第一章微分方程概论-第一章微分方程概论

合集下载

常微分第一二章

常微分第一二章

u2070C
例2.解析几何模型
求一曲 线线 上, 任 (x设 y,)一 处 在 点 的 曲 切线斜
该点横2倍 坐, 标并 的且该 (1曲 .,2)线经过点
解 (1)依据: 曲y线 y(x)导数的几 — — 何 d是 y意曲 义线
dx 在 (x,y)处的切线斜率
(2)数学模型
dy dx
2x .
4. 40学时的初步分配:
第一、二章:用6次课;(穿插课堂习题)
第 三 章:用4次课;
第 四 章:用6次课;
第 五 章:用4次课.
第二章 一阶微分方程的初等解法
一阶微分方程
六种解法(工具箱)
显式
dy f (x, y), d(x导数已解出
)
(M对( x称, y形)d式x) N ( x, y)dy 0
3. 重视应用,重视计算,重视解题格式; 4. 适度减弱教材中某些理论证明,补充工程中常用 的,工程师喜用的解题方法.
学习要求
1. 准确、熟练地掌握基本概念、基本解法,了解 相关的基本理论. 2. 初步学会由实际问题建立数学模型、求解、再 回到(解释、解决)实际问题的方法.
3. 认真听好课,及时预习和复习;上好习题课,按 质、按量及时完成作业.
y | x 1 2
(3)求解
通解: yx2 c
曲线族
特解: yx2 1 过(1,2)满足题意的一条曲线
例3.单摆运动数学模型
一根长为l 的细杆,一端联结一个质量为m 的球M, 另
一端悬挂在O点,若不计细杆的质量,在重力的作用下细
杆在某一铅直平面上摆动,求摆球的运动规律.
解 (1)物理依据:牛顿第二定律——Fma
画出方程 dy x2 y2 的线素场,并近似地描出积分曲

