【精品】2021年山东省中考数学模拟试题汇编( 解析版)
2021年山东省聊城市莘县中考数学一模试卷(解析版)

2021年山东省聊城市莘县中考数学一模试卷一.选择题(共12小题).1.的倒数的绝对值是()A.1B.﹣2C.±2D.22.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°3.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b24.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×1065.下列各式不成立的是()A.﹣=B.=2C.=+=5D.=﹣6.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,37.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4B.4C.D.28.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm29.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.10.不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a≥2C.a≤1D.a>111.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为()A.B.C.2D.112.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6二、填空题(每小题3分,共15分)13.因式分解:x2y﹣9y=.14.写出不等式组的解集为.15.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.16.如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.17.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,则a4+a200=.三、解答题(本题共8小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.先化简,再求值:,其中x是不等式3x+7>1的负整数解.19.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.21.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).23.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?24.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若∠CBA=60°,AE=3,求AF的长.25.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共36分)1.的倒数的绝对值是()A.1B.﹣2C.±2D.2【分析】根据倒数的定义,两数的乘积为1,这两个数互为倒数,先求出﹣的倒数,然后根据负数的绝对值等于它的相反数即可求出所求的值.解:∵﹣的倒数是﹣2,∴|﹣2|=2,则﹣的倒数的绝对值是2.故选:D.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b2【分析】根据同底数幂的乘法和除法法则,积的乘方法则以及完全平方公式逐一计算判断即可.解:A、a2•a3=a5,原计算错误,故此选项不合题意;B、a6÷a﹣2=a8,原计算错误,故此选项不合题意;C、(﹣2ab2)3=﹣8a3b6,原计算正确,故此选项合题意;D、(2a+b)2=4a2+4ab+b2,原计算错误,故此选项不合题意.故选:C.4.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1230000用科学记数法表示为1.23×106.故选:D.5.下列各式不成立的是()A.﹣=B.=2C.=+=5D.=﹣【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.解:﹣=3﹣=,A选项成立,不符合题意;==2,B选项成立,不符合题意;==,C选项不成立,符合题意;==﹣,D选项成立,不符合题意;故选:C.6.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,3【分析】找到出现次数最多的数据,即为众数;求出第10、11个数据的平均数即可得这组数据的中位数,从而得出答案.解:这20名同学读书册数的众数为3册,中位数为=3(册),故选:A.7.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4B.4C.D.2【分析】连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据圆内接四边形的性质得到∠D=180°﹣∠B=60°,求得∠CAD=30°,根据直角三角形的性质即可得到结论.