxide concentration,photosynthesis,and dry matter production[J]. Bio Science,1981,31:29-33.[4] Waring R H,Schlesinger W H.Forest Ecosystems:Concepts andManagement[M].London:Academic Press,1985.[5] 周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.[6] Fang J Y,Chen A P,Peng C H,et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2320-2323.[7] Kurbanov E A,Post W M.Changes in area and carbon in forests of the middle Zavolgie:A regional case study of Russian forests [J].Climatic Change,2002,55:157-173.[8] Zhao M,Zhou G S.Carbon storage of forest vegetation in China and its relationship with climatic factors [J].Climatic Change,2006,74:175-189.[9] Pibumrung P,Gajaseni1 N,Popan A.Profiles of carbon stocks in forest,reforestation and agricultural land,Northern Thailand[J].Journal of Forestry Research,2008,19(1):11-18.[10] Potter C,Gross P,Klooster S,et al.Storage of carbon in U.S.forests predicted from satellite data,ecosystem modeling,and inventory summaries[J].Climatic Change, 2008,90:269-282.[11] Piao S L,Fang J Y,Ciais P,et al.The carbon balance of terrestrial ecosystems in China[J].Nature,2009,458:1009-1013.[12] 侯琳,雷瑞德,王得祥,等.秦岭火地塘林区油松群落乔木层的碳密度[J].东北林业大学学报,2009,37(1):23-24.[13] 王立海,孙墨珑.小兴安岭主要树种热值与碳含量[J].生态学报,2009,29(2):953-959.[14] 王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.[15] 徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007,26(6):1-9.[16] 王绍强,周成虎,李克让,等.中国土壤有机碳库及其空间分布特征分析[J].地理学报,2000,55(5):533-544.[17] 李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学:D辑,2003,33(1):72-80.[18] 康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230-234.[19] 赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,21(4):50-54.[20] 黄铁青,牛栋.中国生态系统研究网络(CERN):概况、成就和展望[J].地球科学进展,2005,20(8):895-902.[21] 中国生态系统研究网络科学委员会.陆地生态系统生物观测规范[M].北京:中国环境科学出版社,2007.[22] 中国生态系统研究网络科学委员会.陆地生态系统土壤观测规范[M].北京:中国环境科学出版社,2007.[23] 于东升,史学正,孙维侠,等.