(完整)七年级数学下册-变量之间的关系测试题
七年级下变量之间的关系测试题

七年级下变量之间的关系测试题一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是( )21.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是( ) 3.已知变量x ,y 满足下面的关系x … - 3 -2 -1 1 2 3 … y…13-3-1…则x ,y 之间用关系式表示为( )A.y =x 3 B.y =-3x C.y =-x3D.y =3x 4.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图1所示,则对于该厂生产这种产品的说法正确的是( )A.1月至3月生产总量逐月增加,4,5两月生产总量逐月减少 B.1月至3月生产总量逐月增加,4,5两月均产总量与3月持平 C.1月至3月生产总量逐月增加,4,5两月均停止生产 D.1月至3月生产总量不变,4,5两月均停止生产 5.如图2是反映两个变量关系的图,下列的四个情境比较合适该图的是( ) A.一杯热水放在桌子上,它的水温与时间的关系 B.一辆汽车从起动到匀速行驶,速度与时间的关系 C.一架飞机从起飞到降落的速度与时晨的关系A. B. C. D.图2D.踢出的足球的速度与时间的关系6.如图3,射线l 甲,l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是( )A.甲比乙快 B.乙比甲快C.甲、乙同速 D.不一定7.长方形的周长为24厘米,其中一边为x (其中0>x ),面积为y 平方厘米,则这样的长方形中y 与x 的关系可以写为( )A 、2x y = B 、()212x y -= C 、()x x y ⋅-=12 D 、()x y -=1228.如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( ) (A )y=12x (B )y=18x (C )y=23x (D )y=32x 二、填一填,要相信自己的能力!(每小题3分,共30分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为____(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间x (小时)的关系式为____,该汽车最多可行驶____小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 是自变量, 是因变量。
(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(有答案解析)

一、选择题1.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.2.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气3.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量4.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A地的时刻为()A.8:30 B.8:35 C.8:40 D.8:455.某商店进了一批玩具,出售时要在进价的基础上加一定的利润,其销售个数x与售价y 如下表:个数x/个1234…售价y/元8+0.316+0.624+0.932+1.2…下列用销售个数x表示售价y的关系式中,正确的是 ( )A.y=(8+0.3)x B.y=8x+0.3 C.y=8+0.3x D.y=8+0.3+x6.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.7.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x8.下列说法不正确的是()A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应9.如图所示是某市6月20日的温度随时间变化的图象.通过观察可知,下列说法不正确的是().A.这天15时温度最高B.这天3时温度最低C.这天的温差是13℃D.这天21时温度是32℃10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.2t B.Q=20﹣0.2tC.t=0.2Q D.t=20﹣0.2Q11.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.12.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数关系,则以下判断错误..的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时.二、填空题13.下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n个“上”字需用_________枚棋子.14.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要km h的平均速度行驶20min到达单位,下班按原路返的聚集.小华爸爸早上开车以60/km h)之回,若返回时平均速度为v,则路上所用时间t(单位:h)与速度v(单位:/间的关系可表示为________.15.某物流公司的快递车和货车每天沿同一条路线往返于A、B两地,快递车比货车多往返一趟.如图所示,表示货车距离A地的路程y(单位:h)与所用时间x(单位h)的图像,其间在B地装卸货物2h.已知快递车比货车早1h出发,最后一次返回A地比货车晚1h.若快递车往返途中速度不变,且在A、B两地均不停留,则两车在往返途中相遇的次数为________次.16.如图,都是由边长为1的正方体叠成的图形。
