南开大学数学文化-14若干数学典故中的数学文化-韩信点兵与中国剩余定理共77页
韩信点兵又称为中国剩余定理

簡介:韓信點兵又稱為中國剩餘定理,乃由於相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人一列餘6人……。
劉邦茫然而不知其數。
韓信點兵是一個很有趣的猜數遊戲,隨便抓一把蠶豆粒,假若3個一數餘1粒,5個一數餘2粒,7個一數餘2粒,那麼所抓的蠶豆有多少粒?這類題目看起來是很難計算的,可是中國古時卻流傳著一種算法,它的名稱也很多,宋朝周密叫它「鬼谷算」,又名「隔牆算」;楊輝叫它「剪管術」;而比較通行的名稱是「韓信點兵」。
最初記述這類算法的是一本名叫「孫子算經」的書,後來在宋朝經過數學家秦九韶的推廣,又發現了一種算法,叫做「大衍求一術」,流傳到西洋以後,外國化稱它是「中國剩餘定理」,在數學史上是極有名的問題。
至於它的算法,在「孫子算經」上就已經有了說明:“凡三三數之剩一,則置七十;五五數之剩一,則置二十一;七七數之剩一,則置十五”,而且還流傳著這麼一首歌訣:三人同行七十稀,五樹梅花廿一枝,七子團圓正半月,除百零五便得知。
這就是韓信點兵的計算方法,《孫子算經》中給出了其中關鍵的步驟是:但在《孫子算經》中並沒有說明求乘數的方法,直到1247年宋代數學家秦九韶在《數書九章》中才給出具體求法:70是5與7最小公倍的2倍,21、15分別是3與7、3與5最小公倍數的1倍。
秦九韶稱這2、1、1的倍數為“乘率”,求出乘率,就可知乘數,意思是說:凡是用3個一數剩下的餘數,將它用70去乘(因為70是5與7的倍數,而又是以3去除餘1的),5個一數剩下的餘數,將它用21去乘(因為21是 3與 7的倍數,又是以5去除餘1的),7個一數剩下的餘數,將它用15去乘(因為15是3與5的倍數,又是以 7去除餘 1的),最後將70、5、15這些數加起來,若超過105,就再減掉105,所得的數便是原來的數了。
根據這個道理,你就可以很容易地把前面一個題目列成算式:1×70+2×21+2×15-105=142-105=37。
“韩信点兵法”和中国剩余定理

“韩信点兵法”和中国剩余定理中国古代数学有几项研究曾经远远领先于世界,被西方称为“中国剩余定理”的算法就是其中之一。
定理中蕴含的数学思想,在世界近代数学的很多分支中都可以找到其身影。
韩信是西汉时期的名将,同时也是中国历史上排得上号的著名军事家。
关于他有各种各样或真或假的传说,其中就有一个跟数学有很密切的关系。
据说有一次韩信率领1500人与楚军大战,楚军败退,汉军也伤亡四五百人。
韩信率军回营途中,军士又报告楚军来袭,韩信马上命令整队迎战。
他先按3人一排列队,多出2人;又按5人列队,多出3人;再按7人列队,多出2人。
于是他鼓舞士兵们说,我们一共有1073人,而楚军不足500人,我们一定能战胜楚军。
汉军士气大振,果然大败楚军。
这就是所谓“韩信点兵法”。
在这个故事中关于列队方式有各种不同的说法,但在数学上这都属于数论中的余数问题。
这类问题对于同余理论的发展有重要的推动作用。
中国数学家在余数问题上有很多世界领先的研究成果。
例如古代数学名著《孙子算经》里有一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。
问物几何?”翻译成数学语言就是:求正整数N,使N除以3余2,除以5余3,除以7余2。
如何求符合上述条件的正整数N呢?《孙子算经》给出了一个非常有效的巧妙解法。
“三、三数之剩二,置一百四十;五、五数之剩三,置六十三;七、七数之剩二,置三十,并之,得二百三十三。
以二百一十减之,即得。
凡三、三数之剩一,则置七十;五、五数之剩一,则置二十一;七、七数之剩一,则置十五。
一百六以上,一百五减之,即得。
”这段文言读起来有点拗口,但如果读完本文下面的内容,再回头看就不难理解了,所以暂时先不解释。
《孙子算经》后的一千多年,十六世纪的数学家程大位在其所著的《算法统宗》里以歌谣的方式给出了这个问题的解法。
三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得之。
在歌谣的前三句中,每句给出一组数,分别是(3,70),(5,21),(7,15)。
中国剩余定理与韩信点兵