基于1∶100 万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16 (12):2279-2283.[24] 刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16-22.[25] Whittaker R H,Likens G E.The Biosphere and Man[C]//Lieth H,Whittaker R H.Primary Productivity of the Biosphere.New York:Springer-Verlag,1975:305-328.[26] 王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-244.[27] 李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.[28] 吕晓涛,唐建维,于贵瑞,等.西双版纳热带季节雨林的C贮量及其分配格局[J].山地学报,2006,24(3):277-283.[29] Post W M,Emanuel W R,Zinke P J,et al.Soil carbon pools and lifezones[J].Nature,1982,298:156-159.[30] Foley J A.An equilibrium model of the terrestrial carbon budget[J].Tellus,1995,47(B):310-319.。
区域土壤有机碳密度及碳储量计算方法探讨

土壤类型法就是选择每种土壤类型的一些样点进 行有机碳的测定 ,由于同种土壤类型所处的气候等自 然条件以及土壤发生过程比较一致 ,可以由点及面进 行外推 ,进行区域或全球范围碳储量的计算 。与此法 类似的还有植被类型法或者生态类型法等 [ 7, 8, 9, 13, 14 ] 。
(3)
R2 = 0. 5408
据此 ,对实测数据和拟合数据进行配对样品 t检
验 ,结果表明二者在 95%的置信水平下 ,无显著性差
异 ,可以认为拟合数据对实测数据的模拟效果非常好 。
根据积分中值定理 ,得到
∫ ∫ 100
100
( - 116627 ln ( x) + 101137) dx = Cdx (4)
1 数据来源与研究方法
1. 1 研究区概况 本文的研究区选在河北省曲周县四疃乡 ,位于邯
郸市东北部 ,总面积 84. 2km2 ,属华北平原典型的半湿 润大陆性季风气候 ,土壤类型为潮土 ,土壤均发育在近 代河流冲积母质之上 ,土壤剖面的不同质地的层次分 异明显 。 1. 2 数据来源与研究方法
于 1999年 5 月进行样品采集 ,挖取土壤剖面 30 个 ,按发生层进行土层划分 ,共计采集到 119个土壤样 品 。土壤有机碳测定方法为重铬酸钾 —外热源法 。
本研究将 1m 土壤剖面等间距的划分为 5 层 ,每 层深度为 20cm。对于土壤剖面深度超过 1m 的部分 可以直接不予计算 ,不足 1m 的部分则需要进行拟合 。 对原有的土壤剖面层次的土壤有机碳含量按照深度进 行加权处理 。
Ca - b
=
∑C
东江源区森林系统碳汇计量

东江源区森林系统碳汇计量冷清波;周早弘【摘要】在阐述森林碳汇概念及碳汇计量方法的基础上,运用材积源生物量法(Volume-biomass method)对东江源区森林系统碳储量进行估算.结果表明:总碳储量为45.11×106 tC,其中森林植被层碳储量为9.17×106 tC、森林植被枯落物层碳储量为0.94×106 tC、森林土壤层碳储量为35.0×106 tC.运用蓄积、面积估算结果是:总碳储量为40.89×106 tC,其中林分生物量碳储量4.13×106 tC,竹林生物量碳储量0.21×106 tC,经济林碳储量0.61×106 tC,枯落物层和土壤层碳储量不变.最后得出东江源区森林系统总碳储量值43×106 tC,东江源区森林系统碳交易潜在价值约合28亿美元.以此,提出了建立东江源区绿色基金会的构想.【期刊名称】《西北林学院学报》【年(卷),期】2013(028)005【总页数】5页(P254-258)【关键词】森林碳汇;碳汇计量方法;东江源区【作者】冷清波;周早弘【作者单位】江西财经大学旅游与城市管理学院,江西南昌330032;江西财经大学旅游与城市管理学院,江西南昌330032【正文语种】中文【中图分类】S718.557东江发源于江西省寻乌县,流域总面积35 340 km2。