完整)七年级数学下册-变量之间的关系测试题

完整)七年级数学下册-变量之间的关系测试题1.给定一个圆珠笔盒子,其中有12支圆珠笔,售价为18元。
用y表示圆珠笔的售价,x表示圆珠笔的支数,则y与x 之间的关系为y=1.5x。
2.如果物体运动的路程s与时间t的关系式为s=3t+2t+1,则当t=4时,该物体所经过的路程为28米。
3.给定两个变量m和v之间的4组对应数据,求m与v 之间的关系。
根据数据,最接近的关系式为v=2m-2.4.龟兔赛跑的故事中,兔子睡觉后被乌龟追上,最终乌龟先到达终点。
用S1和S2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相符的图象为S1-S2随时间t的变化曲线,前半段曲线较平缓,后半段曲线较陡峭。
5.给定XXX一天内的体温变化情况,图象反映了24小时内小红的体温变化。
下列说法错误的是B,即下午5时体温最高。
6.小王设计了一个程序,输入和输出数据如表所示。
根据数据,当输入数据8时,输出的数据为xxxxxxxx。
7.给定某汽车在行驶过程中的速度与时间的关系曲线,描述了汽车在不同时间的速度变化情况。
根据图象,说法错误的是B,即第12分时汽车的速度是千米/时。
8.给定一个,向其中注水,注满为止。
注水量V与水深h 之间的关系的图象大致如图3所示,则这个是图中的D。
18.XXX晨骑车从家到学校,路程如图7所示,先上坡后下坡。
如果他返回时上下坡的速度不变,那么他从学校骑车回家需要多长时间?(答案需要填写在空白处)19.一根弹簧的原长为13厘米,挂物体质量不得超过16千克,每挂1千克就会伸长0.5厘米。
当挂物体质量为10千克时,弹簧长度为多少厘米?挂物体质量X(千克)与弹簧长度y(厘米)的关系式是什么?(不考虑X的取值范围)20.如图6-31,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶的图像,两地间的距离是100千米。
请回答以下问题:1)谁出发的时间更早?早了多少时间?谁先到达乙地?提前了多少时间?2)两人在途中行驶的速度分别是多少?3)在什么时间段内,两辆车都在途中行驶?在这段时间内,自行车在摩托车前面,两辆车相遇,自行车在摩托车后面分别是什么时候?21.下表是三家电器厂2007年上半年每个月的产量:x/月 | y/台。
七年级数学专项习题——变量之间的关系(附参考答案)

1. 已知AB ∥CD ,现将一个含30°角的直角三角尺EFG 七年级数学专项习题——变量之间的关系(附参考答案)按如图方式放置,其中顶点F 、G 分别落在直线AB ,CD 上,GE 交AB 于点H ,若∠EHB =50°,则∠AFG 的度数为( )A .100°B .110°C .115°D .120°2. 如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .22°B .33°C .44°D .55°3. 如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若∠FEA ″=105°,则∠CFE = 度.4. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为 .5. 如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.6. 已知:如图△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.(请在下面空白处写出完整证明过程)∴∠AHG =∠EHB =50°,∵AB ∥CD ,∴∠EGD =∠AHG =50°,∵∠FGE =60°,∴∠FGD =∠FGE +∠EGD =60°+50°=110°,∵AB ∥CD ,∴∠AFG =∠FGD =110°1.解:∵GE 交AB 于点H 参考答案,.故选:B .2.解:过点C 作CN ∥AB ,过点E 作EM ∥AB ,∵FD ∥AB ,CN ∥AB ,EM ∥AB ,∴AB ∥CN ∥EM ∥FD∴∠BAC =∠NCA ,∠NCD =∠FDC ,∠FDE =∠DEM ,∠MEA =∠EAB . ∴∠DEA =∠FDE +∠EAB ,∠ACD =∠BAC +∠FDC .又∵DE 和AC 分别平分∠CDF 和∠BAE ,∴∠FDC =2∠FDE =2∠EDC ,∠BAE =2∠BAC =2∠EAC , ∴56°=∠BAC +2∠FDE ①,46°=∠FDE +2∠BAC ②.①+②,得3(∠BAC +∠FDE )=102°,∴∠BAC +∠FDE =34°③.①-③,得∠FDE =22°.∴∠CDF =2∠FDE =44°.故选:C .3.解:由四边形ABFE 沿EF 折叠得四边形A ′B ′FE ,∴∠A ′EF =∠AEF .∵∠A ′EF =∠A ′ED +∠DEF ,∠AEF =180°-∠DEF .∴∠A ′ED +∠DEF =180°-∠DEF .由四边形A ′B ′ME 沿AD 折叠得四边形A ″B ″ME ,∴∠A ′ED =∠A ″ED .∵∠A ″ED =∠A ″EF +∠DEF =105°+∠DEF ,∴∠A ′ED =105°+∠DEF .∴105°+∠DEF +∠DEF =180°-∠DEF .∴∠DEF =25°.∵AD ∥BC ,∴∠DEF =∠EFB =25°.∴∠CFE =180°-∠EFB =180°-25°=155°.故答案为:155.4. 解:①若∠1与∠2位置如图1所示:∵AB ∥DE ,∴∠1=∠3, 又∵DC ∥EF ,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°,∴∠2=180°-∠1=180°-40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.5.6. 证明:,,( 已知 ),( 垂直的定义 ),( 同位角相等,两直线平行)两直线平行,内错角相等),( 已知 ),( 等量代换 )同位角相等,两直线平行)。