解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°﹣30°﹣30°=120°,∴∠D=180°﹣∠B=60°,∵AD是直径,∴∠ACD=90°,∵∠CAD=30°,AD=8,∴CD=AD=4,∴AC===4,故选:B.8.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.解:由三视图可知,原几何体为圆锥,∵l==5(cm),∴S侧=•2πr•l=×2π××5=15π(cm2).故选:B.9.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.10.不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a≥2C.a≤1D.a>1【分析】根据不等式的性质求出不等式①的解集,根据不等式组的解集得出a+1≤2,求出不等式的解集即可.解:,∵解不等式①得:x>2,解不等式②得:x>a+1,又∵不等式组的解集是x>2,∴a+1≤2,∴a≤1.故选:C.11.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为()A.B.C.2D.1【分析】连接MC,证出四边形MECF为矩形,由矩形的性质得出EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,得出MC=BC=2,即可得出结果.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=2,∴EF的最小值为2;故选:B.12.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,∴3a+c>0,故④正确;⑤当x=1时,y取到值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.二、填空题(每小题3分,共15分)13.因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.写出不等式组的解集为﹣1≤x<3.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集解:不等式①的解集为x<3,不等式②的解集为x≥﹣1,所以不等式组的解集为﹣1≤x<3.故答案为:﹣1≤x<3.15.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.16.如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.【分析】因为圆锥的高,底面半径,母线构成直角三角形.先求出扇形的半径,再求扇形的弧长,利用扇形的弧长等于圆锥底面周长作为相等关系求底面半径.解:设扇形OAB的半径为R,底面圆的半径为r,则R2=()2+,解得R=2cm,∴扇形的弧长==2πr,解得,r=cm.故答案为cm.17.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,则a4+a200=20110.【分析】观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),依此求出a4,a200,再相加即可求解.解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.三、解答题(本题共8小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解:原式=•=,由3x+7>1,解得x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,∴原式=319.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为81°;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“微信”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360°乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.21.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),进而求解;(2)S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN,即可求解.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C,令y=0,则x+5=0,∴x=﹣10,∴C(﹣10,0),过点A、B分别作x轴的垂线交x轴于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.23.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?解:(1)设A型学习用品单价x元,根据题意得:=,解得:x=20,经检验x=20是原方程的根,x+10=20+10=30.答:A型学习用品20元,B型学习用品30元;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得:20(1000﹣a)+30a≤28000,解得:a≤800.答:最多购买B型学习用品800件.24.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若∠CBA=60°,AE=3,求AF的长.【解答】(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵=,∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,∠CBA=60°,∴AB===4,∴AF=2.25.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.综上所述,P点的横坐标是或.。