东江源区在江西境内主要是指寻乌、安远、定南3县,江西省境内流域面积3 502km2[1]。
东江水源区是东莞、惠州、深圳和香港的主要水源地,江西省境内年径流量约32亿m3,源区每年输入广东省境内约29.21亿m3。
东江承担着深圳、东莞、广州、惠州和香港的供水重任,加强东江源区生态保护和建设,保持其优良的水质和充足的水量,关系到沿江居民,以及香港特别行政区居民饮用水的安全。
为保护好东江源区水源,源区政府和居民作出了巨大牺牲:据史晓燕[2]等(2012)研究,东江源区寻乌县、安远县和定南县2006—2009年生态建设和环境保护的直接投入成本分别为20 168.60、21 607.75、125 234.54万元;加上限制发展的机会成本,3县供给成本总投入分别为247 683.6万元、334 876.36万元和231 563.7万元,合计供给总成本为814 123.65万元。
土壤指标测定

1、土壤含水率---烘干法土壤含水率是植物生长发育必不可少的因素,是干旱矿区生态修复的重要影响因子。
提高土壤的含水率可以很好的改善干旱矿区植物的生长状况,提高植株的存活率。
首先,将已经编号的坩埚放入105℃的烘箱中烘干至恒重,记录质量为m0,称取待测土样2~5g,精确到0.001g,放人坩埚中,并记录待测土样的质量为m1。
然后将坩埚放入烘箱中,在105℃烘干至恒重,记录烘干后铝盒和土样的质量为m2,按下面的计算公式计算土壤含水率。
土壤含水率(%)=m0+m1−m2*100%m2−mo2、土壤有机质----水合热重铬酸钾氧化比色法土壤有机质是指存在于土壤中的所含碳的有机物质,是土壤中N、P、K 等营养元素的重要来源。
土壤有机质具有胶体结构,能够吸附土壤中的阳离子,增强土壤的保肥力和缓冲性能。
土壤有机质中含有的胡敏酸能够刺激植物的生长,在植物根系的作用下使土壤变得疏松,改善土壤的结构和物理性质。
此外,土壤有机质还含有土壤微生物生长和繁殖所需的碳源和氮源。
所以,土壤有机质是反映土壤肥力高低的一个重要的指标①准确称取1g 过0.149mm 孔径土壤筛的风干土壤样品,精确到0.001g。
②将称取的土壤样品放入200ml 的三角瓶中,用移液枪准确吸取3.0ml 去离子水加入三角瓶中,轻轻摇动三角瓶使土壤样品充分摇散。
用量筒准确量取100ml 事先配置好的重铬酸钾溶液,浓度为0.8mol/L,倒入三角瓶中。
然后用移液枪准确吸取10.0ml 浓硫酸溶液加入三角瓶中并不断摇动,将三角瓶置于桌面静置20min 后,用移液枪准确吸取并加入10.0ml 去离子水,充分摇匀并静置过夜;③吸取15.0ml 静置过夜后的土壤上清液,加入到50ml 具塞玻璃比色管中,加去离子水定容到刻度线处,盖紧玻璃塞,并上下颠倒摇匀;④使用10mm 玻璃比色皿,并以去离子水作参比,在可见分光光度计上,于590nm 波长处测定吸光度;⑤根据测定的吸光度从标准曲线上查出有机碳含量,然后根据计算公式,计算出土样中有机质含量;⑥绘制标准曲线。
广西红树林湿地土壤有机碳储量估算

广西红树林湿地土壤有机碳储量估算莫莉萍;周慧杰;刘云东;李其艳;梁秀华【摘要】以典型区域茅尾海红树林自然保护区为样区,采样估算广西红树林湿地沉积层有机碳储量.结果表明,红树林土壤有机碳含量平均值从大到小排列顺序为混交林>桐花>光滩,0~50 cm土层分别为2.797%、1.218%和0.870%;红树林湿地土壤有机碳储量由大到小依次为混交林>桐花>光滩,混交林、桐花和光滩0 ~ 50 cm土层土壤有机碳储量分别为142.79、47.25和47.21 t/hm2.与周边红树林地区相比,钦州湾混交林的各层土壤碳储量与深圳湾红树林和海口的白骨壤接近,但远低于深圳福田的秋茄林和海口的桐花,而钦州湾桐花、光滩的各层土壤碳储量与深圳湾光滩较接近.【期刊名称】《安徽农业科学》【年(卷),期】2015(000)015【总页数】4页(P81-84)【关键词】土壤有机碳储量;土壤有机碳;红树林湿地;广西【作者】莫莉萍;周慧杰;刘云东;李其艳;梁秀华【作者单位】广西红树林保护重点实验室,广西红树林研究中心,广西北海536000;广西师范学院环境与生命科学学院,广西南宁530001;北部湾环境演变与资源利用教育部重点实验室,广西南宁530001;中山大学地球科学与地质工程学院,广东广州510275;北部湾环境演变与资源利用教育部重点实验室,广西南宁530001;广西师范学院地理科学与规划学院,广西南宁530001;广西师范学院地理科学与规划学院,广西南宁530001;广西师范学院环境与生命科学学院,广西南宁530001;广西师范学院环境与生命科学学院,广西南宁530001【正文语种】中文【中图分类】S714.5随着全球气候变化与环境问题的日益突出,碳循环问题普遍受到科学界和国际社会的关注,日益成为全球变化与地球科学研究领域的学术前沿与热点问题[1-2]。