(好题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(包含答案解析)

一、选择题1.为了更好地保护水资源,造福人类,某工厂计划建一个容积为200m3的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:S•h=200,则S关于h的函数图象大致是()A.B.C.D.2.已知圆柱的高为3 cm,当圆柱的底面半径r(cm)由小变大时,圆柱的体积V(cm3)随之变化,则V与r的关系式是 ( )A.V=πr2B.V=9πr2C.V=13πr2D.V=3πr23.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.4.在弹性限度内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.x与y都是变量,且x是自变量,y是x的函数B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为23.5 cm5.下列说法中正确的是 ( )A.变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B.变量 x , y 满足23y x=--,则 y 是 x 的函数C.变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D.变量 x , y 满足 y2 = x ,则 y 是 x 的函数6.下列各图给出了变量x 与y 之间的对应关系,其中y 是x 的函数的是( )A .B .C .D .7.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为( )A .-2B .2C .-1D .08.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )A .Q =0.2tB .Q =20﹣0.2tC .t =0.2QD .t =20﹣0.2Q9.如图,在ABC △中,6BC ,AD 为BC 边上的高,A 点沿AD 所在的直线运动时,三角形的面积发生变化,当ABC △的面积为48时,AD 的长为( ).A .8B .16C .4D .2410.如图,在梯形ABCD 中,AD ∥BC ,∠ABC=60º,AB=DC=2,AD=1,R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合,点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A.B.C.D.11.如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是A.B.C.D.12.某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了1,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为y L,则y与x之间的函数解5析式和自变量取值范围分别是( )A .y=0.12x ,x >0B .y=60﹣0.12x ,x >0C .y=0.12x ,0≤x≤500D .y=60﹣0.12x ,0≤x≤500 二、填空题13.拖拉机工作时,油箱中的余油量Q (升)与工作时间t (时)的关系式为406Q t =-.当4t =时,Q =_________,从关系式可知道这台拖拉机最多可工作_________小时.14.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.15.如图,都是由边长为1的正方体叠成的图形。
【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。
北师版七年级数学下册第三章《变量之间的关系》单元测试题(含答案)

北师版七年级数学下册第三章《变量之间的关系》单元测试题(含答案)一、选择题1.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度与时间变化情况的是A.B.C.D.2.对于关系式,下列说法:① 是自变量,是因变量;② 的数值可以任意选择;③ 是变量,它的值与无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤ 与的关系还可以用列表格和图象法表示.其中正确的是A.①②③B.①②④C.①②⑤D.①④⑤3.如图所示的图象(折线)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是A.第时汽车的速度是B.第时汽车的速度是C.从第到第,汽车行驶了D.从第到第,汽车的速度从减少到4.在物理学中,导线的电阻随温度的变化而变化,有一段导线时电阻为欧姆,温度每增加,电阻会增加欧姆,则电阻与温度的关系是A.B.C.D.5.某工程队修筑A村到B村的公路,前期修筑的是平路,后期修筑的是坡路,修筑的公路长度()与时间(天)之间的函数关系如图,则下列结论中错误的是A.平路长B.平路上每天修筑C.坡路长D.坡路上每天修筑6.某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B地后跑步回A地,乙先跑步到B地再骑自行车回到A地(骑自行车的速度快于跑步的速度),最后两人恰好同时回到A地.