中国剩余定理与韩信点兵例1:一个两位数,用它除58余2,除73余3,除85余1,这个两位数是多少?分析解答:用一个两位数除58余2,除73余3,除85余1,那么58-2=56,73-3=7 0,85-1=84能被这个两位数整除,这个两位数一定是56、70和84的公约数。
由可可见,56、70、84的两位数公约数是27=14,可见这个两位数是14。
例2:有一个数,除以3余数是1,除以4余数是3,这个数除以12余数是多少?分析解答:因为除以3余数是1的数是1,4,7,10,13,16,19,22,25,28,31,…除以4余数是3的数是3,7,11,15,19,23,27,31…所以,同时符合除以3余数是1,除以4余数是3的数有7,19,31,…这些数除以12余数均为7。
例3:学习委员收买练习本的钱,她只记下四组各交的钱,第一组2.61元,第二组3.19元,第三组2.61元,第四组3.48元,又知道每本练习本价格都超过1角,全班共有_____人。
分析解答:根据题意得319-261=练习本单价第二、一组人数之差,348-319=练习本单价第四、二组人数之差。
即练习本单价第二、一组人数之差=58,练习本单价第四、二组人数之差=29,所以,练习本单价是58与29的公约数,这样,练习本的单价是29分,即0.29元。
因此,全班人数是[注]这里为了利用练习本单价是总价的公约数这一隐含条件,将小数化成整数来考虑,为解决问题提供了方便。
这里也可直接找261、319和348的公约数,但比较困难。
上述解法从一定意义上说是受了辗转相除法的启示。
拓展训练营:1、有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个。
这盒乒乓球至少有多少个?2、求被6除余4,被8除余6,被10除余8的最小整数。
3、一盒围棋子,三只三只数多二只,五只五只数多四只,七只七只数多六只,若此盒围棋子的个数在200到300之间,问有多少围棋子?4、求一数,使其被4除余2,被6除余4,被9除余8。
中国剩余定理

中国剩余定律2010-05-25 19:15:29| 分类:Algorithm | 标签:|字号大中小订阅在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立了卓绝的功劳。
据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵。
这个故事中所说的韩信点兵的计算方法,就是现在被称为“中国剩余定理”的一次同余式解法。
它是中国古代数学家的一项重大创造,在世界数学史上具有重要的地位。
最早提出并记叙这个数学问题的,是南北朝时期的数学著作《孙子算经》中的“物不知数”题目。
这道“物不知数”的题目是这样的:“今有一些物不知其数量。
如果三个三个地去数它,则最后还剩二个;如果五个五个地去数它,则最后还剩三个;如果七个七个地去数它,则最后也剩二个。
问:这些物一共有多少?”用简练的数学语言来表述就是:求这样一个数,使它被3除余2,被5除余3,被7除余2。
《孙子算经》给出了这道题目的解法和答案,用算式表示即为:用现代的数学术语来说,这幅“开方作法本源图”实际上是一个指数为正整数的二项式定理系数表。
稍懂代数的读者都知道:《孙子算经》实际上是给出了这类一次同余式组的一般解:其中70、21、15和105这四个数是关键,所以后来的数学家把这种解法编成了如下的一首诗歌以便于记诵:“三人同行七十(70)稀,五树梅花二一(21)枝。
七子团圆正半月(15),除百零五(105)便得知。
”《孙子算经》的“物不知数”题虽然开创了一次同余式研究的先河,但由于题目比较简单,甚至用试猜的方法也能求得,所以尚没有上升到一套完整的计算程序和理论的高度。
第六章第一节 韩信点兵与中国剩余定理

