2017-2018学年石景山区初三一模数学试卷及答案

合集下载

2017-2018学年北京市石景山区2018届初三第一学期期末数学试题(含答案)

2017-2018学年北京市石景山区2018届初三第一学期期末数学试题(含答案)

石景山区2017-2018学年度第一学期初三期末试卷数 学考生须知1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如果y x 43=(0≠y ),那么下列比例式中正确的是 (A )43=y x (B )yx 43= (C )43y x = (D )34y x = 2.在Rt △ABC 中,︒=∠90C ,5=AB ,2=AC ,则tan A 的值为(A )21 (B )2(C )25 (D )552 3.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若︒=∠25ACD ,则BOD ∠的度数为(A )︒100(B )︒120(C )︒130(D )︒1504.如图,在⊙O 中,弦AB 垂直平分半径OC .若⊙O 的半径为4,则弦AB 的长为(A )32 (B )34 (C )52(D )54DCBAOCBAO第3题 第4题5.如果在二次函数的表达式c bx ax y ++=2中,0>a ,0<b ,0<c ,那么这个二次 函数的图象可能是xyO x yOxyO xyO(A ) (B ) (C ) (D ) 6.若二次函数m x x y ++=22的图象与坐标轴有3个交点,则m 的取值范围是(A )1>m(B )1<m(C )1>m 且0≠m(D )1<m 且0≠m7.如图,将函数()12312+-=x y 的图象沿y 轴向上平移得 到新函数图象,其中原函数图象上的两点),1(m A 、),4(n B 平移后对应新函数图象上的点分别为点'A 、'B .若阴影部分的面积为6,则新函数的表达式为(A )()22312+-=x y (B )()32312+-=x y (C )()12312--=x y (D )()32312--=x y 8.如图,点M 为□ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与□ABCD 的另一边 交于点N .当点M 从A →B 匀速运动时,设点M 的 运动时间为t ,△AMN 的面积为S ,能大致反 映S 与t 函数关系的图象是t tt t SSSSOOO O二、填空题(本题共16分,每小题2分)l N MD CBA第7题第8题9.如果两个相似三角形的周长比为3:2,那么这两个相似三角形的面积比为______. 10.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上.若∠ADE =∠C ,AB =6,AC =4,AD =2,则EC =________.11.如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 的三等分点,则 图中所有阴影部分的面积之和是________cm 2.12. “平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC 的坡度达到2.1:1,那么立柱AC 的长为_______米. 13.如图,一次函数b kx y +=1的图象与反比例函数()02<=x xmy 的图象相交于点A 和点B .当021>>y y 时,x 的取值范围是_______.14.如图,在Rt △ABC 中,︒=∠90C ,AB =10.若以点C 为圆心,CB 为半径的圆恰好经过AB 的中点D ,则AC =________.15.如图,在平面直角坐标系xOy 中,△ABC 经过若干次图形的变化(平移、轴对称、 旋转)得到△DEF ,写出一种由△ABC 得到△DEF 的过程: .第13题 第14题 第15题16.石景山区八角北路有一块三角形空地(如图1)准备ABDBACEDCBA 第10题 第11题顶屋坡原来的 平屋顶ABC3米第12题Axy FE DC BA123-1-2-3-4-3-2-1321ODCAOBxy B A41-0.5-2O绿化,拟从点A 出发,将△ABC 分成面积相等的三 个三角形,栽种三种不同的花草. 下面是小美的设计(如图2). 作法:(1)作射线BM ; (2)在射线BM 上顺次截取BB 1=B 1B 2=B 2B 3; (3)连接B 3C ,分别过B 1、B 2作B 1C 1∥B 2C 2∥B 3C , 交BC 于点C 1、C 2; (4)连接AC 1、AC 2. 则C AC C AC ABC S S S 2211∆∆∆==.请回答,C AC C AC ABC S S S 2211∆∆∆==成立的理由是:① ; ② . 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26题7分,第27题7分,第28题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:︒-︒+︒-︒60sin 260cos 145cos 30tan 32.18.用配方法求二次函数3102+-=x x y 的顶点坐标.19.在Rt △ABC 中,︒=∠90C ,A ∠、B ∠、C ∠的对边分别为a 、b 、c .若2=a ,sin 31=A ,求b 和c .图2B 3B 1B 2MC 2C 1ABC20.小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两 人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果; (2)这个游戏公平吗?请说明理由.21.如图,小明想测量山的高度.他在点B 处仰望山顶A ,测得仰角︒=∠30ABN ,再向山的方向(水平方向)行进100m 至索道口点C 处,在点C 处仰望山顶A ,测得仰角︒=∠45ACN .求这座山的高度.(结果精确到0.1m ,小明的身高忽略不计)(参考数据:41.12≈,73.13≈)NMC B A22.在平面直角坐标系xOy 中,一次函数错误!未找到引用源。

10.2017初3数学1模题答案 石景山

10.2017初3数学1模题答案 石景山

3 2
92 3 2 3
………………………………… 4 分 ………………………………… 5 分
7 .
3( x 1) ≤ 5 x 1, ① 18.解:原不等式组为 9 x 2x , ② 4
解不等式①,得 x ≥ 2 . 解不等式②,得 x < 1 . ∴原不等式组的解集为 2 ≤ x < 1 . ∴原不等式组的整数解为 2 , 1 , 0 . ………………………………… 3 分 ………………………………… 4 分 ………………………………… 5 分
x 20 .
答:良马 20 天能够追上驽马. 21.解: (1)∵ =[ (2m 3)] 4m(m 1)
2
= 8m 9 .
依题意,得 解得 m ≤
………………………………… 1 分
m 0, 8m 9 ≥ 0,
………………………………… 3 分
………………………………… 3 分
A F
D
C E 图4 ………………………………… 4 分
B
………………………………… 5 分
24. (1) 50 . (2)
………………………………… 1 分 ………………………………… 5 值统计图
微克/立方米
110 100 90 80 70 60 50 40 30 20 10 0
且m 0. 8 (2)∵ m 为正整数, ∴ m 1. ∴原方程为 x x 0 . 解得 x1 0 , x2 1 . 22.解: (1)∵双曲线 y ∴ m 6 . ∴双曲线的表达式为 y
2
9
………………………………… 4 分
………………………………… 5 分