已知甲骑自行车的速度比乙骑自行车的速度快.若学生离开A地的距离与所用的时间的关系用图象表示(实线表示甲的图象,虚线表示乙的图象),则下面中正确的是A.B.C.D.7.今年五一期间,小丽同学从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是A.小丽在便利店时间为B.公园离小丽家的距离为C.小丽从家到达公园共用时间D.便利店离小丽家的距离为8.某市推出电脑上网课包月制,每月收取上网费用(元)与上网时间之间的关系如图,其中是线段,且轴,是射线.小芳三月份在家上网课费用为元,则她家三月份上网时间是A.B.C.D.二、填空题9.如图,在一个半径为的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.()在这个变化过程中,自变量、因变量是;()如挖去的圆半径为,圆环的面积与的关系式是;()当挖去圆的半径由变化到时,圆环面的面积由变化到.10.小强与父亲同时出发,到达同一目的地后都立即返回.小强去时骑自行车,返回时步行;父亲往返都是步行.两人的步行速度不等,每个人的往返路程与时间的关系分别是图中两个图象中的一个.请你根据图象回答下列问题:()一个往返的距离是;()完成一个往返,小强用,父亲用;()小强骑车的速度是,小强步行的速度是父亲步行的速度是.11.小斌从家骑车上学,先经过一段平路到达地后,再上坡到达地,最后下坡到达学校,所行驶路程与时间的关系如图所示,如果返回时,上坡、下坡、平路的速度仍然保持不变,那么小斌从学校回到家需要的时间是.三、解答题12.如图,已知正方形的边长为,有一点在上运动梯形的面积会发生变化.(1) 在这个变化过程中,自变量、因变量各是什么?(2) 如果长为,那么梯形的面积可以表示为什么关系式?(3) 已知,试确定点的位置.13.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度与操控无人机的时间之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是 ;(2) 无人机在高的上空停留的时间是;(3) 在上升或下降过程中,无人机的速度为;(4) 图中表示的数是;表示的数是;(5) 求第时无人机的飞行高度是多少米?14.绵州大剧院矩形专场音乐会,成人票每张元,学生票每张元.暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案:购买一张成人票赠送一张学生票;方案:按总价的付款.某校有名老师与若干名(不少于人)学生听音乐会.(1) 设学生人数为(人),付款总金额为(元),分别建立两种优惠方案中与的关系式;(2) 请计算并确定出最节省费用的购票方案.15.小红与小兰从学校出发到距学校的书店买书,下图反应他们两人离开学校的路程与时间的关系.根据图形尝试解决提出的下列问题:(1) 小红与小兰谁先出发?谁先达到?(2) 描述小兰离学校的路程与时间的变化关系;(3) 小兰前的速度和最后的速度是多少?怎样从图象上直观地反映速度的大小?(4) 小红与小兰从学校到书店的平均速度各是多少?16.如图(),已知是三角形边上的高,且,是一个动点,由点向点移动,其速度与时间的变化关系如图()所示,已知.(1) 当点在运动过程中,求三角形的面积与运动时间之间的关系式;(2) 当点停止后,求的面积.17.如图,正方形的边长为,动点从点出发,在正方形的边上由运动,设运动的时间为(),三角形的面积为(),与的图象如图.(1) 求点在上运动的时间范围;(2) 当为何值时,三角形的面积为.答案一、选择题1. A2. C3. C4. A6. B7. A8. B二、填空题9. 小圆半径;圆环面积;;;10. ;;;;;11.【解析】根据图象可知:小明从家骑车上学,上坡的路程是,用,则上坡速度是;下坡路长是,用,则速度是,他从学校回到家需要的时间为.三、解答题12. 【答案】(1) 自变量是的长度,因变量是梯形的面积;(2) ;(3) 根据等式建立方程,,解得即点在距离点处.13. 【答案】(1) 时间(或);飞行高度(或)(2)(3)(4) ;(5) .答:第时无人机的飞行高度是.【解析】(2) 无人机在高的上空停留的时间是.(3) 在上升或下降过程中,无人机的速度.(4) 图中表示的数是;表示的数是.14. 【答案】(1) 按优惠方案①可得,,按优惠方案②可得,.(2) ①当时,,当购买张票时,两种优惠方案付款一样多;②当时,,优惠方案①付款较少;③当时,,优惠方案②付款较少.15. 【答案】(1) 小兰先出发,她们同时到达.(2) 小兰从学校出发,经走了后遇到事情停下来,后继续出发,最后骑车花时间与小红同时到达书店.(3) 小兰前速度为,后速度为.(4) 小红平均速度为,小兰的平均速度为.16. 【答案】(1) 由图()可知,点的速度为,,即.(2) 当点停止后,即点与点重合时的面积,当时,.三角形面积为.17. 【答案】(1) 根据图象得:点在上运动的时间范围为.(2) 点在上时,三角形的面积;点在时,三角形的面积;点在上时,,三角形的面积当时,,三角形的面积为,即时,,;当时,,;当为时,三角形的面积为.。
(完整版)北师大版数学七年级下册变量之间的关系单元试题及答案(4套)