高等数学2 课本教材

高等数学2 课本教材

高等数学2 课本教材高等数学2是一个涉及复杂概念和公式的学科。

它是数学的一个分支,主要研究了微积分、线性代数和概率论等内容。

本节文章将以教科书的形式,按照章节的顺序来介绍高等数学2课本的主要内容。

第一章微分方程微分方程是高等数学2中最重要的章节之一。

它涉及到描述变化过程的方程。

本章首先介绍了常微分方程的概念和基本理论。

然后,详细讨论了一阶和二阶常微分方程的解法,包括可分离变量法、齐次方程法和常数变易法等。

接着,介绍了线性常微分方程的解法及其应用。

最后,通过一些实际问题的案例,说明微分方程在物理、经济和生态学等领域的应用。

第二章无穷级数无穷级数是高等数学2中的另一个重要概念。

本章首先介绍了数列和数列极限的概念。

然后,引入了无穷级数的定义,并详细讨论了级数和部分和的性质。

接着,讨论了正项级数的收敛性质,包括比较判别法、比值判别法和根值判别法等。

最后,介绍了幂级数和傅里叶级数的基本概念及其应用。

第三章多元函数微分学多元函数微分学是高等数学2中的一个重要分支。

本章首先引入了多元函数的概念,并讨论了极限和连续等基础理论。

然后,详细讨论了多元函数的偏导数、全微分和方向导数等概念。

接着,介绍了多元复合函数的求导法则和隐函数的求导法则。

最后,引入了多元函数的泰勒公式和拉格朗日乘数法,通过实例讲解了这些概念的应用。

第四章多重积分多重积分是高等数学2中涉及到空间区域的重要内容。

本章首先引入了二重积分和三重积分的概念,并讨论了累次积分和重积分的性质。

然后,介绍了换元积分法和坐标变换法来计算多重积分。

接着,讨论了二重积分和三重积分的应用,包括质量、质心和转动惯量等问题。

最后,介绍了曲线积分和曲面积分的基本概念及其应用。

第五章曲线与曲面的方程曲线和曲面的方程是高等数学2中的一个重要内容。

本章首先介绍了参数方程和方程组的基本概念。

然后,详细讨论了平面曲线和空间曲线的一般方程及其性质。

接着,介绍了曲线的切线和法平面方程的求解方法。

1_1基本概念 常微分简明教程

1_1基本概念 常微分简明教程
2 x 2x
3. y Ce , y 2 y y 0, (C是任意常数)
x
4. y x 1, y y ( x 1) y 2 x;
2 2 2
通解 —与方程的阶数相同个数的独立的任意常数联系 起来的解族 特解 — 满足特定条件的个解
例如
y 2 y 的通解为 y Ce ,
2x
y y 0 的通解为 y C1 cos x C2 sin x
gt C1t C2 ,
2
d y dt
2
2
g 的通解为 y
2
1 2
例如
( x) x 10 是方程
( x) e
x
y
y x 10
的一解
是方程
y y 的一解
1 ( x) sin x, 2 ( x) cos x 是方程 y y
深入观察
的解
( x) C ( x 10) 是方程 y
( x) Ce 是方程
2
( x 1) y xy y 0
d y dx
2
2
k y A sin x
2
例. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 则y(x)求所满足的方程就是一个微分方程 . 解: 如图所示, 点 P(x, y) 处的法线方程为
x
y x 10
的解
y y 的解
1 ( x) C1 sin x, 2 ( x) C2 cos x, ( x) C1 sin x C2 cos x
均是方程 y y 的解 ,其中C,C1,C2 表示任意常数
机动

常微分方程复习资料

常微分方程复习资料

第二章 一阶微分方程的初等解法
§2.1 变量分离方程与变量变换 §2.2 线性微分方程与常数变易法 §2.3 恰当微分方程与积分因子 §2.4 一阶隐式微分方程与参数表示
变量分离方程的求解
1、形式: dy f ( x )( y ) dx
2、求解方法: 分离变量、 两边积分、 考虑特殊情况
3、方程 dy p( x )y 的解为: dx
D(D 1) pD q y f (et )
机动 目录 上页 下页 返回 结束
c(x)
Q(
x)e
p(
x
)dx
dx
~
c
y e ( p(x)dx
Q(
x)e
p(
x
)
dxdx
~
c)
(3)
二 伯努利(Bernoulli )方程
伯努利方程:形如 dy p(x) y Q(x) yn 的方程, dx
这里P( x), Q( x)为x的连续函数。
解法:
10 引入变量变换 z y1n ,方程变为
dy a1x b1 y c1 dx a2 x b2 y c2
k(a2 x b2 y) c1 a2 x b2 y c2
f (a2x b2 y)
3. a1 b1
a2 b2
0,
且C1、C2不同时为零的情形
aa21
x x
b1 b2
y y
c1 c2
0 0
X x Y y ,
初值条件/Initial Value Conditions/ 对于 n 阶方程 y(n) f (x, y, y,, y(n1) )
初值条件可表示为
y(x0) y0, y(x0) y0 , y(x0) y0,, y(n1) (x0) y0(n1)

微分方程绪论

微分方程绪论

如:
dy (1) 2x dx
(2) xdy ydx 0
是一阶微分方程;
d 2x dx (3) tx x 0 2 dt dt
d 4x d 2x (4) 5 2 3x sin t 4 dt dt
3
是二阶微分方程;
是四阶微分方程.
n阶微分方程的一般形式为
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等积分法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
n
dy x 例如 对一阶微分方程 dx y
有显式解:
y 1 x 和y 1 x .
2 2
和隐式解:
x y 1.
2 2
2 通解与特解 定义5 如果微分方程的解中含有任意常数,且所 含的相互独立的任意常数的个数与微分方程的 阶数相同,则称这样的解为该方程的通解.
例如: y c1sinx c2cosx,c1 , c2为任常数
z z (5) z ; x y
2u 2u (6) 2 x y uz 0 . 2 x y
都是偏微分方程.
注: 本课程主要研究常微分方程. 同时把常微分方程简称 为微分方程或方程.
二、微分方程的阶 定义2:微分方程中出现的未知函数的最高阶导数或 微分的阶数称为微分方程的阶数.
dy 3. p( x) y ( x) dx