10.2017初3数学1模题 石景山

10.2017初3数学1模题 石景山

石景山区2017年初三统一练习暨毕业考试数学试卷学校姓名准考证号考生须知1.本试卷共8页,共三道大题,29道小题.满分120分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有..一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则a的相反数是A.a B.b C.b-D.c2.2016年9月15日天宫二号空间实验室在酒泉卫星发射中心发射成功,它的运行轨道距离地球393000米.将393000用科学记数法表示应为A.70.39310⨯B.53.9310⨯C.63.9310⨯D.339310⨯3.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若1=65∠°,则2∠的度数为A.25°C.65°B.35°D.115°4.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是..轴对称图形的为A B C D21ClaAB b–1–2–3–41234a cb5.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数是A .4B .5C .6D .86.在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是A .13B .29C .49D .3107.若某几何体的三视图如右图所示,则该几何体是A B C D8.周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5小时后想换乘另一辆公共 汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路 程s (单位:千米)与时间t (单位:小时)的函数关系的图象大致如图.则小石骑 行摩拜单车的平均速度为 A .30千米/小时 B .18千米/小时 C .15千米/小时 D .9千米/小时9.用尺规作图法作已知角AOB ∠的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,交OB 于点D ,交OA 于点E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠的内部相交于点C ; ③作射线OC .则射线OC 为AOB ∠的平分线.由上述作法可得OCD △≌OCE △的依据是 A .SAS C .AAS B .ASA D .SSSs t /千米/小时10410.60.5OCD E A OB俯视图左视图主视图10.汽车的“燃油效率”是指汽车每消耗1升汽 油行驶的最大公里数(单位:km /L ),如 图描述了甲、乙、丙三辆汽车在不同速度下 的燃油效率情况,下列叙述正确的是A . 当行驶速度为40km/h 时,每消耗1升汽油,甲车能行驶20kmB .消耗1升汽油,丙车最多可行驶5kmC .当行驶速度为80km /h 时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同D .当行驶速度为60km/h 时,若行驶相同的路程,丙车消耗的汽油最少 二、填空题(本题共18分,每小题3分) 11.分解因式:2218x -= .12.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y = . 13.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m 的小明在阳光下的影长是1.2m ,在同一时刻测得这棵大树的影长是3.6m ,则此树的高度是 m .14.如果250x x +-=,那么代数式3222(1)x xx x++÷+的值是 .15.某雷达探测目标得到的结果如图所示, 若记图中目标A 的位置为(3,30)°,目 标B 的位置为(2,180)°,目标C 的位 置为(4,240)°,则图中目标D 的位置 可记为 .16.首都国际机场连续五年排名全球最繁忙机场第二位,该机场20122016-年客流量统 计结果如下表:根据统计表中提供的信息,预估首都国际机场2017年客流量约 万人次,km/h )0°你的预估理由是 . 三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:216sin 60()23--°.18.解不等式组:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,,并写出它的所有整数解.19.如图,在四边形ABCD 中,AB ∥DC ,E 是CB 的中点,AE 的延长线与DC 的延长线相交于点F . 求证:AB FC =.20.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良 马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?21.关于x 的一元二次方程2(23)(1)0mx m x m --+-=有两个实数根. (1)求m 的取值范围;(2)若m 为正整数,求此方程的根.22.如图,在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与双曲线 (0)m y m x=≠交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P 是双曲线 (0)my m x =≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q , 当点P 位于点Q 下方时,请直接写出整点P 的坐标.23.如图,在□ABCD 中,过点A 作AE ⊥BC于点E ,AF ⊥DC 于点F ,AE AF =. (1)求证:四边形ABCD 是菱形;(2)若60EAF ∠=°,2CF =,求AF 的长.24.阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个 2.5PM 年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、10PM 、 2.5PM 年均浓度值超标,其中 2.5PM 年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、10PM 、2.5PM 的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、10PM 年均浓度值分别下降28.6%、4.0%、9.8%;2.5PM 年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)根据以上材料解答下列问题:(1)2015年北京市二氧化氮....年均浓度值为 微克/立方米; (2)请你用折线统计图将20132016-年北京市 2.5PM 的年均浓度值表示出来,并 在图上标明相应的数据.25.如图,在四边形ABCD 中,90D ∠=°,AC 平 分DAB ∠,且点C 在以AB 为直径的⊙O 上. (1)求证:CD 是⊙O 的切线;(2)点E 是⊙O 上一点,连接BE ,CE .若42BCE ∠=°,9cos 10DAC ∠=,AC m =,写出求线段CE 长的思路.图1 图2 图3 图426.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁, 这样的四边形叫做凹四边形.如图1,四边形ABCD 为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD 是凹四边形. 求证:BCD B A D ∠=∠+∠+∠. (3)性质应用:如图3,在凹四边形ABCD 中,BAD ∠的角平分线与BCD ∠的角平分线交于点E ,若140ADC ∠=°,102AEC ∠=°,则B ∠= °. (4)类比学习:如图4,在凹四边形ABCD 中,点E ,F ,G ,H 分别是边AD ,AB ,BC ,CD 的中点,顺次连接各边中点得到四边形EFGH .若AB AD =,CB CD =, 则四边形EFGH 是 .(填写序号即可) A .梯形B .菱形C .矩形D .正方形27.在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线 2443(0)y ax ax a a =-+-≠交于B ,C ①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的 取值范围.AB D备用图28.在正方形ABCD 中,点E 是对角线AC 上的动点(与点A ,C 不重合),连接BE . (1)将射线BE 绕点B 顺时针旋转45°,交直线AC 于点F .①依题意补全图1;②小研通过观察、实验,发现线段AE ,FC ,EF 存在以下数量关系: AE 与FC 的平方和等于EF 的平方.小研把这个猜想与同学们进行交流,通 过讨论,形成证明该猜想的几种想法:想法1: 将线段BF 绕点B 逆时针旋转90°,得到线段BM , 要证AE , FC , EF 的关系,只需证AE ,AM ,EM 的关系.想法2:将ABE △沿BE 翻折,得到NBE △,要证AE ,FC ,EF 的关系,只需证EN ,FN ,EF 的关系.……请你参考上面的想法,用等式表示线段AE ,FC ,EF 的数量关系并证明; (一种方法即可)(2)如图2,若将直线..BE 绕点B 顺时针旋转135°,交直线..AC 于点F .小研完成作 图后,发现直线AC 上存在三条线段(不添加辅助线)满足:其中两条线段的平 方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.29.在平面直角坐标系xOy 中,对“隔离直线”给出如下定义:点(,)P x m 是图形1G 上的任意一点,点(,)Q x n 是图形2G 上的任意一点,若存在直线:(0)l y kx b k =+≠满足m kx b +≤且n kx b +≥,则称直线:(0)l y kx b k =+≠是图形1G 与2G 的“隔离直线”. 如图1,直线:4l y x =--是函数6(0)y x x =<的图象与正方形OABC 的一条“隔离直线”.(1)在直线12y x =-,231y x =+,33y x =-+中,是图1函数6(0)y x x=<的图象与正方形OABC的“隔离直线”的为 ; 请你再写出一条符合题意的不同的“隔离直线” 的表达式: ;(2)如图2,第一象限的等腰直角三角形EDF 的两腰分别与坐标轴平行,直角顶点D的坐标是,⊙O 的半径为2.是否存在EDF △与⊙O 的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形1111A B C D 的一边在y 轴上,其它三边都在y 轴的右侧,点(1,)M t 是此正方形的中心.若存在直线2y x b =+是函数22304y x x x =--(≤≤)的图象与正方形1111A B C D 的“隔离直线”,请直接写出t 的取值范围.-4图1。