第六章 游戏中的数学逻辑第一节 韩信点兵与中国剩余定理一、“韩信点兵”和《孙子算经》1、“韩信点兵”的故事这里面有什么秘密呢?2、《孙子算经》中的题目我国古代数学名著《孙子算经》中,有“物不知数”的题目:今有物不知其数,三三数之剩2,五五数之剩3,七七数之剩2,问物几何?答案是23,那么,这个23 是如何求得的呢?二、问题的解答1、换个问题入手1)同类问题今有物不知其数,二二数之剩1,三三数之剩2,四四数之剩3,五五数之剩4,六六数之剩5,七七数之剩6,八八数之剩7,九九数之剩8,问物几何?2)筛法启发我们想到,要解原问题,只要从上边筛选下的数中,继续挑出“用4 除余3”的数:11,23,⋯再挑“用5 除余4”的数,⋯一直筛选下去,舍得下功夫,就一定可得结果,并且看起来,解,还不是唯一的,可能有无穷多个解。
3)公倍数法那么,除了刚才的筛法外,还有没有巧妙的解法?我们考察上边两个方程的特点,发现,两个“带余除法”的式子,都是“余数比除数少1”。
于是想到,如果把被除数再加1,不是余数就为0 了吗?换句话说,不是就出现整除的情况了吗?于每个方程两边都加上1,成为。
这说明,x +1既是2 的倍数,又是3 的倍数,因此,它是2 与3的公倍数。
如果用[2,3]表示2 和3 的最小公倍数,那么,因为公倍数都是最小公倍数的倍数,就有:x +1 = k [2,3], k =1,2,3,4, ⋯。
注意到[2,3]=6,所以“只有前两个条件的简化题目”的解为即 x = 6k −1,k =1,2,3,4,…有无穷多个解,即 x = 5,11,17,23, … 与前一解法结果相同。
的。
三、中国剩余定理1221.32x n x x n =+⎧⎨=+⎩中的1212(1)13(1)x n x n +=+⎧⎨+=+⎩。
中国古代史上最完美和最值得骄傲的数学成果:中国剩余定理

中国古代史上最完美和最值得骄傲的数学成果:中国剩余定理导言:本文将介绍中国古代最完美和最值得骄傲的数学成果“中国剩余定理”,希望能有更多的读者和学生能重视我们国家的传统文化,并通过对中国剩余定理的了解和学习喜欢上数论。
在中外几乎每一本基础数论的教课书中,都会介绍一个被称之为“中国剩余定理”(Chinese Remainder Theorem)的知识。
在我的印象里,自己是在小学四五年级的时候接触到这个知识的,并知道如何去应用它,但要等到初中后才真正明白其原理。
中国剩余定理是中国古代史上最完美和最值得骄傲的数学成果,它是中国对世界数学思想史的重要贡献。
但很遗憾,现在的孩子大部分都已经不学这部分知识。
距我当年学习这部分内容已经近三十年了,我不知道我们的数学教育到底出了什么问题。
那么,今天我们就来了解和学习一下这个数论中的著名定理“中国剩余定理”。
第一部分:问题的起源中国剩余定理起源于我国南北朝时期的数学著作《孙子算经》,因此又名“孙子剩余定理”。
《孙子算经》,中国南北朝数学著作,《算经十书》之一。
全书共分三卷:上卷详细的讨论了度量衡的单位和筹算的制度和方法;中卷主要是关于分数的应用题,包括面积、体积、等比数列等计算题,大致都在《九章》中论述的范围之内;下卷对后世的影响最为深远,如下卷第31题即著名的“鸡兔同笼”问题,后传至日本,被改为“鹤龟算”。
下卷第26题“物不知数”为后来的“大衍求一术”的起源,被看作是中国数学史上最有创造性的成就之一,称为“中国剩余定理”。
经考证,《孙子算经》的作者与《孙子兵法》的孙武并非同一人。
“中国剩余定理”在古代有“韩信点兵”、“鬼谷算”、“求一术”、“隔墙算”、“剪管术”、“秦王暗点兵”、“物不知数”、“孙子定理”之名,是数论中主要命题,它不仅在抽象代数理论中有相应的推广,也被应用到密码学、哥德尔不完全性定理的证明、快速傅里叶变换理论等。
首先,引述《孙子算经》中“物不知数”的原文:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:二十三。
第三模块重点学习内容韩信点兵与中国剩余定理

