电子效应和空间效应
有机化学 电子效应和空间效应

+ C H3C O O + H3O
C lC H 2 C O O H + H 2 O
+ H3O + C lC H 2 C O O
-
例2 乙醛的水合反应是可逆的,形成的水 化物很不稳定,只能存在于稀水溶液中。而三 氯乙醛的水合反应则比较容易,能生成稳定的 水合物并能离析和长期存在。主要是由于三氯 甲基强烈的-I效应使羰基碳原子带部分正电荷, 亲核反应容易进行,同时水合三氯乙醛因形成 氢键也增加了稳定性。
2.1.7.4 对化学平衡的影响
例1 酸碱的强弱是由其解离平衡常数的大小来衡 量的,在酸碱的分子中引入适当的取代基后,由 于取代基诱导效应的影响,使酸碱离解平衡常数 增大或减小。如乙酸中的一个α-氢原子被氯原子 取代后,由于氯的-I效应,使羧基离解程度加大, 而且使生成的氯乙酸负离子比乙酸负离子稳定, 所以K2>K1 :
2.1.7.2 对反应机理的影响
在一些反应中,由于诱导效应等因素可以改变 其反应机理。如溴代烷的水解反应,伯溴代烷如 CH3—Br主要按 SN2历程进行,而叔溴代烷如
(CH3)3C—Br则主要遵从SN1历程进行。
2.1.7. 3 对反应速率的影响
例1 羰基的亲核加成反应,羰基碳原子的电子 云密度越低,就越容易和亲核试剂发生加成反应, 在这种情况下,分子所需要的活化能就比较小, 容易进入活化状态,因而反应速率较大。故取代 基的-I效应愈强,愈有利于亲核加成;取代基的 +I效应愈强,对亲核加成愈不利。 如下列化合物发生亲核加成的活性顺序为: Cl3C—CHO > Cl2CHCHO > ClCH2CHO > CH3CHO
1电子效应和空间效应

乙基自由基σ-p超共轭体系
烷基碳自由基形成的σ-p超共轭体系:
H H H H C H C C. C H H H H
H H H H C H C C H . H
H . H C CH H
碳自由基的稳定性: .〉2 R.〉1 R 〉 .CH . 3°R 3 碳正离子的稳定性: 3°R+〉2°R+〉1°R+〉+CH3
Br
O CH2 C O
H
•取代基的给电子效应和吸电子效应判断
a. 以醋酸为标准判断取代基的电子性能 以醋酸分子甲基上的氢为参考标准,取代基X取代H原 子以后,X←CH2COOH中的X产生吸电子的诱导效应(-I效 应)时,醋酸的pKa变小,称X为吸电子基,吸电子基又称 拉电子基。取代基Y取代H原子后,Y→CH2COOH产生推电 子的诱导效应(+I效应)时,醋酸pKa变大,称Y为推电子 基,又称给电子基或供电子基。
共轭效应:电子离域,能量降低,分子趋于稳定,键长 平均化等现象称做共轭效应,也称做C效应。 结构特点:共轭体系的特征是各σ键在同一平面内,参 加共轭的p轨道轴互相平行,且垂直于σ键在的平面,相 邻p轨道间从倒面重叠发生键离域。
1.π-π共轭体系
双键、单键相间的共轭体系称做π-π共轭体系。例如:
C C C C C C C C C C C O C C C N
H
域用
CH2 CH C
表示。 H
H
丙烯分子的σ-π超共轭体系
乙烯氢化热ΔH=-137 kJ· -1,丙烯的氢化热 mol ΔH=-126 kJ· -1,丙烯π-σ超共轭能:137-126=11 mol kJ· -1,1,3-戊二烯 mol (氢化热226
KJ· -1)比1,3-丁二烯 mol σ超共轭作用。
理论有机化学第二章电子效应与空间效应

2. 能量下降 ΔH值:
乙烯(32)
戊二烯1,4(61)
戊二烯1,3(54) 苯(50)
CH3CH2CH2CH3---→ CH2=CH-CH=CH2 只生成1,3-丁二烯, 没有1,2-丁二烯
34
共轭体系和共轭效应
3. 共轭加成 丁二烯的1,4加成
C=C-C=C + H2 → CH-C-C=C → CH-C=C-C+ → CH-CH=C-CH
α,β不饱和醛酮的1,4加成
C=C-C=O + H2 → CH-C=C-OH → CH-CH-C=O
35
共轭体系和共轭效应
共轭插烯作用
R
C
N
O
HN
O
H
双环胺酮无酮或胺的性质,类似酰胺。
36
共轭体系和共轭效应 2.2 静态共轭效应Cs
1.起源与含义:由于共轭双键的存在而 使π电子云发生转移变形,---
CH3
δ-
δ-
δ-
28
§2共轭体系和共轭效应
29
H
§2共轭体系和共轭效应
H
2.P-π共轭:
H H H
由P轨道上的电子与π键组合而成,分四种情况 。
CH2=CH -- P
P轨道有孤对电子
.. CH2=CH-Cl
P轨道有一对电子 P轨道有一个电子
CH2=CH-CH2CH2=CH-CH2.