如何利用陆地生态系统进行固碳活动也成为全球所关心的话题。
研究表明,湿地生态系统是一个巨大的碳汇。
云南土壤有机碳储量估算及空间分布

第34卷第6期2014年12月水土保持通报Bulletin of Soil and Water ConservationVol.34,No.6Dec.,2014 收稿日期:2013-10-31 修回日期:2013-12-10 资助项目:国家自然科学基金项目“富铝土—有机污染物相互作用中自由基的产生、稳定及迁移”(41273138);国家自然科学基金优秀青年项目(41222025) 作者简介:包承宇(1988—),男(汉族),云南省昆明市人,硕士研究生,研究方向为土壤资源和地理信息系统。
E-mail:vipbcy1226@qq.com。
通信作者:潘波(1976—),男(汉族),湖北省枝江市人,博士,教授,主要从事土壤环境中污染物行为研究。
E-mail:panbocai@gmail.com。
云南省土壤有机碳储量估算及空间分布包承宇,曾和平,张梦妍,李浩,潘波(昆明理工大学环境科学与工程学院,云南昆明650500)摘 要:根据云南省第二次土壤普查资料,采用土壤类型法估算了云南省主要土壤类型的有机碳(SOC)密度和储量,并对云南省土壤有机碳密度的空间分布差异和影响土壤有机碳储量的主要因子进行了分析。
结果表明,云南省0—20cm土层平均SOC密度为59.77t/hm2,SOC储量为2.30×109 t;0—100cm土层平均SOC密度为159.95t/hm2,SOC储量为6.15×109 t,占全国储量的7.28%,占全球陆地生态系统SOC储量的0.41%;其中SOC储量占前4位的土壤类型为红壤、黄棕壤、赤红壤、棕壤,不同深度下4者之和约占云南省总储量的60%。
在土壤有机碳密度空间分布上,SOC密度分布最高的区域为云南省西北部和东北部地区,其次是西部的横断山脉和东部的云南高原地区,而以紫色土为主的中北部地区SOC密度则最低。
由于降雨量、温度、海拔和土地利用类型的共同影响,导致了区域内的SOC密度分布不均,其中降雨量、温度和海拔等自然因素是影响SOC密度分布的主要因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤有机碳密度公式
土壤有机碳密度是指单位体积土壤中所含有机碳的量,是衡量土壤肥力和碳循环的重要指标。
有机碳密度的计算公式为土壤中有机碳的质量除以土壤的体积。
土壤有机碳密度的研究对于了解土壤的肥力、碳储存和环境保护具有重要意义。
有机碳是土壤中的一种重要有机物质,它来源于植物残体的分解和微生物的代谢。
土壤中的有机碳可以提供养分供给植物生长,还可以增加土壤的保水保肥能力。
有机碳密度的测定可以通过采集土壤样品,将样品进行干燥和粉碎处理后,使用碳含量分析仪器测定土壤中的有机碳含量。
根据土壤样品的重量和体积,可以计算出土壤的有机碳密度。
土壤有机碳密度的大小受多种因素的影响,如土壤类型、植被类型、气候条件等。
一般来说,草地土壤的有机碳密度要高于农田土壤,而湿地土壤的有机碳密度则更高。
气候条件也会对土壤有机碳密度产生影响,温暖湿润的气候有利于有机碳的积累。
土壤有机碳密度的研究对于土壤肥力的评价和管理具有重要意义。
科学合理地管理土壤有机碳,可以增加土壤的肥力,改善土壤的物理性质和化学性质,提高农作物的产量和品质。
此外,土壤有机碳的积累还可以减缓全球气候变化,促进碳循环。
土壤有机碳密度是衡量土壤肥力和碳循环的重要指标,其计算公式
简单明了。
研究土壤有机碳密度对于了解土壤的肥力和环境保护具有重要意义。
科学合理地管理土壤有机碳可以提高土壤的肥力和农作物的产量,同时也有助于减缓全球气候变化。
我们应该重视土壤有机碳密度的研究,为土壤的保护和可持续利用做出贡献。