北师大版数学七年级下册变量之间的关系单元试题及答案(4套)北师大版数学七年级下册变量之间的关系单元试题及答案(1)一、选择题(每小题3分,共30分)1.已知变量x、y满足下面的关系,则x,y之间用关系式表示为()A. y=3xB. y=3C. y=xD. y=32.在用图象表示变量之间的关系时,下列说法最恰当的是()A.用水平方向的数轴上的点表示因变量B.用竖直方向的数轴上的点表示自变量C.用横轴上的点表示自变量D.用横轴或纵轴上的点表示自变量3. 在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中正确的是()A.①②⑤ B.①②④ C.①③⑤ D.①④⑤4. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体 B.速度 C.时间 D.空气5. 如图,是反映两个变量关系的图,下列四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从启动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时间的关系D. 踢出足球的时间与速度的关系O6.如图,是广州市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26 ℃B.这一天中最高气温与最低气温的差为18 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低7.变量y与x之间的关系式是y=12x2+1,当自变量x=2时,因变量y的值是()A.-2 B.-1 C.1 D.38.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是()A.12分钟 B.15分钟C.25分钟 D.27分钟9.三军受命,我解放军各部队奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24 km,如图是他们行走的路程与时间的图象,四位同学观察此图象得出有关信息,其中正确的个数是()....A .1 B .2 C .3 D .410.下面的图表是护士统计的一位病人一天的体温变化情况,通过图表,估计这个病人下午16:00时的体温是( ) OA .38.0 ℃B .39.1 ℃C .37.6 ℃D .38.6 ℃二、填空题(每小题3分,共24分)11. 长方形的面积为S ,则长a 和宽b 之间的关系为 ,当长一定时, 是常量, 是变量.12.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量 .(1)小于3 t (2)大于3 t(3)小于4 t (4)大于4 t13.在“变量之间的关系”一章中,我们学习的“变量”是指自变量和因变量,而表达它们之间的关系通常有三种方法,这三种方法是指 、 和 . 第10题图 12345614.找出能反映下列两个变量间的关系图象,并将代号填在横线上.一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是.第14题图15.变量y与x之间的对应关系如下表所示,则y与x之间的关系可表示为.x…1 1.5 2 3 4 …y…6 4 3 2 1.5 …16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.(1公顷=15亩)17. 如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕时.耗油量(升)18.某型号汽油的耗油量与相应金额的关系如图所示,那么这种汽油的单价是每升元.三、解答题(共46分)19.(6分)父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6千米的高空温度是多少吗?20.(6分)下表是某公共电话亭打长途电话的几次收费记录:(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?21.(6分) 心理学家发现,学生对概念的接受能力y与提出概念所用时间x(单位:分)之间有如下关系(其中0≤x≤30).(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?22. (6分)张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,下图是据此情景画出的图象,s(m)表示张爷爷离开家的距离,t(min)表示外出散步的时间.请你回答下面的问题:(1)张爷爷是在什么地方碰到老邻居的?交谈了多长时间?(2)读报栏大约离家多少路程?(3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?23.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的图象分别是、(填写序号);(2)请你为剩下的图象写出一个合适的情境.24.(8分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明仅往返(不考虑中间的等待时间)花了多少时间?(3)小明出发后20分钟到30分钟内可能在做什么?(4)小明从家到超市的平均速度是多少?返回时的平均速度是多少?25. (6分)某县从2007年开始实施退耕还林,每年退耕还林的面积如下表:时间/年2007 2008 2009 2010 2011 2012面积/亩350 380 420 500 600 720(2)从表中可知,随时间的变化,退耕还林面积的变化趋势是什么?(3)从2007年到2012年底,该县已完成退耕还林面积多少亩?(1公顷=15亩)参考答案1. C解析:观察表中数据知=,故x,y之间用关系式表示为y=3 x .2. C解析:用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.故选C.3. A解析:①x是自变量,y是因变量,正确;②x的数值可以任意选择,正确;③y是变量,它的值与x无关,错误,因为y随x的变化而变化;④用关系式表示的不能用图象表示,错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选A.4. C解析:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,故本题选C.5. B 解析:题中给的图象变化情况为先是y随x的增大而增大,后随着x的增加y不变.A.