最新-北京市石景山区2018年中考一模数学试题含答案解析 精品

最新-北京市石景山区2018年中考一模数学试题含答案解析 精品

北京市石景山区2018年中考一模数学试题一、选择题1.据北京市商务委表示,除夕至初五,21家节能减排补贴商品定点销售企业销售额超过28 000 000元.将28 000 000用科学记数法表示应为()A.0.28×108B.2.8×108C.2.8×107D.28×106【考点】科学记数法和近似数、有效数字【答案】C【试题解析】科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以28 000 000=2.8.故本题选C.2.如图,数轴上有A,B,C,D四个点,其中绝对值小于2的数对应的点是()A.点A B.点B C.点C D.点D【考点】实数的相关概念【答案】B【试题解析】绝对值小于2的数也就数轴上与原点距离小于2的点对应的数。

可知点B 的绝对值小于2.故本题选B.3.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.【考点】中心对称与中心对称图形【答案】A【试题解析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.图形B,C,D都是中心对称图形。

故本题选A.4.某校师生植树节积极参加以组为单位的植树活动,七个小组植树情况如下:则本组数据的众数与中位数分别为()A.5,4B.6,5C.7,6D.5,5【考点】平均数、众数、中位数【答案】D【试题解析】众数就是在一组数据中,出现次数最多的数据叫做这组数据的众数。

所以这组数据的众数是5,。

中位数就是将一组数据按大小依次排列,把处在最中间位置的一个数(奇数个时数)或最中间两个数的平均数(偶数个时)叫做这组数据的中位数。

这组数据从小到大排列为:4, 5, 5, 5, 6, 6, 7.最中间的数是5,所以这组数据的中位数是5.故本题选D.5.脸谱是中国戏曲演员脸上的绘画,用于舞台演出时的化妆造型,助增所扮演人物的性格和特征.在下列八张脸谱图片中,随机抽取一张为的概率是()A.B.C.D.【考点】概率及计算【答案】D【试题解析】共8张脸谱,其中有3张,所以随机抽取一张为的概率=。