P轨道上没有电子
推电子 Y→δ-CR3 +Is
H--CR3
吸电子
X←δ+CR3 -Is
2
§1 诱导效应I
eg1 取代酸的酸性变化
CH3COOH CH3CH2COOH ClCH2COOH Cl2CHCOOH Cl3CCOOH
第一章 电子效应和空间效应

键的极性大小主要取于成键两原子的电负性值之差。 例如,H-O 极性大于H-N 键的极性。
《高等有机化学》
碳、氮在不同杂化状态下的电负性值
《高等有机化学》
共价键的极性主要决定于: 1 、成键原子的相对电负性大小。电负性 差别越大,键的极性越大。 2、还受相邻键和不相邻原子或基团的影 响。
《高等有机化学》
常以碳氢化合物中的氢原子为标准
R3C←Y +I 效应 R3C—H 比较标准 R3C→X -I效应
箭头表示电子云的 偏移方向
吸引电子能力(电负性较大)比氢原子强的原子或原子团 (如—X、—OH、—NO2、—CN等)有吸电子的诱导效应(负的 诱导效应),用-I表示,整个分子的电子云偏向取代基。 吸引电子的能力比氢原子弱的原子或原子团(如烷基)具 有给电子的诱导效应(正的诱导效应),用+I表示,整个分 子的电子云偏离取代基。
《高等有机化学》
诱导效应沿键链的传递是以静电诱导的方式进 行的,只涉及电子云分布状况改变和键的极性的 改变,一般不引起整个电荷的转移、价态的变化。
O Cl CH2 C O H
在键链中通过静电诱导传递的诱导效应受屏蔽 效应的影响是明显的,诱导效应随着距离的增加, 变化非常迅速。一般隔三个化学键影响就很小了。
-N+R3的-I效应, 间位定位,致钝
《高等有机化学》
4.对反应机理的影响(路径)
在一些反应中,由于诱导效应等因素可能改变其反应机理。 如溴代烷的水解反应,伯溴代烷如CH3-Br主要按 SN2历程进行, 而叔溴代烷如(CH3)3C-Br则主要遵从SN1历程进行。
H H H Br HO H H H Br HO H H H + Br-
第三章 电子效应和空间效应

例: CH3δ+ Clδ键距 μ=qd q: 中心电荷 d:正负电荷中心的距离
分子的偶极距是各键的键距向量和:
H H H
μ=0
Cl H Cl Cl
μ=0
Cl Cl H H
μ=1.94D
C
C
C H
Cl-Cl ( 键距为零)
3.2诱导效应
4.2.1 定义:诱导效应是指在有机化合物中由于电负性不同的取 代基的影响,使整个分子中成键电子云按取代基团的电负性所决定 的方向而偏移的效应。
-I效应:
CH3δδδ+-CH2δδ+-CH2δ+→Clδ-
+I效应:
O CH 3 C H
诱导效应在没有外加电场影响下也存在,它体现的是分子自身的性质。诱
导效应一般用 I 表示,饱和 C-H 键的诱导效应规定为零。
当一个原子或原子团与碳原子成键后,电子云偏离碳 原子,称为-I 效应。 例:
O H3C X H3C H H3C
非极性共价键:相同原子(基团)成键,电 子云分布对称 极性共价键:不同原子(基团)成键,电子 云分布偏向 共价键极性:取决成键原子的相对电负 性.是结构与反应性能关系的基础
极性共价键: 形成共价键的原子,它们之间吸引电子 的能力是不一样的。这就使得两原子间 共价键的电子云不是平均分配在两个原 子核之间,而是偏向电负性较大的原子, 这种键成称为极性共价键。
•
3.4.2 对反应机理的影响
