数学人教版八年级下册正比例函数的图像与性质
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案

在小组讨论环节,我发现学生们对于正比例函数在实际生活中的应用有着很高的热情,他们能够提出很多有趣的例子。但是,如何将这些例子抽象成数学模型,并运用正比例函数的性质来分析问题,这对他们来说是一个挑战。在这方面,我应该提供更多的引导和示范,让学生学会如何将实际问题转化为数学问题。
-正比例函数性质的掌握:明确当k>0时,函数值随x增大而增大;当k<0时,函数值随x增大而减小。
举例:通过实例说明,如一辆汽车以恒定速度行驶,行驶的距离与时间成正比,这里的比例系数k就是速度。
2.教学难点
-正比例函数图像的绘制:学生需要掌握如何根据函数表达式绘制出准确的图像,特别是对于k值的理解和应用。
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案
一、教学内容
人教版初中数学八年级下册第19章《函数》第二节《正比例函数的图像和性质》。本节课主要内容包括:
1.正比例函数的定义:形如y=kx(k≠0)的函数称为正比例函数。
2.正比例函数的图像:在直角坐标系中,正比例函数的图像是一条通过原点的直线。
五、教学反思
在今天的教学中,我发现学生们对正比例函数的概念和图像性质有了初步的理解,但仍然存在一些难点需要进一步突破。首先,正比例函数的定义对于部分学生来说还不够清晰,他们在理解y=kx(k≠0)这个表达式时显得有些吃力。在讲解过程中,我应该更形象地举例,比如用速度与时间的关系来说明k值的意义,让学生更直观地感受到正比例函数的实际意义。
-正比例函数性质的深入理解:学生可能会对k值的正负与图像斜率的关系感到困惑,需要通过具体实例和图形帮助学生理解。
人教版八年级数学下册19.2.1正比例函数的图像与性质教学设计

(激发学生主动学习的热情,树立自信心,形成积极向上的学习态度。
2.通过小组合作交流,培养学生团结协作、互相帮助的精神,增强团队意识。
3.让学生认识到数学与现实生活的紧密联系,体会数学在生活中的重要性,培养学生的应用意识和实践能力。
-重难点突破设想:通过动态演示或手工绘制正比例函数图像,让学生直观感受图像的形成过程,并结合实际例子,引导学生发现和总结性质。
2.正比例函数在实际问题中的应用是另一个教学难点,学生需要掌握如何将现实问题转化为数学模型,并利用正比例函数的知识解决。
-重难点突破设想:设计多样化的实际问题,如涉及速度、比例尺等,让学生在解决问题的过程中学会建立数学模型,运用正比例函数的知识。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让每个小组讨论以下问题:
a.正比例函数图像的特点;
b.正比例函数在实际生活中的应用;
c.如何根据给定的点或斜率求解正比例函数的表达式。
2.分享交流:各小组派代表分享讨论成果,其他小组进行补充或质疑。通过讨论,让学生深入理解正比例函数的性质和图像特点。
(四)课堂练习
2.情境创设:向学生展示一组生活实例,如一辆汽车以恒定速度行驶,行驶时间和行驶距离的关系。引导学生观察数据,发现行驶距离与时间成正比关系,从而引出正比例函数的概念。
3.提出问题:在复习一次函数的基础上,提问学生:“一次函数y=kx+b中,当b=0时,图像会有什么特点?”通过这个问题,激发学生的好奇心,为新课的学习做好铺垫。
因此,在教学过程中,教师应关注学生的个体差异,因材施教,通过启发式教学、小组合作等方式,引导学生主动探究,提高学生的数学素养和解决问题的能力。同时,注重激发学生的学习兴趣,培养良好的学习习惯,使学生在轻松愉快的氛围中学习正比例函数的知识。
《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)

y =2x
6
4
y= 1 x
2
3
-5
O
-2
5
x
三.类比学习
当k<0 时,正比例函数的图象特征及 性质又怎样呢?
请各小组画出函数y =-3x 和y =-1.5x 的 图象,进行小组合作研究.
总结提升
y=kx (k是常数,k≠0)的图象是一条经过 原点的直线
函数 大致图象 经过的象限 从左 y随x的 向右 增大而
y=kx k>0
第三、一象限 上升 增大
y=kx k<0
第二、四象限 下降 减小
现在,我们有画正比例函数图象的简便 画法了吗?
四.正比例函数的性质
正比例函数的图象都是经过原点的一条直线 (1)当k>0时,函数y=kx的图象经过三、一象限
从左到右上升,即函数y随x的增大而增大 (2)当k<0时,函数y=kx的图象经过二、四象限,
点(0, 0 )与点( 1,-3 ), y随x的增大 而 减小 。 3.下列图象哪个可能是函数y=-1.2x的图象( B)
A
B
C
D
你一定行!