2017-2018学年石景山区初三一模数学试卷及答案

2017-2018学年石景山区初三一模数学试卷及答案

石景山区2018年初三统一练习暨毕业考试数学试卷考 生 须 知 1.本试卷共8页,共三道大题,28道小题.总分值100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、和准考证号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回.一、选择题〔此题共16分,每题2分〕下面各题均有四个选项,符合题意的选项只有..一个. 1.以下各式计算正确的选项是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =2.实数a ,b 在数轴上的位置如下图,以下说法正确的选项是A .0a b +=B .b a <C .b a <D .0ab > 3.以下几何体中,俯视...4.以下博物院的标识中不是..轴对称图形的是5.如图,AD ∥BC ,AC 平分∠BAD ,假设∠B =40°,则∠C 的度数是A .40°B .65°C .70°D .80°6.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上, Rt △ABC 经过变化得到Rt △EDO ,假设点B 的坐标为(01),, OD =2,则这种变化可以是A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度 C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度 y xEDACBO ABCDA B C D A B C D D . D . C . D . C . B . A . D . C . B . 12–1–2ab7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地〔轿车的平均速度大于货车的平均速度〕,如图线段OA 和折线BCD 分别表示两车离甲地的距离y 〔单位:千米〕与时间x 〔单位:小时〕之间的函数关系.则以下说法正确的选项是 A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响 很大.以下图是对某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是; ② 随着罚球次数的增加,“罚球命中”的频率总在附近摆动,显示出一定的稳定 性,可以估计该球员“罚球命中”的概率是;③ 由于该球员“罚球命中”的频率的平均值是,所以“罚球命中”的概率是. 其中合理的是 A .①B .②C .①③D .②③二、填空题〔此题共16分,每题2分〕 9.对于函数6y x=,假设2x >,则y 3〔填“>”或“<”〕. 10.假设正多边形的一个外角是45°,则该正多边形的边数是_______. 11.如果5x y +=,那么代数式221+y x x yx y÷--()的值是_______.12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦, 已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.假设设小马 有x 匹,大马有y 匹,依题意,可列方程组为____________.13.如图,AB 是⊙O 的直径,CD 是弦,CD AB ⊥于点E ,假设⊙O 的半径是5,8CD =,则AE = .14. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点, DE ∥BC .假设6AD =,2BD =,3DE =,则BC = .15.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼〔原首钢老厂区的筒仓〕20m 的点B 筒仓顶点C 的仰角为63°,则筒仓CD 的高约为____________m .〔精确到0.1m ,sin 630.89≈°,cos630.45≈°,tan 63 1.96≈°〕16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角 板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =; (2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 . 三、解答题〔此题共68分,第17、18题,每题5分;第19题4分;第20-23题,每题5分;第24、25题,每题6分;第26、27题,每题7分;第28题8分〕.解答应写出文字说明,演算步骤或证明过程.17.计算:012sin 455()1833---++°.D 63°C B A 第13题图 第14题图CDEA O BDE BCAAPNBOBM18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,.19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题. 如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.〔1〕在AB 边上取点E ,使4AE =,连接OA ,OE ; 〔2〕在BC 边上取点F ,使BF = ,连接OF ; 〔3〕在CD 边上取点G ,使CG = ,连接OG ; 〔4〕在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .20.关于x 的一元二次方程2(32)60mx m x +--=. 〔1〕当m 为何值时,方程有两个不相等的实数根; 〔2〕当m 为何整数时,此方程的两个根都为负整数. OH G FE DCB A21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==CE AD ⊥于点E . 〔1〕求证:AE CE =;〔2〕假设tan 3D =,求AB 的长.22.在平面直角坐标系xOy 中,函数a y x=〔0x >〕的图象与直线1l y x b =+:交于点(3,2)A a -.〔1〕求a ,b 的值;〔2〕直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,假设S △ABC 6≥,求m 的取值范围.23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .〔1〕求证:12CBE F ∠=∠;〔2〕假设⊙O的半径是,点D 是OC 中点,15CBE ∠=°,求线段EF 的长.24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下〔单位:分〕:整理、分析过程如下,请补充完整.〔1〕按如下分数段整理、描述这两组数据:成绩x70≤x≤74 75≤x≤79 80≤x≤84 85≤x≤89 90≤x≤94 95≤x≤100 学生甲乙 1 1 4 2 1 1 〔2〕两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲86乙24 82〔3〕假设从甲、乙两人中选择一人参加知识竞赛,你会选〔填“甲”或“乙〕,理由为.25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的 动点,过点B 作BQ PM ⊥交PM 〔或PM 的延长线〕于点Q .设cm PM x =,cm BQ y =.〔当点P 与点A 或点B 重合时,y 的值为0〕小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:〔1〔2〕建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;〔3〕结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60︒时,PM 的长度约为 cm .B26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:〔0m ≠个单位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. 〔1〕直接写出点A 的坐标;〔2〕过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式;②假设60120BAC <∠<°°,直接写出m 的取值范围.图1 备用图28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... 〔1〕已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;〔2〕已知点A 的坐标为(0,0),假设直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;〔3〕已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线3y x = 假设要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.石景山区2018年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.假设考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题〔此题共16分,每题2分〕二、填空题〔此题共16分,每题2分〕9.<.10.八.11.5. 12.100,3100.3x yxy+=+=⎧⎪⎨⎪⎩13.2.14.4..16.〔1〕斜边和一条直角边分别相等的两个直角三角形全等;〔2〕全等三角形的对应角相等.三、解答题〔此题共68分,第17、18题,每题5分;第19题4分;第20-23题,每小题5分;第24、25题,每题6分;第26、27题,每题7分;第28题8分〕.解答应写出文字说明,演算步骤或证明过程.17.解:原式=2512⨯-+-………………4分4=--………………5分18.解:原不等式组为3(1)45,62.2x xxx+>++<⎧⎪⎨⎪⎩解不等式①,得2x<-.………………2分解不等式②,得2x<.………………4分∴原不等式组的解集为<2x-.………………5分19.解:3,2,1;………………2分EB、BF;FC、CG;GD、DH;HA.………………4分20.解:〔1〕∵24b ac∆=-2(32)24m m=-+2(32)0m=+≥①②图1∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分〔2〕解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数, ∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分 21.〔1〕证明:〔法一〕过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 〔法二〕过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. 〔2〕解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 22.解:〔1〕∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 〔2〕设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(2)1642m m -+-⨯=, 解得2m =-,8m =〔舍〕.②当S △ABC =S △BCD -S △ABD =6时,如图2.可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-〔舍〕.综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分 23.〔1〕证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分〔2〕解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O 的半径是D 是OC 中点, ∴OD =在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==- ………………5分 24.解:〔1〕 0,1,4,5,0,0 ………………1分〔2〕 14,84.5,81 ………………4分 〔3〕甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定; 两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小. 〔写出其中一条即可〕或:乙,理由:在90≤x ≤100的分数段中,乙的次数大于甲.………………6分 〔答案不唯一,理由须支撑推断结论〕25.解:〔1〕4; 0. ………………2分 〔2〕………………4分〔3〕1.1或3.7 . ………………6分 26.解:〔1〕A. ………………………………… 2分〔2〕①设抛物线2G的表达式为2(y m x =-+如下图,由题意可得AD ==∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==∴点B的坐标为.∵点B 在抛物线2G 上,可得3m =.∴抛物线2G的表达式为2(3y x =--+,即223y x x =-+ ………………… 5分②m <<-. ………………… 7分 27.〔1〕补全图形如图1. ………………… 1分〔2〕①证明:连接∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分28.解:〔1〕25π; ………………… 2分 〔2〕∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(). ………………… 6分〔3〕5m -≤或11m ≥. ………………… 8分。

201804答案:石景山数学一模答案(定稿)

201804答案:石景山数学一模答案(定稿)

石景山区2018年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.<.10.八.11.5. 12.100, 3100.3x yxy+=+=⎧⎪⎨⎪⎩13.2.14.4.15.40.0.16.(1)斜边和一条直角边分别相等的两个直角三角形全等;(2)全等三角形的对应角相等.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.解:原式=251+-………………4分4=--………………5分18.解:原不等式组为3(1)45,62.2x xxx+>++<⎧⎪⎨⎪⎩解不等式①,得2x<-.………………2分解不等式②,得2x<.………………4分∴原不等式组的解集为<2x-.………………5分19.解:3,2,1;………………2分①②图1EB 、BF ;FC 、CG ;GD 、DH ;HA . ………………4分20.解:(1)∵24b ac ∆=- 2(32)24m m =-+ 2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分(2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数, ∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分 21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1.可得211(2)(2)1642m m -+-⨯=, 解得2m =-,8m =(舍).②当△ABC =△BCD △ABD =6时,如图2.可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分 23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O的半径是D 是OC 中点,∴OD =.在Rt ODH ∆中,cos 3ODOH∠=, ∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==-. ………………5分 24.解:(1) 0,1,4,5,0,0 ………………1分(2) 14,84.5,81 ………………4分 (3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定; 两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小. (写出其中一条即可)或:乙,理由:在90≤x ≤100的分数段中,乙的次数大于甲.………………6分 (答案不唯一,理由须支撑推断结论)25.解:(1)4; 0. ………………2分y /cm45(2)………………4分 (3)1.1或3.7 . ………………6分 26.解:(1)A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x =+,如图所示,由题意可得AD ==∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==.∴点B的坐标为. ∵点B 在抛物线2G 上,可得m =∴抛物线2G的表达式为2y x =+,即22y x =++ ………………… 5分②m <<-. ………………… 7分 27.(1)补全图形如图1. ………………… 1分(2)①证明:连接∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴BE AE ==.∴B (. ②当0b <时,则点'B 在第四象限. 同理可得'B -. 综上所述,点B 的坐标为(或. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分。