第一章_常微分方程

第一章_常微分方程

作业
1. 求方程y2y3y=0的通解。
2. 求方程y2yy0满足初始条件y|x04、 y| x02的特解。
3. 求方程y2y5y 0的通解。
1.2 常系数非齐次线性微分方程
方程
y+py+qy = f(x) (3) 称为二阶常系数非齐次线性微分方程,其
中p、q均为常数,f (x)为非齐次项
一、常数变易法
将方程(3)的特解记为 y(x) c1(x) y1(x) c2(x) y2 (x)
其中y1(x)和 y2 (x)为对应齐次方程的一对线性无关 解。将上述特解带入方程(3)可求解 c1(x)和c2 (x)。
由于 y c1y1 c2 y2 c1 y1 c2 y2 ,若令
c1 y1 c2 y2 0 则 y c1 y1 c2 y2 ,
齐次方程,有
2a1 3a0 3a1x 3x 1 由同幂次系数相等求解得
a1
1
a0
1 3
则非齐次方程的一个特解为
y* x 1 3
B.特殊情况
➢ 如果方程(3)的非齐次项 f(x)正好是对应齐次 方程的解,即各个非齐次项对应的指数
i 0 i
是原方程对应齐次方程的m重特征根,则方 程(3)的特解在原表达式上乘以xm 。
A.基本解法
【例 1.2.2】 求非齐次方程 y 2 y y 3e2x 的通解。 解:假设方程的一个特解为 y*(x) Ae2x ,代入非齐
次方程,有 4Ae2x 2Ae2x Ae2x 3e2x
求得 A 1。因此,方程的一个特解为 y* (x) e2x
又对应齐次方程的通解为 y(x) (c0 +c1x)ex ,因此 非齐次方程的通解为
是方程(1)的两个线性无关的解,方程的通解为

自动控制原理重点内容复习总结

自动控制原理重点内容复习总结

自动控制系统的组成
控制原理复习总结 第一章 概论
定值控制系统:输入是扰动f。 随动控制系统:输入是给定r。
Y (s) G1(s) F (s)
Y (s) G2(s) R(s)
区别在于给定值的形式。
e = x-z
控制原理复习总结
第二章 控制系统的数学模型
主要内容:
1、基本概念 2*、描述系统动态模型的几种形式及相互转换 (1)微分方程 (2)传递函数 (3)方块图和信号流图 3、建立数学模型的步骤及简单对象的数学模型
(2)相加、分支点需要跨越方块时,需要做相应变换,两者 交换规律找正好相反。
(3)交换后,利用串、并、反馈规律计算。
四、信号流图
控制原理复习总结 第二章 控制系统的数学模型
信号流图是一种表示系统各参数关系的一种图解法, 利用梅逊公式,很容易求出系统的等效传递函数。
梅逊公式
总增益:
1
P
k
Pk k ,
根的数值
单位阶跃响应

欠阻尼 0<ζ<1
一对共轭复根
s1,2 n jd d n 1 2
有阻尼自然频率
衰减振荡
临界阻尼 ζ=1
两个相等的负实根
s1,2 n
单调
过阻尼
ζ>1
两个不等的负实根 s1,2 n n 2 1
单调上升
无阻尼 ζ=0 负阻尼 ζ<0
一对共轭纯虚根 根具有正实部
s1,2 jn
第一章 概论
基本概念:
控制原理复习总结
1、控制系统的组成 2、开环控制与闭环控制及反馈控制 3、定值控制与随动控制系统
控制系统研究的主要内容: 1、系统分析:静态特性和动态特性 2、系统设计:根据要求的性能指标设计控制系统 对控制系统的基本要求: • 稳定性 • 准确性:稳态误差小 • 快速性:动态响应快,调节时间短,超调量小