山东省潍坊市2021年中考数学真题(解析版)

2021年中考数学真题山东省潍坊市2021年中考数学真题一、单项选择题(共8小题,每小题3分,共24分.每小题四个选项只有一项正确.)1. 下列各数的相反数中,最大的是()A. 2B. 1C. ﹣1D. ﹣2【答案】D【解析】【分析】根据相反数的概念先求得每个选项中对应的数据的相反数,然后再进行有理数的大小比较.【详解】解:2的相反数是﹣2,1的相反数是﹣1,﹣1的相反数是1,﹣2的相反数是2,∵2>1>﹣1>﹣2,故选:D.【点睛】本题考查相反数的概念及有理数的大小比较,只有符号不同的两个数叫做互为相反数,正数大于0,0大于负数,正数大于一切负数;两个负数比大小,绝对值大的反而小.2. 如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是( )A. 15°B. 30°C. 45°D. 60°【答案】B【解析】【分析】作CD⊥平面镜,垂足为G,根据EF⊥平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,∵EF⊥平面镜,∴CD //EF ,∴∠CDH =∠EFH =α,根据题意可知:AG ∥DF ,∴∠AGC =∠CDH =α,∴∠AGC =α,∵∠AGC AGB 60°=30°, ∴α=30°.故选:B .【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG 平分∠AGB .3. 第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101 527 000用科学记数法(精确到十万位)( )A. 1.02×108B. 0.102×109C. 1.015×108D. 0.1015×109 【答案】C【解析】【分析】先用四舍五入法精确到十万位,再按科学记数法的形式和要求改写即可.【详解】解: 故选:C【点睛】本题考查了近似数和科学记数法的知识点,取近似数是本题的基础,熟知科学记数法的形式和要求是解题的关键.4. 若菱形两条对角线的长度是方程x 2﹣6x +8=0的两根,则该菱形的边长为( )A.B. 4C. 25D. 5【答案】A【解析】12=∠12=⨯8101527000101500000 1.01510≈=⨯.【分析】先求出方程的解,即可得到,根据菱形的性质求出和 ,根据勾股定理求出即可.【详解】解:解方程,得,即,∵四边形是菱形,∴,由勾股定理得,,故选:.【点睛】本题考查了解一元二次方程和菱形的性质,正确求出方程的根是解题的关键.5. 如图,某机器零件的三视图中,既是轴对称图形,又是中心对称图形的是( )A. 主视图B. 左视图C. 俯视图D. 不存在【答案】C【解析】 【分析】根据该几何体的三视图,结合轴对称图形的定义:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形及中心对称的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形进行判断即可.【详解】解:该几何体的三视图如下:42AC BD ==,AO DO AD 2680x x -+=1224x x ==,42AC BD ==,ABCD 9021AOD AO CO BO DO ∠=︒====,,AD ===A三视图中既是轴对称图形,又是中心对称图形的是俯视图,故选:C .【点睛】本题考查简单几何体的三视图,中心对称、轴对称,理解视图的意义,掌握简单几何体三视图的画法以及轴对称、中心对称的意义是正确判断的前提.6. 不等式组的解集在数轴上表示正确的是( ) A. B.C.D.【答案】D【解析】 【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】解:解不等式①,得:x ≥-1,解不等式②,得:x <2,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x <2,故选:D .2111313412x x x x +≥⎧⎪-⎨-<⎪⎩2111313412x x x x +≥⎧⎪⎨--<⎪⎩①②【点睛】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.7. 如图为2021年第一季度中国工程机械出口额TOP 10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是( )A. 对10个国家出口额的中位数是26201万美元B. 对印度尼西亚的出口额比去年同期减少C. 去年同期对日本的出口额小于对俄罗斯联邦的出口额D. 