热水的水温先是随时间的增加而下降,后不变,所以不符合.B.汽车启动的过程中,速度是随着时间的增长从0增大的,而匀速后,速度随时间的增加是不变的,故符合题意.C.飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,所以不符合题意.D.踢出的足球的速度是随着时间的增加而减小的,所以不符合题意.故选B.6.D解析:0时至2时之间和14时至24时之间的气温在逐渐降低,剩下时段气温逐渐上升,A、B、C的说法都是正确的,故选D.7. D解析:当 x=2时,y=12x2+1=2+1=3.故选D.8. B 解析:先算出平路、上坡路和下坡路的速度分别为13千米/分、15千米/分和12千米/分,∴他从单位到家门口需要的时间是2÷15+1÷12+1÷13=15(分钟).故选B.9. D 解析:由图可知:甲队、乙队的起始时间分别为0 h和2 h,因此甲队比乙队早出发2 h;在3 h-4 h这段时间内,甲队的图象与x轴平行,因此在行进过程中,甲队停顿了1 h;两个图象有两个交点:①甲行驶4.5 h、乙行驶2.5 h时,两图象相交,因此乙队出发2.5 h后追上甲队;②甲队行驶6 h、乙队行驶4 h后,两图象相交,此时两者同时到达目的地.在整个行进过程中,乙队用的时间为4 ,行驶的路程为24 km,因此乙队的平均速度为6 km/h.这四个同学的结论都正确,故选D.10.D解析:由图表可知,这个病人下午14:00~18:00时的体温差是39.1-38.0=1.1(℃),平均每小时体温增加1.1÷4≈0.3(℃),因此估计这个病人下午16:00时的体温是38.0+0.3×2=38.6(℃).故选D.11.a;a;S,b 解析:由题意,得a,在该关系式中,当长一定时,a是常量,S,b是变量.12.(4)解析:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件,故填(4).13.表格法;关系式法;图象法解析:表示两个变量之间的关系时,通常有三种方法:表格法、关系式法、图象法.14.a解析:匀速时速度和时间之间的关系不变,故选a.15. y=6x解析:∵x与y的乘积是定值6,∴xy=6,即y=6x,所以y与x之间的关系可表示为y=6 x .16. 4 解析:600÷150=4(天).17. 6 解析:平均速度为6÷1=6(千米/时).18. 7.79 解析:单价为779÷100=7.79(元/升),故填7.79.19.解:(1)反映了温度和距离地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升1千米,温度降低6 ℃,可得关系式为y=20-6x.(3)将=6代入=206得=2036=16,即距离地面6千米的高空温度是16 ℃.20.解:(1)反映的是时间和电话费两个变量之间的关系,时间是自变量,电话费是因变量;(2)根据表格中的数据得出:每增加1分钟,电话费增加0.6元;(3)由表格中的数据直接得出:丽丽打了5分钟电话,电话费需付3元.21. 解:(1)反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)提出概念所用时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟内时,学生的接受能力逐步增强;当x在13分钟至20分钟内时,学生的接受能力逐步降低.22.解:由图象可知:(1)张爷爷是在距家600 的地方碰到老邻居的,交谈了25-15=10(min);(2)读报栏离家300 ;(3)反映了离开家的距离与外出散步的时间之间的关系,时间t是自变量,离开家的距离是因变量.23.解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回家里找到了作业本,即又返回家,离家的距离是0,又去学校,即离家越来越远,此时只有③符合,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,(2)情境是小芳离开家不久,休息了一会儿,又走回了家.24. 解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家900米.(2)小明到达超市用了20分钟;返回用了15分钟,往返共用了35分钟.(3)小明出发后20分钟到30分钟可能在超市购物或休息.(4)小明到超市的平均速度是900÷20=45(米/分),返回时的平均速度是900÷15=60(米/分).25.解:(1)反映了时间和退耕还林的面积之间的关系,其中时间是自变量,退耕还林的面积是因变量.(2)由表中数据可知退耕还林面积的变化趋势是逐年增加.(3)由题意得,从2007年到2012年底,该县已完成退耕还林面积350+380+420+500+600+720=2 970(亩).北师大版数学七年级下册变量之间的关系单元试题及答案(2)一、选择题(每小题3分,共30分)1.下面说法中正确的是 ( ) A .两个变量间的关系只能用关系式表示 B .图象不能直观的表示两个变量间的数量关系 C .借助表格可以表示出因变量随自变量的变化情况 D .以上说法都不对2.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 ( ) A .y=12x B.y=18x C.y=23x D.y=32x 3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s (千米)和行驶时间t (小时)的关系的是 ( )4.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为1232++=t t s ,则当4t =时,该物体所经过的路程为 ( ) A.28米 B.48米 C .57米 D .88米5.