第1章微分方程和差分方程

第1章微分方程和差分方程

第一章 线性微分方程在讲这部分之前,我们先来看一个非常熟悉的物理问题。

一个一维粒子,初始时刻处于点0x x =,初始速度为0v ,受到阻尼作用,求该粒子的运动轨迹。

解:用()x t 表示粒子在任意时刻t 的位置,根据牛顿第二定律F ma =,有mx F =对于阻尼作用F kx =-,于是,粒子的运动方程mx kx =-这是关于时间t 的常微分方程,非常简单。

求解得12()ek t mx t c c -=+结合初始条件0(0)x x =,0(0)x v =,则010mv c x k =+,02mvc k=- 代入得粒子的运动轨迹0()(1e )kt m mv x t x k-=+-这就是这门课程的第二部分——数学物理方程所要讨论的内容:将物理问题表述成数学方程,然后用各种方法来求解方程。

1.1 常系数齐次线性微分方程方程的阶:微分方程中未知函数导数的最高阶数。

线性方程:微分方程中对于未知函数及其所有导数都是一次的,就称为线性方程,高于一次以上就称为非线性方程。

齐次方程:微分方程不含有不包含未知函数的项。

例如 u = 4 u xx ; 二阶线性,x 2u = u xx ; 二阶线性,(u x )2 + u 2 = 1; 一阶非线性。

一、二阶常系数齐次线性微分方程求解 二阶线性微分方程()()()y P x y Q x y f x '''++=若()0f x ≡为齐次,()0f x ≠为非齐次。

方程y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数。

能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

需要的性能。当然也会有助于进行关于解的其 他研究。因此,在微分方程发展的古典时期, 数学家们曾经把主要目标放在求通解上。但是 后来却发现大多数微分方程都求不出通解,而 物理和力学上所提出的微分方程问题又大都是 要求满足某种指定条件的特殊解,即所谓定解 问题的解。这就迫使人们改变原来的想法,而 把定解问题的研究提到重要的地位。
内画出微分方程 dy y 的向量场和几条 dx
积分曲线。
描点手绘
用Maple软件绘制
这样一个事实对于求解微分方程(1.2.1) 是非常重要的。因为当方程(1.2.1)不可 解时,就可以根据向量场的走向来求近似的 积分曲线,同时还可以根据向量场本身的性 质来研究解的性质,而不必求出微分方程的 解。这正是近似解法和定性理论的基础。
定理1.2.1 曲线C为微分方程(1.2.1)积分曲 线的充分必要条件是:在C上任意一点,C的 切线与(1.2.1)所确定的向量场在该点的向 量相重合。C在每一点均与向量场的向量相 切。
证明 必要性。设C为(1.2.1)的积分曲线,
且其方程为 y x,则函数 y x
为微分方程(1.2.1)的一个解,于是,在其定义
ds v t , dv a t
dt
dt
d 2s dt 2
ds dt
k2s
f
sin t
v m dv v2 dm
d2y dx2
w H
1
dy dx
2
d2
d2w
dx2
EJ (x)
dx2
q(x)
(1.1.1) (1.1.2) (1.1.3)
(1.1.4) (1.1.5)
2u 2u 2u x2 y2 z2 0
等于函数 f x, y 在这点上的值。假设在区域 D内的每一点,都画上以 f x, y在这点的值为
斜率,并且一律指向增加方向的有向线段,我 们就说在区域D上做出了一个由方程(1.2.1)
确定的方向场。这个方向场称为由微分方程 (1.2.1)所确定的向量场。
方程(1.2.1)的一个解 y x 从几何上看
得到方程向量场和几条积分曲线(如图1.2.3b)。
图1.2.3a
图1.2.3b
*** 常微分方程发展简史与著名科学家简介
一、 微分方程发展的几个关键时期
奠基时期微分方程差不多是和微积分同
时产生的,当牛顿和莱布尼兹奠定微积分的基 本思想的同时,他们也就正式提出了微分方程 的概念。
牛顿
莱布尼兹
第一发展时期 从17世纪末到18世纪,
雅各布第一 ·伯努利 约翰.伯努利
丹尼尔.伯努利
莱昂哈德·欧拉
约瑟夫·路易斯·拉格朗日
第二发展时期对18、19世纪建立起来的
多数微分方程数学家们求显式解的努力往往归
于失败。特别是Liouville在1841年证明了大多 数微分方程不能用初等积分方法求解。这种情 促使他们转向证明解的存在性,这也是微分方 程发展史上的一个重要转折点。最先考虑微分 方程解的存在性问题的数学家是柯西,18世纪 20年代,他给出了常微分方程的第一个存在性 定理。柯西给微积分学注入了严格的要素,同 时也为微分方程的理论奠定了一个基石——解 的存在性和唯一性定理。
区间上有 x f x, x. 上式左端为C在点 x, x 的切线的斜率,
右段恰为方程(1.2.1)的方向场在同一点
x, x 的向量的斜率。从而,C在点 x, x
的切线与方向场在该点的方向重合。又因为上式 为恒等式,这说明上述说法在整个曲线C上成立。
充分性。设有曲线C,其方程为 y x
这个时期的另一个崭新的方向,也可以说是 微分方程发展史上的又一个转折点,就是定 性理论,它是由庞加莱独创的。庞加莱由对
三体问题的研究而引导到常微分方程定性理论 的创立。
柯西
刘维尔
庞加莱 李亚普诺夫
庞加莱关于在奇点附近积分曲线随时间变 化的定性研究,在1892年以后被俄国数学 家李亚普诺夫发展到高维一般情形而形成 专门的“运动稳定性”分支,他提出的李亚 普诺夫函数和李亚普诺夫指数概念意义极 为重要。李亚普诺夫的工作使微分方程的 发展呈现出一个全新的局面。
yn a1 x yn1 a2 x yn2 L an1 x y' an x y f (x)
设I是一个区间,函数 x在I上有定义,而
且有直到n阶导数,如果对任意 x I ,有
F(x, x,' x,'' x,L n x) 0(1.1.14)