《孙子算经》中的题目 孙子算经》
我国古代数学名著《孙子算经》中有“物不知数” 我国古代数学名著《孙子算经》中有“物不知数” 的题目: 的题目: 今有物不知其数, 今有物不知其数, 三三数之剩2 三三数之剩2, 五五数之剩3 五五数之剩3, 七七数之剩2 七七数之剩2, 问物几何? 问物几何? 这里面又有什么秘密呢?题目给出的条件, 这里面又有什么秘密呢?题目给出的条件,也仅仅是 作除法时的余数 余数。 作除法时的余数。
0≤r<b
当余数r =0时 整” 当余数 =0时,则 a=bq,称为 “a被b整除”,或“b , 被 整除 的另一种表达形式。 ” 的另一种表达形式。
所以,带余除法是通常除法的推广。 所以,带余除法是通常除法的推广。
11
回到求“用2除余1的数”的问题。 回到求“ 除余1的数”的问题。 设这样的数为x, 这里x是被除 设这样的数为 ,则 x = 2n1 + 1。这里 是被除 是除数, 是商, 是余数, 数,2是除数, n1 是商,1是余数,且 0 ≤ 1 < 2 。 就是“带余除法” x = 2n1 + 1(0 ≤ 1 < 2) 就是“带余除法”的式 子. 当取 组成上述数列
10
所谓“带余除法” 是指整数的如下 除法” 所谓“带余除法”,是指整数的如下 “除法”: 整数
对任意给定被除数a,不为零的除数 , 对任意给定被除数 ,不为零的除数b,必唯一存在商 q和余数 ,使 和余数r, 和余数
a = bq + r ,
a 整除a”,这是通常除法“ 整除 ,这是通常除法b = q “
1,3,5,7,9,11,13,15,17,19,21,23,25,… 1,3,5,7,9,11,13,15,17,19,21,23,25,
南开大学-数学文化

一个国家的科学的进步,可以用它消耗 的数学来度量 。
22
三、 “数学文化”课的开设
1.开课的概况
开课的背景:南开大学是2019年首批建立的32个“国家大学生文化素质
教育基地”之一,现在已开设文化素质教育类的课程近百门。
开设的时间:2019年2月以来,现在是第十轮。
第四章 若干数学观点中的数学文化
§1.“抽象”的观点
§2.“对称”的观点
§3.“类比”的观点
§4.“转化”的观点
§5.“数理统计”的观点
§6.“数学机械化”的观点
§7.“相容性、独立性和完全性”的观
点
43
(每轮讲其中的一部分)
与一般数学课的区别
一般的数学课,是以数学的知识系统为线索来组织材料, 进行教学。 “数学文化”课,则可以从数学典故、数学问 题、数学方法、数学观点、数学思想等角度切入,并以它 们为线索来组织材料,进行教学。
二、什么是“数学文化”
1.“文化”
狭义:“文化”就是“知识”,说一个人“有文 化”,就是说他“有知识”。
广义:“文化”是人类社会历史实践过程中所创 造的物质财富和精神财富的积淀,有相对的稳定性。
例如,“中华文化”、“校园文化”、“佛教文化” 中的“文化”,就是广义的文化。
“数学文化”中的“文化”,也是指广义的“文
(假设两龟均作匀速直线运动)
37
某外企招考员工的又一道题
有三个筐,一个筐装着柑子,一个筐装着
苹果,一个筐混装着柑子和苹果。装完后封
好了。
然后做了“柑子”、“苹果”、“混装”三个标 签,
分别往上述三个筐上贴。由于马虎,结果全
都贴错了。