在一些反应中,由于诱导效应等因素可以改变其反 应机理。如溴代烷的水解反应,伯溴代烷如CH3—Br主 要按 SN2历程进行,而叔溴代烷如(CH3)3C—Br则主要 遵从SN1历程进行。
3.4.3 对反应速率的影响
第二章 电子效应和空间效应

简单分子的弹力常数可由分子振动光谱分析结果计算。 -----它代表着键的伸长、缩短及张合的难易程度。
利用振动频率和形成共价键的原子的质量,可根据下列关系式得到其近似值。
f
2 M
振动频率 f: 弹力常数 M: 折合质量
1
1
1
=
+
M
m1
m2
单键 双键 三键
7 x 10-5 7 x 10-5 - 15 x 10-5 15 x 10-5
一:共价键的极性和极化性
1. 共价键的极性 由于分子中成键原子的电负性不同,使成键原子间电子云 分布不均,共价键具有一定偶极矩的现象。
电负性:不同元素原子吸引电子的能力,也可以认为是成键原子对共享电子对 吸引能力。
键的极性指数: 描述键的极性大小的指数。
1)电负性差(电负性和)
K-Br Li-Cl Al-O B-F
第二章 电子效应和空间效应
学习目的:对电子效应的产生、种类、相对强度及其对有机分子
化学行为的影响有一个系统的认识,掌握一般规律; 对空间效应通过实例介绍空间张力、空间障碍对化学 反应的影响
1. 诱导效应 2.共轭效应 3.超共轭效应 4.同共轭效应 5.空间效应
概述:当有机化合物分子相互作用形成活化络合物时,不管是新键的形成还是 原来旧键的破裂,都直接或间接地与分子中电子云的分布有关。所以通过对 电子云变化情况的研究,可以来解释或预测有机化学中的很多问题。
B: 原子半径 有效荷电量相同时,原子系数增大,键的极化性增大。 C—X 键的极化性:C—I > C—Br > C—Cl > C—F
C: 键型
>s
3.极性和极化性的量度-偶极矩
偶极矩(Bond Dipole Moment)包括键的偶极矩简称键矩和分子偶极矩。 它是衡量化学键与分子极性的物理量。
芳环取代中的定位规律

芳环取代中的定位规律
芳环取代是有机化学中非常常见的反应之一,它指的是将芳环上的一个或多个氢原子替换为其他官能团。
在化学反应中,定位规律是非常重要的,因为它决定了反应产物的结构和性质。
在芳环取代中,定位规律有两种:电子效应和空间效应。
电子效应是指由于取代基对芳环的电子密度产生的影响。
对于电子给体取代基(如甲基、乙基等),它们会向芳环中心输送电子,增加芳环上的电子密度,因此更容易被亲电试剂攻击。
而电子受体取代基(如硝基、氰基等),则会吸引芳环上的电子,降低芳环上的电子密度,因此更容易被亲核试剂攻击。
空间效应是指由于取代基的体积和几何构型对反应的影响。
如果取代基体积较大,它可能会影响反应底物和试剂之间的空间排布,从而影响反应。
在某些情况下,取代基的几何构型也可能影响反应,例如在苯环的1,2位和1,3位上取代基的构型会影响它们对芳环上其他位置的反应活性。
总之,理解芳环取代反应中的定位规律是非常重要的,因为它可以帮助我们预测反应产物的结构和性质,并为有机化学合成和药物研究提供重要的指导。
- 1 -。
有机化学中电子效应及空间效应课件 (一)

有机化学中电子效应及空间效应课件 (一)有机化学是一门分子结构、功能和反应的学科,而电子效应及空间效应则是有机化学中非常重要的概念。
本文将介绍有机化学中电子效应及空间效应的基本概念和应用。
一、电子效应电子效应是研究有机化合物中电荷分布变化对其物理、化学性质的影响的学科。