n x f ( x,' x,'' x,L n1 x) 0 (1.1.15)
Cauchy和Weierstrss就是采用了这种观点, 差不多在同一时期,在很一般的条件下,解决 了当时常微分方程论中的一个基本问题----初值 问题解的存在与唯一性。
现在,常微分方程已经成为对一些运动过
程、运动规律进行描述研究的必要途径,其 重要性在于它是各种精确自然科学、社会科 学中表述基本定律和各种问题的根本工具之 一,自然界的许多运动现象,例如宏观的地 球围绕太阳周期运动,微观的原子中的原子 核和中子的运动等都可以用微分方程来描叙。 微分方程从它诞生起即日益成为人类认识并 进而改造自然、社会的有力工具,成为数学 科学联系实际的主要途径之一。用微分方程 的知识研究自然现象(如物理现象、生物现 象)是现代数学科学研究中很重要的方法之 一。
*** 微分方程论简介
常微分方程理论,作为数学的一个重要 分支,所研究的问题是多种多样的。不言而 喻,求出微分方程的解是微分方程论的首要 问题之一。
如前所述,如果能找出微分方程通解的形式, 就有可能适当地选定其中的任意常数,获得 所需要的特殊解。就有可能通过这种表达式, 讨论解对某些参数(这些参数在应用上往往 表征某些物理特征)的依赖性,从而适当地 选取这些参数,使得对应的解具有所