出口额同比增速中,对美国的增速最快【答案】A【解析】【分析】A 、根据中位数的定义判断即可;B 、根据折线图即可判断出对印度尼西亚的出口额的增速;C 、分别求出去年同期对日本和俄罗斯联邦的出口额即可判断;D 、根据折线图即可判断.【详解】解:A 、将这组数据按从小到大的顺序排列为:19677,19791,21126,24268,25855,26547,29285,35581,39513,67366,位于中间的两个数分别是25855,26547,所以中位数是,选项正确,符合题意; B 、根据折线图可知,对印度尼西亚的出口额比去年同期增长,选项说法错误,不符合题意; C 、去年同期对日本的出口额为:,对俄罗斯联邦的出口额为:,选项错误,不符合题意 ; ()2585526547=262012+万美元27.3%3558127078.4131.4%≈+3951323803.0166.0%≈+D 、根据折线图可知,出口额同比增速中,对越南的增速最快,选项错误,不符合题意.故选:A .【点睛】此题考查了中位数的概念和折线统计图和柱状图,解题的关键是正确分析出图中的数据. 8. 记实数x 1,x 2,…,x n 中的最小数为min|x 1,x 2,…,x n |=﹣1,则函数y =min|2x ﹣1,x ,4﹣x |的图象大致为( )A. B.C. D.【答案】B【解析】【分析】分别画出函数的图像,然后根据min|x 1,x 2,…,x n |=﹣1即可求得.【详解】如图所示,分别画出函数的图像,由图像可得, ,故选:B .,21,4y x y x y x ==-=-,21,4y x y x y x ==-=-()()()21,1,1242x x y x x x x ⎧-⎪=≤≤⎨⎪-⎩<>【点睛】此题考查了一次函数图像的性质,解题的关键是由题意分析出各函数之间的关系.二、多项选择题(共4小题,每小题3分,共12分.每小题四个选项有多项正确,全部选对得3分,部分选对得2分,有选错的即得0分.)9. 下列运算正确的是 .A.B. C.【答案】A【解析】 【分析】根据完全平方公式、负数指数幂、分式的化简、根式的化简分别计算解答即可.【详解】解:A 、,选项运算正确; B 、,选项运算错误; C 、是最简分式,选项运算错误; D,选项运算错误; 故选:A .【点睛】此题综合考查了代数式的运算,关键是掌握代数式运算各种法则解答.10. 如图,在直角坐标系中,点A 是函数y =﹣x 图象上的动点,1为半径作⊙A .已知点B (﹣4,0),连接AB ,当⊙A 与两坐标轴同时相切时,tan ∠ABO 的值可能为_______.A. 3B. C. 5 D. 【答案】BD【解析】 221124a a a ⎛⎫-=-+ ⎪⎝⎭()211a a --=33a a b b -=-2=221124a a a ⎛⎫-=-+ ⎪⎝⎭()221211a a a -⎛⎫-=-= ⎪⎝⎭33a b --=1315【分析】根据“⊙A 与两坐标轴同时相切”分为⊙A 在第二象限,第四象限两种情况进行解答.【详解】解:如图,当⊙A 在第二象限,与两坐标轴同时相切时,在Rt △ABM 中,AM =1=OM ,BM =BO ﹣OM =4﹣1=3,∴tan ∠ABO ; 当⊙A 在第四象限,与两坐标轴同时相切时,在Rt △ABM 中,AM =1=OM ,BM =BO +OM =4+1=5,∴tan ∠ABO ; 故答案为:B 或D .【点睛】本题考查切线的性质和判定,解直角三角形,根据不同情况画出相应的图形,利用直角三角形的边角关系求出答案是解决问题的前提.11. 古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O 上任取一点A ,连接AO 并延长交⊙O 于点B ,BO 为半径作圆孤分别交⊙O 于C ,D 两点,DO 并延长分交⊙O 于点E ,F ;④顺次连接BC ,FA ,AE ,DB ,得到六边形AFCBDE .连接AD ,交于点G ,则下列结论错误的是 .13AM BM ==15AM BM ==A. △AOE 的内心与外心都是点GB. ∠FGA =∠FOAC. 点G 是线段EF 的三等分点D. EFAF【答案】D【解析】【分析】证明△AOE 是等边三角形,EF⊥OA ,AD ⊥OE ,可判断A ;.证明∠AGF =∠AOF =60°,可判断B ;证明FG =2GE ,可判断C ;证明EF ,可判断D .【详解】解:如图,在正六边形AEDBCF 中,∠AOF =∠AOE =∠EOD =60°,∵OF =OA =OE =OD ,∴△AOF ,△AOE ,△EOD 都是等边三角形,∴AF =AE =OE =OF ,OA =AE =ED =OD ,∴四边形AEOF ,四边形AODE 都是菱形,∴AD ⊥OE ,EF ⊥OA ,∴△AOE 的内心与外心都是点G ,故A 正确,∵∠EAF =120°,∠EAD =30°,∴∠FAD =90°,∵∠AFE =30°,∴∠AGF =∠AOF =60°,故B 正确,∵∠GAE =∠GEA =30°,∴GA =GE ,∵FG =2AG ,∴FG =2GE ,∴点G 是线段EF 的三等分点,故C 正确,∵AF =AE ,∠FAE =120°,∴EF ,故D 错误,故答案为:D .【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF ,四边形AODE 都是菱形.12. 