它主要研究如何通过电子的转移和变化来引起有机化合物发生反应,控制有机化合物的化学性质及理化性质。
目前有机化学中电子效应主要有电负性、电子亲和力、取代基效应、杂化、共振和极性等几个重要概念。
1. 电负性:电负性是指原子对电子的亲和力测量的物理量,描述了一个原子对外界电子的吸引力,通常用Pauling的电负度表示。
通常来说,原子的电负性越大,对外界电子的吸引力越强,化学性质就会更加活泼。
2. 取代基效应:又称为取代基效应,则是不同取代基施加于同一分子时所引起的性质变化。
3. 共振:共振是指一些多重键更准确地说是一种含多种键的共现关系,它是分子中化学键的电子分布不唯一的现象。
我们可以通过共振结构来描述分子中化学键的电子分布。
一般来说,共振结构越多,分子的稳定性越高,反应性越小。
二、空间效应在有机化学中,空间效应是指取代基、自由基、离子、分子或它们的部分在空间三维空间内位置的分布不同,从而导致分子的物理、化学性质的结果。
空间效应有许多种不同的方式来作用于分子中,包括空间赋形、受力、轴向化等。
1. 空间构象:分子中原子的排布空间构象或构型是保持分子几何形状的关键。
空间构象是分子之间重要的相互作用的基础,它决定了分子的物理、化学性质。
2. 常见空间效应:空间效应不仅与键长、键角、半箭头作用等有关,而且还与空间结构及原子的尺寸及构型等有关。
常见的空间效应包括吸电子效应、空气位效应、受扰动因素等。
3. 空间结构:空间结构是指分子中化学键的分布、方向、长度等在空间中的排列结构。
对于一个有机化合物来说,它的化学性质和物理性质可能会发生变化,这些变化与化学键的排布空间结构有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、共轭效应
1、共轭体系 在分子或离子以及自由基中,能够形成π轨道或P 轨道离域的。 2、共轭效应 由于共轭体系的存在,发生原子间的相互影响而引起 电子平均化的效应。可分为:静态共轭效应:体系固有 的性质。动态共轭效应:受外界电场影响出现的效应。
■诱导效应分静态诱导效应和动态诱导效应
静态诱导效应:由极性键表现出的诱导效应 动态诱导效应:由在化学反应过程中,由外界电 场(如溶剂、试剂)的影响而产生的极化作用。
诱导效应分吸电子诱导效应(-I)和推电子诱导效应 (+I): ●实验测得的常见的-I基团顺序为: -NR3+ > -NO2 > -CN > -COOH > -COOR > C=O > -X > -OCH3 > -OH > -C6H5 > -CH=CH2 > -H ●中心原子饱和度:不饱和程度大,吸电子强 ●对于卤素,-I效应的顺序是:F>Cl>Br>I ●对于烷烃,+I效应的顺序是(CH3)3C- > (CH3)2CH- >CH3CH2->CH3-
CH3COOOH
+ 88%
O
NaBH4 + CH3OH 99% 1%
O
12%
HO
O
H
OH
H
二、空间效应对酸碱性的影响
1、对酸性的影响
OH H3C CH3
OH
NO2
H3C
CH3 NO2
后者,甲基处于硝基的邻位,由于空间位阻效应 的影响,使硝基的p轨道不能与苯环很好的共轭,削弱 了硝基的吸电子共轭效应。
(A)的诱导效应与场效应的方向相反, 场效应不利于酸性的增强。(B)没有场 效应。
第二节 空间效应
通过原子团大小和形状等空间因素所体现出的 原子团之间的相互影响通常称为空间效应。