2017年北京市石景山区中考数学一模试卷(解析版)

2017年北京市石景山区中考数学一模试卷(解析版)

2017年北京市石景山区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则a的相反数是()A.a B.b C.﹣b D.c2.2016年9月15日天宫二号空间实验室在酒泉卫星发射中心发射成功,它的运行轨道距离地球393000米.将393000用科学记数法表示应为()A.0.393×107B.3.93×105C.3.93×106D.393×1033.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.25°B.35°C.65°D.115°4.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为()A.B.C.D.5.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4 B.5 C.6 D.86.在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是()A.B.C.D.7.若某几何体的三视图如图所示,则该几何体是()A.B.C.D.8.周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5小时后想换乘另一辆公共汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象大致如图.则小石骑行摩拜单车的平均速度为()A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时9.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.当行驶速度为40km/h时,每消耗1升汽油,甲车能行驶20kmB.消耗1升汽油,丙车最多可行驶5kmC.当行驶速度为80km/h时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同D.当行驶速度为60km/h时,若行驶相同的路程,丙车消耗的汽油最少二、填空题(本题共18分,每小题3分)11.分解因式:2x2﹣18=.12.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y=.13.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是m.14.如果x2+x﹣5=0,那么代数式(1+)÷的值是.15.某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为.16.首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣2016年客流量统计结果如表:根据统计表中提供的信息,预估首都国际机场2017年客流量约万人次,你的预估理由是.三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:6sin60°﹣()﹣2﹣+|2﹣|.18.解不等式组:并写出它的所有整数解.19.如图,在四边形ABCD中,AB∥DC,E是CB的中点,AE的延长线与DC的延长线相交于点F.求证:AB=FC.20.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?21.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.22.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y=(m ≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.23.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.24.阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个PM2.5年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、PM10、PM2.5年均浓度值超标,其中PM2.5年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、PM10、PM2.5的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、PM10年均浓度值分别下降28.6%、4.0%、9.8%;PM2.5年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)根据以上材料解答下列问题:(1)2015年北京市二氧化氮年均浓度值为微克/立方米;(2)请你用折线统计图将2013﹣2016年北京市PM2.5的年均浓度值表示出来,并在图上标明相应的数据.25.如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=,AC=m,写出求线段CE长的思路.26.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.(3)性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B=°.(4)类比学习:如图4,在凹四边形ABCD中,点E,F,G,H分别是边AD,AB,BC,CD的中点,顺次连接各边中点得到四边形EFGH.若AB=AD,CB=CD,则四边形EFGH 是.(填写序号即可)A.梯形B.菱形C.矩形D.正方形.27.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4a﹣3(a≠0)的顶点为A.(1)求顶点A的坐标;(2)过点(0,5)且平行于x轴的直线l,与抛物线y=ax2﹣4ax+4a﹣3(a≠0)交于B,C两点.①当a=2时,求线段BC的长;②当线段BC的长不小于6时,直接写出a的取值范围.28.在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.(1)将射线BE绕点B顺时针旋转45°,交直线AC于点F.①依题意补全图1;②小研通过观察、实验,发现线段AE,FC,EF存在以下数量关系:AE与FC的平方和等于EF的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的关系,只需证AE,AM,EM的关系.想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.…请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)(2)如图2,若将直线BE绕点B顺时针旋转135°,交直线AC于点F.小研完成作图后,发现直线AC上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.29.在平面直角坐标系xOy中,对“隔离直线”给出如下定义:点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k ≠0)是图形G1与G2的“隔离直线”.如图1,直线l:y=﹣x﹣4是函数y=(x<0)的图象与正方形OABC的一条“隔离直线”.(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y=(x<0)的图象与正方形OABC的“隔离直线”的为;请你再写出一条符合题意的不同的“隔离直线”的表达式:;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.2017年北京市石景山区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则a的相反数是()A.a B.b C.﹣b D.c【考点】29:实数与数轴;28:实数的性质.【分析】根据相反数的意义求解即可.【解答】解:a=﹣2,c=2,a的相反数是c,故选:D.2.2016年9月15日天宫二号空间实验室在酒泉卫星发射中心发射成功,它的运行轨道距离地球393000米.将393000用科学记数法表示应为()A.0.393×107B.3.93×105C.3.93×106D.393×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将393000用科学记数法表示为:3.93×105.故选:B.3.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.25°B.35°C.65°D.115°【考点】JA:平行线的性质;J3:垂线.