在直角坐标系中,若三点A (1,﹣2),B (2,﹣2),C (2,0)中恰有两点在抛物线y =ax 2+bx ﹣2(a >0且a ,b 均为常数)的图象上,则下列结论正确是( ).A. 抛物线的对称轴是直线B. 抛物线与x 轴的交点坐标是(﹣,0)和(2,0) C. 当t >时,关于x 的一元二次方程ax 2+bx ﹣2=t 有两个不相等的实数根 D. 若P (m ,n )和Q (m +4,h )都是抛物线上的点且n <0,则 .【答案】ACD【解析】【分析】利用待定系数法将各点坐标两两组合代入,求得抛物线解析式为 ,再根据对称轴直线 求解即可得到A 选项是正确答案,由抛物线解析式为,令 ,求解即可得到抛物线与x 轴的交点坐标(-1,0)和(2,0),从而判断出B 选项不正确,令关于x 的一元二次方程 的根的判别式当,解得 ,从而得到C 选项正确,根据抛物线图象的性质由 ,推出 ,从而推出 ,得到D 选项正确.【详解】当抛物线图象经过点A 和点B 时,将A (1,-2)和B (2,-2)分别代入, 得,解得 ,不符合题意, 当抛物线图象经过点B 和点C 时,将B (2,-2)和C (2,0)分别代入,得,此时无解, 当抛物线图象经过点A 和点C 时,将A (1,-2)和C (2,0)分别代入得,解得,因此,抛物线经过点A 和点C ,其解析式为,抛物线的对称轴为直线 ,故A 选项正确, 因为,所以 ,抛物线与x 轴的交点坐标是(-1,0)和12x =1294-0h >22y ax bx =+-2y x x 2=--2b x a=-2y x x 2=--0y =220ax bx t +--=0∆>94t >-0n <346m <+<0h >22y ax bx =+-224222a b a b ⎧+-=-⎨+-=-⎩00a b ⎧=⎨=⎩22y ax bx =+-42224220a b a b ⎧+-=-⎨+-=⎩22y ax bx =+-224220a b a b ⎧+-=-⎨+-=⎩11a b =⎧⎨=-⎩2y x x 2=--11212x -=-=⨯()()2221y x x x x =--=-+12x =21x =-(2,0),故B 选项不正确,由得,方程根的判别式 当 , 时, ,当时,即,解得 ,此时关于x 的一元二次方程有两个不相等的实数根,故C 选项正确,因为抛物线与x 轴交于点(-1,0)和(2,0),且其图象开口向上,若P (m ,n )和Q (m +4,h )都是抛物线上的点,且n <0,得 ,又得 ,所以h >0,故D 选项正确.故选ACD .【点睛】本题考查抛物线与x 轴的交点、根的判别式、二次函数的性质及二次函数图象上点的坐标特征,解题的关键是利用数形结合思想,充分掌握求二次函数的对称轴及交点坐标的解答方法.三、填空题(共4小题,每小题4分,共16分.只填写最后结果.)13. 甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,1);乙:y 随x 的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为 _______.【答案】y =-x +1(答案不唯一).【解析】【分析】设一次函数解析式为y =kx +b ,根据函数的性质得出b =1,k <0,从而确定一次函数解析式,本题答案不唯一.【详解】解:设一次函数解析式为y =kx +b ,∵函数的图象经过点(0,1),∴b =1,∵y 随x 的增大而减小,∴k <0,取k =-1,∴y =-x +1,此函数图象不经过第三象限,∴满足题意的一次函数解析式为:y =-x +1(答案不唯一).22ax bx t +-=220ax bx t +--=()242b a t ∆=---1a =1b =-94t ∆=+0∆>940t +>94t >-22ax bx t +-=2y x x 2=--2y x x 2=--12m -<<346m <+<0h >【点睛】本题考查一次函数的性质,数形结合是解题的关键.14. 若x <2,且,则x =_______. 【答案】1【解析】【分析】先去掉绝对值符号,整理后方程两边都乘以x ﹣2,求出方程的解,再进行检验即可.【详解】解:|x ﹣2|+x ﹣1=0, ∵x <2,∴方程为2﹣x +x ﹣1=0, 即1, 方程两边都乘以x ﹣2,得1=﹣(x ﹣2),解得:x =1,经检验x =1是原方程的解,故答案为:1.【点睛】本题考查了解分式方程和绝对值,能把分式方程转化成整式方程是解此题的关键.15. 在直角坐标系中,点A 1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A 2(1,0),A 3(1,1),A 4(﹣1,1),A 5(﹣1,﹣1),A 6(2,﹣1),A 7(2,2),….若到达终点A n (506,﹣505),则n 的值为 _______.12102x x x +-+-=-12x +-12x +-12x =--【答案】2022【解析】【分析】终点在第四象限,寻找序号与坐标之间的关系可求n 的值. 【详解】解:∵是第四象限的点, ∴落在第四象限. ∴在第四象限的点为∵∴故答案为:2022【点睛】本题考查了点坐标的位置及坐标变化规律的知识点,善于观察并寻找题目中蕴含的规律是解题的关键.16. 如图,在直角坐标系中,O 为坐标原点与(a >b >0)在第一象限的图象分别为曲线C 1,C 2,点P 为曲线C 1上的任意一点,过点P 作y 轴的垂线交C 2于点A ,作x 轴的垂线交C 2于点B ,则阴影部分的面积S △AOB =_______.