yn f (x, y, y' , y'' ,L yn1 ) (0 1.1.13)
其中 f 是它所依赖的n+1个变量的已知函数。 这种已经就最高阶导数解出的微分方程称为 正规型微分方程。有时也称形如(1.1.12)的 方程为隐式微分方程。
如果待定函数和它的各阶导数都独立地 以一次的形式出现在方程的各项中,则这 种微分方程称为线性的,正规型n阶线性常 微分方程的一般形式为
(1.1.11)
等各种形式。 容易看出上述微分方程中(1.1.1)--(1.1.5)
是常微分方程;而(1.1.6)--(1.1.11)是偏 微分方程。
微分方程的阶: 微分方程中待定函数的最高 阶导数的阶数,称为微分方程的阶。 n阶常微分方程的一般形式为
F (x, y, y', y'',L yn ) 0 (1.1.12)
的向量场的图形和几条积分曲线的图形。
解 取区域为以原点为中心的矩形
D x, y x 2, y 2
利用下列Maple命令 ➢DEtools[dfieldplot] ([diff(y(x),x)
=x^2-y(x)],y(x),x=-2..2,y=-2..2, dirgrid=[9,9],arrows=LINE, axes=NORMAL); 得到方程向量场的示意图 (图1.2.3a);
在其上任意一点 x, x ,它的切线方向
都与微分方程(1.2.1)的方向场的方向重合, 则切线与向量的斜率应该相等。
于是,在 y x 有定义的区间上,有
恒等式 x f x, x.
这个等式说明 y x 是微分方程
(1.2.1)的解。从而C是积分曲线。
例 1.2.2 画出微分方程 dy x2 y dx
微分方程在物理学、化学、生物科学、工程科 学以及社会科学中有着广泛应用,有些学科的
基本方程就是微分方程或方程组,如动力学的 基本方程就是牛顿第二定律:
F ma m& x&
笛卡尔方法论原理的本旨是寻求发现真理的一 般方法,他称自己设想的一般方法为“通用数 学”,其思想:任何问题⇒数学问题⇒代数问题 ⇒方程求解。 在物理学中常见的微分方程有:
北京邮电大学理学院 郭玉翠
*** 2016年2月
基本内容
第一章 微分方程概论 第二章 微分方程模型 第三章 初等积分方法 第四章 基本定理 第五章 线性微分方程理论和解法 第六章 定性理论与稳定型简介 第七章 首次积分法与一阶偏微分方 程
课程要求与成绩评定
学期成绩:由平时作业、出勤,期中,期末和创新奖 励综合评定。 平时作业、考勤占20%; 期中:15%; 鼓励同学对新知识的探究和解决困难问题的兴趣, 5%的成绩用来奖励对新知识的探究和解决困难问 题。具体形式:讲课上内容、困难问题求解、实际 问题建模等。 期末:60%。
成立,则称是微分方程(1.1.12)(1.1.13)
的解。在坐标平面内 x 代表的曲线称为积
分曲线。 一般地,微分方程的解是通过积分得到的,
积分一次出现一个任意常数。微分方程解中独 立的任意常数的个数与微分方程的阶数相同时, 称这种解为微分方程的通解或一般解:
y x,C1,C2,L ,Cn (1.1.16)
众多科学家,包括伯努利(家族)、欧拉、 高斯、拉格朗日和拉普拉斯等,把微分方程 的研究结合于当时许多重大的实际力学问题。 在这个时期,数学家们发明了所有求解一阶 方程的初等方法;找到了二 阶常系数线性齐
次方程的解法;并用参数变易法解出了一般 二 阶变系数非齐次常微分方程;在18世纪 末,常微分方程已成为有自己的目标和方向 的新数学分支,成为当时工程技术、物理、 力学等学科的基本工具之一。
十九世纪末期,由庞卡莱和李雅普诺夫分
别创立的常微分方程的定性理论和稳定性 理论,代表了当时非线性力学的最新方法。
进入二十世纪,在众多应用数学家
的共同努力下,常微分方程定性理论的发 展更加拓广了它的应用范围,并深入到机 械、电讯、核能、火箭、人造卫星、生物、 医学及若干社会学科(如人口理论、经济 预测等)的各个领域。现在微分方程已成 为当今数学中最具有活力的分支之一。
相关文档
最新文档