4.请用两点画出直线 y 4x 的图象。
5.若点 (-1,m),(2,n)都在直线y=-4x上, 试比较m,n的大小
你一定行!
五、知识回顾 谈谈本节课你的收获。
六、分层作业
必做题:P120第一、二题。 选做题:若点 (-1,a),(2,b)都在 直线y=kx上,试比较a,b的大小
课件说明
本课是在上一节课学习正比例函数概念的基础上,进 一步研究其图象及其性质.
学习目标: 1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式 y =k(k≠0)
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案[001]
![人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案[001]](https://img.taocdn.com/s3/m/3de6a999c850ad02df80411f.png)
19.2 一次函数19.2.1 正比例函数——正比例函数的图象与性质【知识与技能】1.能够画出正比例函数的图象.2.能够根据正比例函数的图象归纳正比例函数图象的性质.3.能够利用正比例函数解决简单的数学问题.【过程与方法】1.通过实例,体会建立数学模型的思想.2.通过正比例函数图象的学习与研究,感知数形结合思想.【情感态度】结合描点作图,培养学生认真、细心、严谨的学习态度.【教学重点】正比例函数的图象与性质.【教学难点】正比例函数的图象与性质一、复习回顾正比例函数的概念(练习回顾)已知y-3与x成正比例,当x=2时,y=7,求y与x之间的函数解析式. 解:设y-3=kx,∵当x=2时,y=7,代入得7-3=2k,∴k=2,即y-3=2x,则y=2x+3二、思考探究,获取新知例1.画出下列正比例函数的图象(1)y=2x,y=1/3x;(2)y=-1.5x,y=-4引导学生用描点法将这四个正比例函数的图象画在同一个平面直角坐标系中,鼓励学生探索图象特征,引导学生归纳的结果围绕以下几个方面:(1)图象都是经过原点的直线.(2)函数y=2x和y=1/3x的图象从左向右递增,经过一、三象限.(3)函数y=-1.5x和y=-4x的图象从左向右递减,经过二、四象限.教师总结正比例函数的图象与性质:一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,当k>0时,直线过第一、三象限,y随x的增大而增大;当k<0时,直线过第二、四象限,y 随x的增大而减小.例1已知正比例函数的图象过点(2m,3m),m≠0,求这个正比例函数的解析式.解:设正比例函数的解析式为:y=kx.把(2m,3m)代入得3m=k·2m,解得k=3 2 .∴解析式为y=32 x.【教学说明】正比例函数中只含有一个待定系数,只需知道一点坐标即可求得其解析式.例2 已知(x1,y1)、(x2,y2)是直线y=-2x上的两点,若x1>x2,则y1,y2的大小关系是( ).A.y1<y2B. y1>y2C. y1= y2D.不能比较【分析】因为y=-2x中-2<0,即直线y=-2x的函数值是随x的增大而减小的,所以当x1>x2时,y1<y2,故选A.【教学说明】通常我们在x的某一范围内取x1<x2,若点(x1,y1),(x2,y2)为函数图象上的两点,当y1<y2时,该函数在这个范围内y随x的增大而增大;当y1>y2时,该函数在这个范围内y随x增大而减小.三、运用新知,深化理解1.已知正比例函数y=(k+3)x.(1)k为何值时,函数的图象经过一、三象限.(2)k为何值时,y随x的增大而减小.(3)k为何值时,函数图象经过点(1,1).2.已知(x1,y1)、(x2、y2)是直线y = x上的两点,若x1>x2,则y1,y2的大小关系是().A.y1<y2B.y1>y2C.y1=y2D.不能比较3.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点横坐标为-2,求△POA的面积(O为坐标原点).【教学说明】以上各题由学生自主探究,有疑问的教师加以指导,最后评析.四、师生互动,课堂小结问题1.正比例函数的图象是什么?它有什么特征?2.如何简便地画出正比例函数的图象?3.本节课的学习经历了怎样的过程?你有何感悟?1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.因从本课时开始,学生将逐渐认识并理解各类具体的函数图象,一般的基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征,结合学生已有的知识与经验和后面的学习内容与要求,本课时重在引领学生认识正比例函数的概念、图象的画法和应用性质的基本步骤,为后续学习指明方向和打下坚实的基础,利于研究更复杂的具体函数.教学中引导学生观“形”识“信息”,逐步形成读图能力,以及解题能力.。
八年级数学下册教学课件《正比例函数的图象与性质》

求正比例函数解析式的步骤: (1)设:设出正比例函数解析式 y = kx(k 是常数,k ≠ 0); (2)代:将一组 x,y 的值代入函数解析式,得到关于 k 的 方程; (3)求:解方程求出 k 的值; (4)写:写出正比例函数解析式.