【分析】先根据两直线平行,同旁内角互补,得出∠1+∠ABC+∠2=180°,再根据BC⊥AB,∠1=65°,即可得出∠2的度数.【解答】解:∵直线a∥b,∴∠1+∠ABC+∠2=180°,又∵BC⊥AB,∠1=65°,∴∠2=180°﹣90°﹣65°=25°,故选:A.4.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为()A.B.C.D.【考点】P3:轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:B.5.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4 B.5 C.6 D.8【考点】L3:多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n 边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.6.在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是()A.B.C.D.【考点】X4:概率公式.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是红球的概率==.故选B.7.若某几何体的三视图如图所示,则该几何体是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是长方形可判断出此几何体为四棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个矩形,∴此几何体为四棱柱.故选:A.8.周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5小时后想换乘另一辆公共汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象大致如图.则小石骑行摩拜单车的平均速度为()A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时【考点】E6:函数的图象.【分析】根据函数图象得出小石骑行摩拜单车的路程为:(10﹣4)km,行驶的速度为:(1﹣0.6)小时,进而求出速度即可.【解答】解:由题意可得,小石骑行摩拜单车的平均速度为:(10﹣4)÷(1﹣0.6)=15(千米/小时),故选:C.9.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【考点】N2:作图—基本作图;KB:全等三角形的判定.【分析】根据作图得出符合全等三角形的判定定理SSS,即可得出答案.【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选D.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.当行驶速度为40km/h时,每消耗1升汽油,甲车能行驶20kmB.消耗1升汽油,丙车最多可行驶5kmC.当行驶速度为80km/h时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同D.当行驶速度为60km/h时,若行驶相同的路程,丙车消耗的汽油最少【考点】E6:函数的图象.【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:A、当行驶速度为40km/h时,每消耗1升汽油,甲车能行驶15km,错误;B、消耗1升汽油,丙车最多可行驶大于5km,错误;C、当行驶速度为80km/h时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同,正确;D、当行驶速度为60km/h时,若行驶相同的路程,甲车消耗的汽油最少,错误;故选C二、填空题(本题共18分,每小题3分)11.分解因式:2x2﹣18=2(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)12.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y=﹣x2+2x(答案不唯一).【考点】H3:二次函数的性质.【分析】直接利用二次函数的性质分析其a,c的值进而得出答案.【解答】解:∵开口向下,∴a<0,∵抛物线过坐标原点,∴c=0,∴答案不唯一,如y=﹣x2+2x.故答案为:y=﹣x2+2x(答案不唯一).13.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是 4.8m.【考点】SA:相似三角形的应用;U5:平行投影.【分析】设此树的高度是hm,再根据同一时刻物高与影长成正比即可得出结论.【解答】解:设此树的高度是hm,则=,解得h=4.8(m).故答案为:4.8.14.如果x2+x﹣5=0,那么代数式(1+)÷的值是5.【考点】6D:分式的化简求值.【分析】先将原式化简,然后将x2+x=5代入即可求答案.【解答】解:当x2+x=5时,∴原式=×=x2+x=5故答案为:515.某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为(5,120°).【考点】D3:坐标确定位置.【分析】根据坐标的意义,第一个数表示距离,第二个数表示度数,根据图形写出即可.【解答】解:由图可知,图中目标D的位置可记为(5,120°).故答案为:(5,120°).16.首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣2016年客流量统计结果如表:根据统计表中提供的信息,预估首都国际机场2017年客流量约9823万人次,你的预估理由是由之前连续3年增长率预估2017年客流量的增长率约为4.5%.【考点】V5:用样本估计总体.【分析】计算出之前连续3年客流量的增长率,估计出2017年客流量的增长率,据此可得答案.【解答】解:∵2012~2013年客流量的增长率为×100%≈2.19%,2013~2014年客流量的增长率为×100%≈2.89%,2014~2015年客流量的增长率为×100%≈4.42%2015~2016年客流量的增长率为×100%≈4.51%,∴预估2017年的客流量增长率约为4.5%,即2017年客流量约为9400×(1+4.5%)=9823(万人次),故答案为:9823,由之前连续3年增长率预估2017年客流量的增长率约为4.5%.三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:6sin60°﹣()﹣2﹣+|2﹣|.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方和开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:6sin60°﹣()﹣2﹣+|2﹣|=6×﹣9﹣2+2﹣=3﹣9﹣2+2﹣=﹣718.解不等式组:并写出它的所有整数解.【考点】CC:一元一次不等式组的整数解;CB:解一元一次不等式组.【分析】先求出不等式组的解集,再求出不等式组的整数解即可.【解答】解:解不等式①,得x≥﹣2.解不等式②,得x<1.∴原不等式组的解集为﹣2≤x<1.∴原不等式组的整数解为﹣2,﹣1,0.19.如图,在四边形ABCD中,AB∥DC,E是CB的中点,AE的延长线与DC的延长线相交于点F.求证:AB=FC.【考点】KD:全等三角形的判定与性质.【分析】欲证明AB=CF只要证明△AEB≌△FEC即可;【解答】证明:∵AB∥DC,∴∠1=∠F,∠B=∠2,∵E是BC的中点,∴BE=CE,在△AEB和△FEC中,∴△AEB≌△FEC,∴AB=FC.20.列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?【考点】8A:一元一次方程的应用.【分析】设良马x天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设良马x天能够追上驽马.根据题意得:240x=150×(12+x),解得:x=20.答:良马20天能够追上驽马.21.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.【考点】AA:根的判别式.【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,然后求出两个不等式的公共部分即可;(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.【解答】解:(1)根据题意得m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,解得m≤且m≠0;(2)∵m为正整数,∴m=1,∴原方程变形为x2+x=0,解得x1=0,x2=﹣1.22.