在某次试验中,测得两个变量m 和v 之间的4组对应数据如下表:A .22v m =-B .21v m =-C . 33v m =-D .1v m =+6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S 1,S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是 ( )7.正常人的体温一般在C 037左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是 ( )A.清晨5时体温最低B.下午5时体温最高C.这一天小红体温T C 0的范围是36.5≤T ≤37.5D.从5时至24时,小红体温一直是升高的8.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…1225310417526…那么,当输入数据8时,输出的数据是 ( ) A.861 B.863 C.865D.867 9. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是 ( ) A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时36.51712 5 0 T/()C 0t/h24 37.5图1图2C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3)与水深h(厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的 ( )二、填空题(每小题3分,共30分)11.对于圆的周长公式c=2 r ,其中自变量是____,因变量是____. 12.在关系式y=5x+8中,当y=120时,x 的值是 .13.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t ≤5).14.等腰三角形的周长为12厘米,底边长为y 厘米,腰长为x 厘米. 则y 与x 的之间的关系式是 .15.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.16.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数. 日期︳日 1 2 3 4 5 6 7 8 电表读数︳度2124283339424649(1)表格中反映的变量是______,自变量是______,因变量是______. (2)估计小亮家4月份的用电量是______,若每度电是0.49元,估计他家4月份应交的电费是______.图3图417.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .18.根据图6中的程序,当输入x =3时,输出的结果y = .19. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、 下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分 .20. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X (千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x 的取值范围)三、解答题(第21题6分,第22题7分,共13分)21.(6分)某校办工厂现在年产值是15万元,计划以后每年增加2万元. (1)写出年产值y (万元)与年数x 之间的关系式.(2)用表格表示当x 从0变化到6(每次增加1)y 的对应值.时间/分18 363696路程/百米图7(3)求5年后的年产值.22.(7分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.图8四、本题满分8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量之间的关系
1.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价x ,表示圆珠笔的支数,那么y 与x 之间的关系应该是 ( ) A .x y 12= B.x y 18= C.x y 32=
D.x y 2
3= 2.在一定条件下,若物体运动的路程(s 米)与时间(t 秒)的关系式为1232
++=t t s ,则当4t =时,该物体所经过的路程为 ( ) A.28米 B . 48米 C .57米 D . 88米
3.在某次试验中,测得两个变量m 和v 之间的4组对应数据如下表:
m
1 2 3 4 v
0.01
2.9
8.03
15.1
则m 与v 之间的关系最接近于下列各关系式中的 ( ) A .22v m =- B .21v m =-
C . 33v m =-
D .1v m =+
4.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S 1,S 2分别表示乌龟和兔子所
行的路程,t 为时间,则下列图象中与故事情节相吻合的是 ( )
5.正常人的体温一般在C 037左右,但一天中的不同时刻不尽相同,如图1反
映了一天24小时内小红的体温变化情况,下列说法错误的是 ( ) A .清晨5时体温最低 B .下午5时体温最高 C .这一天小红体温T C 0的范围是36.5≤T ≤37.5
D .从5时至24时,小红体温一直是升高的
6.小王利用计算机设计一个程序,输入和输出的数据如下表: 输入 (1)
2
3
4
5
…
输出
…
12 25 310 417
526
…
那么,当输入数据8时,输出的数据是 ( ) A .