巩固练习
题型一 正比例函数的图象和性质的运用
1.已知关于 x 的正比例函数 y = (m+1) xm23 ,若 y 随 x
y
(2)y = -1.5x,y = -4x;
6 5
① 列表
3
2
② 描点
1 –6 –5 –4 –3 –2 –1 O
–1
③ 画线
–2
–3
–4
–5
–6
1 23 4 5 6 x
y = -1.5x
x … -1 0 1 … y … 4 0 -4 …
(2)y = -1.5x,y = -4x; ① 列表 ② 描点 ③ 画线
知识点二 正比例函数的性质
当 k > 0 时,直线 y = kx 从左向右上升,即随着 x 的增大 y 也增大; 当 k < 0 时,直线 y = kx 从左向右下降,即随着 x 的增大 y 反而减小;
思考
经过原点与点(1,k)(k 是常数,k ≠ 0)的直线是 哪个函数的图象?画正比例函数的图象时,怎样画最简单? 为什么?
y
6 5 4 3 2 1
–6 –5 –4 –3 –2 –1 O –1 –2 –3 –4 –5 –6
1 23 4 5 6 x
y = -1.5x y = -4x
图1
图2
【观察发现】 4 个函数图象都是经过原点的直线. 图1 中的函数图象经过第三、第一象限.
图2 中的函数图象经过第二、第四象限.
初中人教版数学八年级下册:19.2.1 第2课时 正比例函数的图象和性质 习题课件(含答案)

k<0
大 致 图 象
k>0
k<0
大 图象是自左向右_上__升__ 图象是自左向右_下__降_
致 的,经过第 一、三 象 的,经过第 二、四 象
图 限.
限.
象
|k|越大,图象越陡(即越靠近y轴).
性 质 y随x的增大而 增大 .
y随x的增大减而小 .
例 已知正比例函数 y=(m+2)x.求: (1)m 为何值时,函数图象经过第一、三象限; 解:(1)由题可知 m+2>0,解得 m>-2.
(2)m 为何值时,y 随 x 的增大而减小; (3)m 为何值时,点(1,3)在该函数的图象上. (2)由题可知 m+2<0,解得 m<-2. (3)∵点(1,3)在正比例函数 y=(m+2)x 的 图象上, ∴m+2=3.解得 m=1.
方法点拨:正比例函数 y=kx(k≠0)中,k 的符号决定直线上升或下降,在利用正比例 函数的性质解决问题时,常结合方程或不等 式求解.
y=-2x(答案不唯一)
.
4.在正比例函数 y=(k-2)x 中,y 随 x 的增大而
增大,则 k 的取值范围是 k>2 .
5.已知正比例函数 y=kx 的图象经过点 M(-2,4). (1)求 y 的值随 x 值的 变化情况;
(1)∵正比例函数 y=kx 的图象经过点 M(-2,4), ∴4=-2k. 解得 k=-2<0. ∴y 随 x 的增大而减小.
(2)画出这个函数的图象. (2)如图所示.
知识要点 正比例函数的象和性质
正比例函数y=kx(k≠0) 正比例函数y=kx(k≠0)的图象是一 形状 条经过 原点 的直线,我们称它为
直线y=kx .
正比例函数y=kx(k≠0) 根据两点确定一条直线,画y=kx 画法 (k≠0)的图象时,一般选(0,0 )和(1,k)两点比较简便.