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y=(m ≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.【解答】解:(1)∵双曲线y=(m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1;(2)符合条件的点P的坐标是(1,﹣6)或(6,﹣1).23.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质.【分析】(1)方法一:连接AC,利用角平分线判定定理,证明DA=DC即可;方法二:只要证明△AEB≌△AFD.可得AB=AD即可解决问题.(2)在Rt△ACF,根据AF=CF•tan∠ACF计算即可.【解答】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)解:连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABVD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠ACF=2.24.阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个PM2.5年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、PM10、PM2.5年均浓度值超标,其中PM2.5年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、PM10、PM2.5的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、PM10年均浓度值分别下降28.6%、4.0%、9.8%;PM2.5年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)根据以上材料解答下列问题:(1)2015年北京市二氧化氮年均浓度值为50微克/立方米;(2)请你用折线统计图将2013﹣2016年北京市PM2.5的年均浓度值表示出来,并在图上标明相应的数据.【考点】VD:折线统计图.【分析】(1)根据降低率,可得答案;(2)根据每年的数值,可得答案.【解答】解:(1)设2015年北京市二氧化氮年均浓度值为x微克/立方米,根据题意,得(1﹣4%)x=48,解得x=50,故答案为:50;(2)2013﹣2016年北京市PM2.5的年均浓度值折线统计图.25.如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=,AC=m,写出求线段CE长的思路.【考点】ME:切线的判定与性质;T7:解直角三角形.【分析】(1)连接OC,如图1中.只要证明OC∥AD,由AD⊥CD,即可证明OC ⊥CD解决问题.(2)过点B作BF⊥CE于F,如图2中.①在Rt△ACB中,根据BC=AC•tan∠CAB,求出BC.②在Rt△CFB中,由∠BCF=42°及BC的长,可求CF,BF的长;③在Rt △EFB中,由∠E的三角函数值及BF的长,可EF的长;④由CE=CF+EF,可求CE 的长.【解答】(1)证明:连接OC,如图1中.∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠3=∠2,∴∠3=∠1,∴AD∥OC,∴∠OCD=∠D=90°,又∵OC是⊙O的半径,∴CD是⊙O的切线.(2)求解思路如下:过点B作BF⊥CE于F,如图.①在Rt△ACB中,根据BC=AC•tan∠CAB,求出BC.②在Rt△CFB中,由∠BCF=42°及BC的长,可求CF,BF的长;③在Rt△EFB中,由∠E的三角函数值及BF的长,可EF的长;④由CE=CF+EF,可求CE的长.26.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.(3)性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B=64°.(4)类比学习:如图4,在凹四边形ABCD中,点E,F,G,H分别是边AD,AB,BC,CD的中点,顺次连接各边中点得到四边形EFGH.若AB=AD,CB=CD,则四边形EFGH是C.(填写序号即可)A.梯形B.菱形C.矩形D.正方形.【考点】LO:四边形综合题.【分析】(2)延长BC交AD于点M,根据三角形的外角的性质即可解决问题.(3)利用(2)中结论如图3中,设∠B=x,∠ECB=∠ECD=α,∠EAD=∠EAB=β,列出方程组即可解决问题.(3)结论:四边形EFGH是矩形.利用三角形的中位线定理,首先证明是平行四边形,再证明有一个角是90度即可.【解答】解:(2)延长BC交AD于点M∵∠BCD是△CDM的外角,∴∠BCD=∠CMD+∠D,同理∠CD是△ABM的外角,∴∠CMD=∠A+∠B,∴∠BCD=∠A+∠B+∠D;(2)如图3中,设∠B=x,∠ECB=∠ECD=α,∠EAD=∠EAB=β.由(2)可知,,解得x=64°故答案为64.(3)四边形EFGH是矩形,证明:连接AC,BD,交EH于点M,∵E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=HG=AC,EF∥HG∥AC,∴四边形EFGH是平行四边形,∵AB=AD,BC=DC,∴A、C在BD的垂直平分线上,∴AM⊥EH,已证EF∥AC,同理可证FG∥BD,∴∠EFG=90°,∴□EFGH是矩形;故答案为C.27.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4a﹣3(a≠0)的顶点为A.(1)求顶点A的坐标;(2)过点(0,5)且平行于x轴的直线l,与抛物线y=ax2﹣4ax+4a﹣3(a≠0)交于B,C两点.①当a=2时,求线段BC的长;②当线段BC的长不小于6时,直接写出a的取值范围.【考点】H3:二次函数的性质.【分析】(1)配方得到y=ax2﹣4ax+4a﹣3=a(x﹣2)2﹣3,于是得到结论;(2)①当a=2时,抛物线为y=2x2﹣8x+5,如图.令y=5得到2x2﹣8x+5=5,解方程即可得到结论;②令y=5得到ax2﹣4ax+4a﹣3=5,解方程即可得到结论.【解答】解:(1)∵y=ax2﹣4ax+4a﹣3=a(x﹣2)2﹣3,∴顶点A的坐标为(2,﹣3);(2)①当a=2时,抛物线为y=2x2﹣8x+5,如图.令y=5,得2x2﹣8x+5=5,解得,x1=0,x2=4,∴线段BC的长为4,②令y=5,得ax2﹣4ax+4a﹣3=5,解得,x1=,x2=,∴线段BC的长为,∵线段BC的长不小于6,∴≥6,∴0<a≤.28.在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.(1)将射线BE绕点B顺时针旋转45°,交直线AC于点F.①依题意补全图1;②小研通过观察、实验,发现线段AE,FC,EF存在以下数量关系:AE与FC的平方和等于EF的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的关系,只需证AE,AM,EM的关系.想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.…请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)(2)如图2,若将直线BE绕点B顺时针旋转135°,交直线AC于点F.小研完成作图后,发现直线AC上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.【考点】LO:四边形综合题.【分析】(1)①根据题意补全图形即可;②过B作MB⊥BF,使BM=BF,连接AM、EM,由正方形的性质得出∠ABC=90°,∠1=∠2=45°,AB=BC,由SAS证明△MBE≌△FBE,得出EM=EF,证出∠4=∠5,由SAS证明△AMB≌△CFB,得出AM=FC,∠6=∠2=45°,证出∠MAE=∠6+∠1=90°,在Rt△MAE中,由勾股定理即可得出结论;(2)过B作MB⊥BF,使BM=BF,连接ME、MF、AM,同(1)得:△MBF≌△EBF,得出MF=EF,同(1)得:△AMB≌△CBE,得出AM=EC,∠BAM=∠BCE=45°,证出∠MAE=∠BAM+∠BAC=90°,得出∠MAF=90°,在Rt△MAF中,由勾股定理即可得出结论.【解答】解:(1)①补全图形,如图1所示:②AE2+FC2=EF2;理由如下:过B作MB⊥BF,使BM=BF,连接AM、EM,如图2所示:∵四边形ABCD是正方形,∴∠ABC=90°,∠1=∠2=45°,AB=BC,∵∠3=45°,∴∠MBE=∠3=45°,在△MBE和△FBE中,,∴△MBE≌△FBE(SAS),∴EM=EF,∵∠4=90°﹣∠ABF,∠5=90°﹣∠ABF,∴∠4=∠5,。