861 B .863 C .8
65
D .867
7.如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说
法中错误的是( )
A .第3分时汽车的速度是40千米/时
B .第12分时汽车的速度是0千米/时
C .从第3分到第6分,汽车行驶了120千米
D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 8.向高为10厘米的容器中注水,注满为止,若注水量)(3
cm V 与水深
36.5
17 12 5 0 T/()C 0
t/h
24 37.5 图1
图2 图3
图4
)(cm h 之间的关系的图象大致如图3所示,则这个容器是下列四个图中的 ( )
9.一辆轿车在公路上行驶,不时遇到各种情况,速度随之改变,先加速,再匀速又遇到情况而减速,过后再加速然后匀速,下公路、上小路,到达目的地.图6—43哪幅图象可近似描述上面情况 ( )
10.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离)(m s 与散步所用的时间
(min)t 之间的关系,依据图象下面描述符合小红散步情景的是( )
A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了.
B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.
C.从家里出发,一直散步(没有停留),然后回家了
D.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回.
11.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间(小时)之间的函数图象是( )
12.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x 表示时间,y 表示壶底到水面的高度,则y 与x 的函数关系式的图象是( )
· · · · · · · · · · · · · · 1 2 3 4 5 6 7 8 6
18 24 30 12 Q/升
· · · · 36 42
A .
B .
C .
D .
13.等腰三角形的周长为12厘米,底边长为y 厘米,腰长为x 厘米. 则y 与x 的之间的关系式是 . 14.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.
15.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数. 日期︳日 1 2 3 4 5 6 7 8 电表读数︳
度
21
24
28
33
39
42
46
49
(1)表格中反映的变量是______,自变量是______,因变量是______.
(2)估计小亮家4月份的用电量是______,若每度电是0.49元,估计他家4月份应交的电费是______. 16.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .
17.根据图6中的程序,当输入x =3时,输出的结果y = .
18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分 .
19.一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为_______厘米,挂物体X (千克)与弹簧长度y(厘米)的关系式为______.(不考虑x 的取值范围)
20.如图6-31,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.
(1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间? (2)两人在途中行驶的速度分别是多少?
(3)指出在什么时间段内两车均行驶在途中;在这段时间内,①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面?
时间/分
18
36 36
路程/百米
图7
21.下表是三发电器厂2007年上半年每个月的产量: x/月 1 2 3 4 5 6 y/台
10 000
10 000
12 000
13 000
14 000
18 000
(1)根据表格中的数据,你能否根据x 的变化,得到y 的变化趋势?
(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高? (3)试求2007年前半年的平均月产量是多少?
22.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S (千米)与行驶时间t (时)之间的图象.
23.甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:
(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间? (2)分别求出甲、乙两人的行驶速度; (3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)
24.如图11所示,是小杰在上学路上,行车的速度随时间的变化情况,请你运用生动、形象的语言描述一下他在不同的时间里,都做了什么事情.
25.某公司有2位股东,20名工人. 从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图12所示.
(1)填写下表:
(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?
26.如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( )
(A )y=12x (B )y=18x (C )y=
23x (D )y=32
x 27.已知△ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,△ABC 的面积( )
年 份
2006年
2007年
2008年
工人的平均工资/元 5 000
股东的平均利润/元 25 000
图 12 时间速度
图11 甲
乙 1 2 3 4 5 6 5 10 15 20 25 30 x ︱分 0 图10 y ︱公里
(A)从20cm2变化到64cm2(B)从64c m2变化到20cm2(C)从128cm2变化到40cm2(D)从40cm2变化到128cm2。