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案设计

19.2.1正比例函数图像与性质一、教学目标(1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。
(2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想。
(3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、教学的重点和难点教学重点:正比例函数的性质及其应用。
教学难点:发现正比例函数的性质。
三、教学方法与学法指导教学方法:通过本节课的教学,我选用引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图像),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生学会观察、归纳的学习方法。
四、教学过程:(一)情景引入当今网络已经越来越普及,可以用电脑上网,手机上网等,我们班级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么?这个函数是我们前面学习的正比例函数吗?用描点法,你能画出这个函数的图象吗?(二)学习新知画出下列正比例函数的图象,并进行比较, (1)y=2x;解:(1)列表:函数y=2x中自变量x可以是任意实数.列表表示几组对应值:描点,连线,画出图象,如图所示:练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较:y=2x y=-2x问题:观察所画的四个函数图象,填写你发现的规律:①四个函数图象都是经过 的直线.②函数y=2x 的图象经过第 象限,从左向右 (呈什么趋势),即y 随x 的增大而 ;③函数y=-2x 的图象经过第 象限,从左向右,即y 随x 的增大而 。
小结正比例函数y=kx (k ≠0)的性质:(1)图象是经过原点的一条直线.(2)当k >0时,图象经过第一、三象限,从左向右上升,y 随x 的增大而增大(递增).(3)当k <0时,图象经过第二、四象限,从左向右下 降,y 随x 的增大而减小(递减).思考画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx知识拓展(1)正比例函数y=kx可以说成y与x成正比例,要求函数关系式,只需通过x,y 的一组对应值求出k,从而确定关系式.(2)正比例函数的图象是过原点的直线,当k>0时,直线从左到右呈上升趋势,经过第一、三象限;当k<0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时,只需要选取除原点外的一点,再过原点和选取点画直线即可,选取的点一般为点(1,k).(3)正比例函数的性质可以逆用.如当正比例函数y=kx(k≠0)中y随x的增大而增大时,k>0,反之,k<0;若正比例函数的图象过第一、三象限,则k>0等.例:(补充)(1)已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是?〔解析〕设正比例函数的解析式为y=kx,把点(-1,3)代入解析式求出k的值即可.解:(1)设正比例函数的解析式为y=kx,∵正比例函数的图象经过点(-1,3),∴-k=3,∴k=-3,∴这个正比例函数的表达式是y=-3x.例:(补充) 已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;〔解析〕把点(2,-4)代入y=kx中列方程进行求解.解:∵点(2,-4)在正比例函数y=kx的图象上,∴2k=-4, ∴k=-2.(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;〔解析〕把点(-1,m)代入(1)中函数解析式列方程进行求解.解:由k=-2得y=-2x,∵点(-1,m)在函数y=-2x的图象上,∴m=-2×(-1)=2.教学反思由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数
1.理解正比例函数的概念,并掌握正比例函数图象和性质;(重点)
2.运用正比例函数解决简单的问题.(难点)
一、情境导入
问题1 2011年开始运营的京沪高速铁路全长1318千米设列车的平均速度为300千米每小时。
考虑以下问题:
(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时?(保留一位小数)(2)京沪高铁的行程ykm与时间th之间有何数量关系?
(3)从北京南站出发2.5小时后是否已过了距始发站1100千米的南京南站?
二、合作探究
探究点一:正比例函数
【类型一】辨别正比例函数
下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:
(1)圆的周长l 随半径r的变化而变化.r
=
lπ
2
(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化. m=7.8v
方法总结:正比例函数自变量的指数为1,系数不能为0.
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.
注: 正比例函数y=kx(k≠0)的结构特征①k≠0 ②x的次数是1
判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?
(1)y2=4x (2)y=-4x+3
不是正比例函数不是正比例函数
(3)y=2(x-2x)+22x
是正比例函数,化简后为y=2x,正比例系数为2.
注:判定一个函数是否是正比例函数,要从化简后来判断!
例2(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足________________.
(2)如果y=kxk-1,是y关于x的正比例函数,则k=__________.
(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_________.
( 4)若
3
2
)2
(-
-
=m x
m
y是关于x的正比例函数,m=_________.
.
探究点二:正比例函数的图象和性质
【类型一】 正比例函数的图象 用描点法试画出下列正比例函数的图象 (1)y=2x, y=1
3 x
画图步骤:1.列表2.描点3.连线
这些图象都是经过原点的直线 ,函数y=2x 的图象从左向右上升,经过第
y
=
一、三 、象限,y 随x 的增大而增大 ;函数 y=1
3 x 的图象从左向右上
升,经过第一、三 象限,y 随x 的增大而增大。
. 当k <0 时,正比例函数的图象特征及性质又怎样呢? 根据前面的方法,请你画出 y=-1.5x , y=-4x 的图象
和你画的一样吗?
知识要点:
y y =-4x
知识要点:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点 (1,k),连线即可.
例4 若正比例函数y=(k-3)x满足下列条件,求出k的范围.
(1)y 随x的增大而增大; k>3
(2)图象经过一、三象限; k>3
课堂小结:
三、板书设计
1.正比例函数的图象
2.正比例函数的性质
3.正比例函数解析式的确定
本节课在教师引导下使学生通过自己的观察、研究、自学和小组的探索、讨论来发现问题、解决问题,再通过教师的点拨、总结进行知识归纳,理论提升的教学方法.由学生亲自来发现事物的特征和规律,更能使学生产生兴奋感、自信心,激发学生兴趣,产生自主学习的内在动力,更有利于发展学生的创造性思维能力.。