北京市石景山区中考数学一模试题

北京市石景山区中考数学一模试题

北京市石景山区2018年中考数学一模试题一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =2.实数a ,b 在数轴上的位置如图所示,以下说法正确的是12–1–2abA .0a b +=B .b a <C .b a <D .0ab > 34.下列博物院的标识中不是..轴对称图形的是5.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°, 则∠C 的度数是A .40°B .65°C .70°D .80°A B C D6.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上, Rt△ABC 经过变化得到Rt△EDO ,若点B 的坐标为(01),, OD =2,则这种变化可以是A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度 C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是 A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响 很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822; ② 随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定 性,可以估计该球员“罚球命中”的概率是0.812;③ 由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809. 其中合理的是 A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分) 9.对于函数6y x=,若2x >,则y 3(填“>”或“<”). 10.若正多边形的一个外角是45°,则该正多边形的边数是_______. 11.如果5x y +=,那么代数式221+y x x yx y ÷--()的值是_______.12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦, 已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马 有x 匹,大马有y 匹,依题意,可列方程组为____________.13.如图,AB 是⊙O 的直径,CD 是弦,CD AB ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .14. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点, DE ∥BC .若6AD =,2BD =, 3DE =,则BC = .15.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m 的点B 处,用高为0.8m 的测角仪测得筒仓顶点C 的仰角为63°,则筒仓CD 的高约为____________m .(精确到0.1m ,sin 630.89≈°,cos630.45≈°,tan 63 1.96≈°)第13题图 第14题图B16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角 板画出了一个角的平分线,他的做法是这样的:如图, (1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =; (2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 .三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程.17.计算:012sin 455(3---++°18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,.19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题. 如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .OH FE DCB A20.关于x 的一元二次方程2(32)60mx m x +--=. (1)当m 为何值时,方程有两个不相等的实数根; (2)当m 为何整数时,此方程的两个根都为负整数.21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =; (2)若tan 3D =,求AB 的长.22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -. (1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥, 求m 的取值范围.23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBE F ∠=∠;(2)若⊙O的半径是D 是OC 中点,15CBE ∠=°,求线段EF 的长.24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):(1)按如下分数段整理、描述这两组数据:25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的 动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;B(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60︒时,PM 的长度约为 cm . 26.在平面直角坐标系xOy中,将抛物线21G y mx =+:0m ≠个单位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式;28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;图1备用图(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.<. 10.八. 11.5. 12.100,3100.3x y x y +=+=⎧⎪⎨⎪⎩13. 2. 14.4. 15. 40.0.16.(1)斜边和一条直角边分别相等的两个直角三角形全等; (2)全等三角形的对应角相等.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每 小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程. 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分图118.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分20.解:(1)∵24b ac ∆=- 2(32)24m m =-+ 2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分(2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数, ∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分 21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.① ②∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1.可得211(2)(2)1642m m -+-⨯=, 解得2m =-,8m =(舍).②当S △ABC =S △BCD -S △ABD =6时,如图2.可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分 23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O的半径是D 是OC 中点,∴OD = 在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==-………………5分 24.解:(1) 0,1,4,5,0,0 ………………1分 (2) 14,84.5,81 ………………4分(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小. (写出其中一条即可)或:乙,理由:在90≤x ≤100的分数段中,乙的次数大于甲.………………6分 (答案不唯一,理由须支撑推断结论)25.解:(1)4; 0. ………………2分 (2)………………4分 (3)1.1或3.7 . ………………6分 26.解:(1)A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x =+,如图所示,由题意可得AD =-=∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==∴点B的坐标为. ∵点B 在抛物线2G 上,可得3m =-.∴抛物线2G的表达式为23y x =-+,即223y x =++………………… 5分②m <<-. ………………… 7分 27.(1)补全图形如图1. ………………… 1分(2)①证明:连接∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°,∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(.………………… 6分(3)5m ≤或11m ≥. ………………… 8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石景山区2018年初三统一练习暨毕业考试数学试卷考生须知1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =2.实数a ,b 在数轴上的位置如图所示,以下说法正确的是A .0a b +=B .b a <C .b a <D .0ab > 3.下列几何体中,俯视...4.下列博物院的标识中不是..轴对称图形的是5.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°,则∠C 的度数是A .40°B .65°C .70°D .80°6.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上, Rt △ABC 经过变化得到Rt △EDO ,若点B 的坐标为(01),, OD =2,则这种变化可以是A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度 C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度y xEDACBO ABCDA B C D A B C D D . D . C . D . C . B . A . D . C . B . 12–1–2ab7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是 A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响 很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822; ② 随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定 性,可以估计该球员“罚球命中”的概率是0.812;③ 由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809. 其中合理的是 A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分) 9.对于函数6y x=,若2x >,则y 3(填“>”或“<”). 10.若正多边形的一个外角是45°,则该正多边形的边数是_______. 11.如果5x y +=,那么代数式221+y x x yx y ÷--()的值是_______.12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦, 已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马 有x 匹,大马有y 匹,依题意,可列方程组为____________.13.如图,AB 是⊙O 的直径,CD 是弦,CD AB ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .14. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点, DE ∥BC .若6AD =,2BD =, 3DE =,则BC = .15.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m 的点B 处,用高为0.8m 的测角仪测得筒仓顶点C 的仰角为63°,则筒仓CD 的高约为____________m .(精确到0.1m ,sin 630.89≈°,cos630.45≈°,tan 63 1.96≈°)16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角 板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =; (2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 . 三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:012sin 455()1833---++°.D 63°C B A 第13题图 第14题图CDEA O BDE BCAAPNBOBM18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,.19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题. 如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .20.关于x 的一元二次方程2(32)60mx m x +--=. (1)当m 为何值时,方程有两个不相等的实数根; (2)当m 为何整数时,此方程的两个根都为负整数.OH G FE DCB A21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==CE AD ⊥于点E . (1)求证:AE CE =; (2)若tan 3D =,求AB 的长.22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -.(1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥,求m 的取值范围.23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBE F ∠=∠;(2)若⊙O的半径是D 是OC 中点,15CBE ∠=°,求线段EF 的长.24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤74 75≤x≤79 80≤x≤84 85≤x≤89 90≤x≤94 95≤x≤100 学生甲乙 1 1 4 2 1 1 (2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲83.7 86 13.21乙24 83.7 82 46.21 (3)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙),理由为.25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的 动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60︒时,PM 的长度约为 cm .B26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:(0m ≠长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.图1 备用图28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线3y x = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.石景山区2018年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.<.10.八.11.5. 12.100,3100.3x yxy+=+=⎧⎪⎨⎪⎩13.2.14.4.15.40.0.16.(1)斜边和一条直角边分别相等的两个直角三角形全等;(2)全等三角形的对应角相等.三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.解:原式=2512⨯-+-………………4分4=--………………5分18.解:原不等式组为3(1)45,62.2x xxx+>++<⎧⎪⎨⎪⎩解不等式①,得2x<-.………………2分解不等式②,得2x<.………………4分∴原不等式组的解集为<2x-.………………5分19.解:3,2,1;………………2分EB、BF;FC、CG;GD、DH;HA.………………4分20.解:(1)∵24b ac∆=-2(32)24m m=-+2(32)0m=+≥①②图1∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分(2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数, ∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分 21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(2)1642m m -+-⨯=, 解得2m =-,8m =(舍).②当S △ABC =S △BCD -S △ABD =6时,如图2.可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分 23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O 的半径是D 是OC 中点, ∴OD =在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==- ………………5分 24.解:(1) 0,1,4,5,0,0 ………………1分(2) 14,84.5,81 ………………4分 (3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定; 两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小. (写出其中一条即可)或:乙,理由:在90≤x ≤100的分数段中,乙的次数大于甲.………………6分 (答案不唯一,理由须支撑推断结论)25.解:(1)4; 0. ………………2分 (2)………………4分(3)1.1或3.7 . ………………6分 26.解:(1)A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x =-+如图所示,由题意可得AD ==∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==∴点B的坐标为.∵点B 在抛物线2G 上,可得3m =.∴抛物线2G的表达式为2(3y x =--+,即223y x x =+ ………………… 5分②m <<-. ………………… 7分 27.(1)补全图形如图1. ………………… 1分(2)①证明:连接∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(). ………………… 6分(3)5m -≤或11m ≥. ………………… 8分。

相关文档
最新文档