(结果用a ,b 表示)()506505n A -,()506505-,()506505n A -,()()()()61014213243506505n A A A A ---⋯-,,,,,,,,.64121042214432=⨯-+=⨯-+=⨯-+,,,18442=⨯-+⋯,,450522022n =⨯-+=.a y x =b y x=【答案】a 【解析】【分析】设B (m ,),A (,n ),则P (m ,n ),阴影部分的面积S △AOB =矩形的面积﹣三个直角三角形的面积可得结论. 【详解】解:设B (m ,),A (,n ),则P (m ,n ), ∵点P 为曲线C 1上的任意一点, ∴mn =a ,∴阴影部分的面积S △AOB =mn b b (m )(n ) =mn ﹣b (mn ﹣b ﹣b ) =mn ﹣b mn +b a . 故答案为:a . 【点睛】本题考查了反比例函数的系数k 的几何意义,矩形的面积,反比例函数图象上点的坐标特征等知识,本题利用参数表示三角形和矩形的面积并结合mn =a 可解决问题.四、解答题(共7小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤) 17. (1)计算:;(2)先化简,再求值:(x ,y )是函数y =2x 与的图象的交点坐标.【答案】(1);(2)y -x ,1或-1.【解析】【分析】(1)根据实数的运算法则计算;(2)首先根据图象交点的求法得到x 与y 的值,再对原式进行化简,然后把x 与y 的值代入化简后的算式可得解.1222b a-b m b nb m b n 12-12-12-b n -b m-12-2b mn+12-22b mn-12=22b a-1222b a-02(2021)(1318)--+-⨯2222()(23)232x y x y x y xy x xy y x y x y ⎛⎫--+⋅-+ ⎪-++⎝⎭2y x =【详解】解:(1)原式+(1-×18);(2)由已知可得: , 解之可得:或, ∵原式= ==y -x ,∴当时,原式=2-1=1; 当时,原式=-2-(-1)=-1; ∴原式的值为1或-1.【点睛】本题考查实数与函数的综合应用,熟练掌握实数的运算法则、分式的化简与求值、函数图象交点的求法是解题关键.18. 如图,某海岸线M 的方向为北偏东75°,甲、乙两船同时出发向C 处海岛运送物资.甲船从港口A 处沿北偏东45°方向航行,其中乙船的平均速度为v .若两船同时到达C 处海岛,求甲船的平均速度.(结果用v≈1.4≈1.7)【答案】1.4v【解析】【分析】过点C 作AM 的垂线,构造直角三角形,可得△ACD 是含有30°角的直角三角形,△BCD 是含有45°角的直角三角形,设辅助未知数,表示AC ,BC ,再根据时间相等即可求出甲船的速度.1922y x y x =⎧⎪⎨=⎪⎩12x y =⎧⎨=⎩12x y =-⎧⎨=-⎩()()()2()(23)23x y x y x y x y y x x y x y +--+⋅--+-2323x y y x +--12x y =⎧⎨=⎩12x y =-⎧⎨=-⎩【详解】解:过点C 作CD ⊥AM ,垂足为D ,由题意得,∠CAD =75°-45°=30°,∠CBD =75°-30°=45°,设CD =a ,则BD =a ,BCa ,AC =2CD =2a ,∵两船同时到达C 处海岛,∴t 甲=t 乙,即, ∴, ∴V 甲≈1.4v .【点睛】本题考查了解直角三角形,掌握直角三角形的边角关系是正确解答的前提,作垂线构造直角三角形是解决问题的关键.19. 从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下的5组(满分为100分):A 组:50≤x <60,B 组:60≤x <70,C 组:70≤x <80,D 组:80≤x <90,E 组:90≤x ≤100,分别制成频数分布直方图和扇形统计图如图.(1)根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);=AC BC V V 甲乙2a V 甲(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;(3)若甲、乙两班参加测试的学生成绩统计如下:甲班:62,64,66,76,76,77,82,83,83,91;乙班:51,52,69,70,71,71,88,89,99,100.则可计算得两班学生的样本平均成绩为x 甲=76,x 乙=76;样本方差为s 甲2=80,s 乙2=275.4.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.【答案】(1)图见解析;平均成绩为76.5;(2);(3)甲班的数学素养总体水平好. 【解析】【分析】(1)由D 组所占百分比求出D 组的人数,再根据A 、B 、E 、D 组的人数求出C 组人数,即可补全频数分布直方图,再求出样本平均数即可;(2)画树状图,共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,再由概率公式求解即可;(3)由两班样本方差的大小作出判断即可.