一、空间效应对反应活性的影响
1、消除反应 消除反应往往发生在反式平行位置,不同结构在反 应中空间构型不同,造成反应速率不同。 比较下列取代环己醇发生消除反应的反应速率。
-ClCl +
1-氯二环[4.4.1]十一烷可以形成稳定的碳正离子。 多环桥头碳原子上卤原子的活性顺序为:
<
Cl Cl
<
Cl
3、酯化反应 空间位阻较大的羧酸酯化速率慢
COOH C(CH3)3
(CH3)3C
COOH
(CH3)3C
C(CH3)3
前者酯化反应慢于后者。
4、选择性反应 桥环上双键的氧化和还原反应利用空间位阻效应 而进行选择性反应。
CH3 N,N-二 甲 基 苯 胺
难形成p,π-共轭体系 p,π-共轭体系
r1 < r2
序号
Y
pKa
O C
OH
r1 r2
1
2 3 4
H
Cl COOH COO-
6.04
6.25 5.67 7.19
Y
r1 < r2
对于C-Y键来说,Y为δ+时,是正电场,酸性增 强;Y为δ-时,是负电场,酸性减弱。
邻氯代苯丙炔酸酸性小于对氯代苯丙炔酸:
COOH Cl (A)
Cl (B)
COOH
第 1章 电子效应和空间效应
第一节 电子效应
一、诱导效应(I效应)
诱导效应:由于极性键的诱导作用而产生的沿其价键链 传递的电子偏移效应。
例如:
Cl C C O H 由于σ电子云向氯原子 偏移,酸性增强 3.0 H ■诱导效应以静电诱导的方式沿单键或重键传递,只 涉及电子云密度分布的改变,引起键的极性改变,一 般不引起整个分子的电荷转移和价态的变化。随分子 链增长而迅速减弱。实际上,经过3个原子之后,诱导 效应已经很微弱了,超过5个原子这种作用便没有了。 H O
CONH2
I
Cl
F
R
Ar
NO2
CN
COOH
CONR2 CHO
COOR
COR
CONHR
SO3R
SO2R
NO
Ar
三、场效应
场效应:指不通过碳链传递的而是通过溶剂或空间传 递的电子效应。 诱导效应和场效应都是电子效应,只是传递方式不同。
O C
OH
r1 r2
Cl
δ
δ+
由于静电场的作用与距 离的平方成反比,所以 氯的存在抑制了-COOH 的解离,酸性减弱。
★共轭效应仅存在于共轭体系中,体系越大,能量越低, 即离域能(共轭能、共振能)越大;键长平均化趋势越 大,体系越稳定。共轭效应沿共轭体系传递,出现正负 交替现象。
3.常见的吸电子共轭效应(-C)和推电子共轭效应 基团(+C):
+C基团: O
NHCOR OR
S
NR2
OCOR
NHR
SR
NH2
SH
Br
-C基团:
2、对碱性的影响
H3C N H3C CH3 C H3C CH3 CH3 CH3 C CH3
在N,N-二甲基-2,6-二叔 丁基苯胺的结构中,氨基 的未共用电子对不能与苯 环共轭,可使芳胺的碱性 与脂肪胺相似。
7.79 5.25 CH3 N
pKa
10.6
N 奎宁 啶
无p,π-共轭体系
N 苯 并奎 宁 啶
OH (B)
OH (A)
【解释】
环己烷衍生物的消除反应发生在直立键 (a)上, 当被消除的小分子处于平伏键(e)时,要通过构型 转化,但由于新生成的构型其空间位阻不同,造 成消除反应速率不同。
OH OH
OH OH
2、亲核取代反应
一般认为桥头碳原子上的卤原子,既不易进行SN1 也不易进行SN2反应,但随着桥上碳原子或桥两侧 碳原子的增多,这种现象会逐渐消失。