【详解】解:(1)D 组人数为:20×25%=5(人),C 组人数为:20﹣(2+4+5+3)=6(人), 补充完整频数分布直方图如下:估算参加测试的学生的平均成绩为:76.5(分); (2)把4个不同的考场分别记为:1、2、3、4,画树状图如图:3455265475685595320⨯+⨯+⨯+⨯+⨯=共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,∴小亮、小刚两名同学被分在不同考场的概率为; (3)∵样本方差为s 甲2=80,s 乙2=275.4,∴s 甲2<s 乙2,∴甲班的成绩稳定,∴甲班数学素养总体水平好.【点睛】本题考查了用列表法或画树状图法求概率以及频数分布直方图和扇形统计图等知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20. 某山村经过脱贫攻坚和乡村振兴,经济收入持续增长.经统计,近五年该村甲农户年度纯收入如表所示:年度(年)2016 2017 2018 2019 2020 2021 年度纯收入(万元) 1.5 2.5 4.5 7.5 11.3 若记2016年度为第1年,在直角坐标系中用点(1,15),(2,2.5),(3,4.5),(4,7.5),(5,11.3)表示近五年甲农户纯收入的年度变化情况.如图所示(m >0),y =x +b (k >0),y =ax 2﹣0.5x +c (a >0),以便估算甲农户2021年度的纯收入.(1)能否选用函数(m >0)进行模拟,请说明理由; (2)你认为选用哪个函数模拟最合理,请说明理由;(3)甲农户准备在2021年底购买一台价值16万元农机设备,根据(2)中你选择的函数表达式,预测的的123164=m xm y x=甲农户2021年度的纯收入能否满足购买农机设备的资金需求.【答案】(1)不能选用函数(m >0)进行模拟,理由见解析;(2)选用y =ax 2-0.5x +c (a >0)满足模拟,理由见解析;(3)满足,理由见解析.【解析】【分析】(1)根据m =xy 是否为定值即可判断和说明理由;(2)通过点的变化可知不是一次函数,由(1)可知不是反比例,则可判断选用二次函数模拟最合理; (3)利用已知点坐标用待定系数法求出解析式,然后计算出2021年即第6年度纯收入y ,然后比较结果即可.【详解】解:(1)不能选用函数(m >0)进行模拟,理由如下: ∵1×1.5=1.5,2×2.5=5,…∴1.5≠5∴不能选用函数(m >0)进行模拟; (2)选用y =ax 2-0.5x +c (a >0),理由如下: 由(1)可知不能选用函数(m >0),由(1,1.5),(2,2.5),(3,4.5),(4,7.5),(5,11.3)可知x 每增大1个单位,y 的变化不均匀,则不能选用函数y =x +b (k >0),故只能选用函数y =ax 2-0.5x +c (a >0)进行模拟;(3)由点(1,1.5),(2,2.5)在y =ax 2-0.5x +c (a >0)上则 ,解得: ∴y =0.5x 2-0.5x +1.5当x =6时,y =0.5×36-0.5×6+1.5=16.5,∵16.5 > 16,∴甲农户2021年度的纯收入满足购买农机设备的资金需求.【点睛】本题主要考查了二次函数的图象特征、反比例函数的图象特征、待定系数法求二次函数的解析式以及二次函数的函数值等知识点,根据图象特征、正确判断函数的种类成为解答本题的关键. 21. 如图,半圆形薄铁皮的直径AB =8,点O 为圆心(不与A ,B 重合),连接AC 并延长到点D ,使AC =CD ,作DH ⊥AB ,交半圆、BC 于点E ,F ,连接OC ,∠ABC =θ,θ随点C 的移动而变化.的m y x=m y x =m y x=m y x =1.50.52.541a c a c =-+⎧⎨=-+⎩0.51.5a c =⎧⎨=⎩(1)移动点C ,当点H ,B 重合时,求证:AC =BC ;(2)当θ<45°时,求证:BH •AH =DH •FH ;(3)当θ=45°时,将扇形OAC 剪下并卷成一个圆锥的侧面,求该圆锥的底面半径和高.【答案】(1)见解析(2)见解析(3)底面半径1【解析】【分析】(1)根据直角三角形的性质即可求解;(2)证明△BFH ∽△DAH ,即可求解;(3)根据扇形与圆锥的特点及求出圆锥的底面半径,再根据勾股定理即可求出圆锥的高.【详解】(1)如图,当点H ,B 重合时,∵DH ⊥AB∴△ADB 是直角三角形,∵AC =CD ,∴BC 是△ADB 的中线∴BC = ∴AC =BC(2)当θ<45°时,DH 交半圆、BC 于点E ,F ,∵AB 是直径∴∠ACB =90°∵DH ⊥AB∴∠B +∠A =∠A +∠D =90°∴∠B =∠D为12AD AC∵∠BHF =∠DHA =90°∴△BFH ∽△DAH ,∴ ∴BH •AH =DH •FH ;(3)∵∠ABC =θ=45°∴∠AOC =2∠ABC =90°∵直径AB =8,∴半径OA =4,设扇形OAC 卷成圆锥的底面半径为r∴ 解得r=1 .【点睛】此题主要考查圆内综合求解,解题的关键是熟知直角三角形的性质、相似三角形的判定与性质及弧长的求解与圆锥的特点.22. 如图,在直角坐标系中,O 为坐标原点,抛物线顶点为M (2),抛物线与x 轴的一个交点为A (4,0),点B (2,),点C (-2,(1)判断点C 是否在该抛物线上,并说明理由;(2)顺次连接AB ,BC ,CO ,求四边形AOCB 的面积;(3)设点P 是抛物线上AC 间的动点,连接PC 、AC ,△PAC 的面积S 随点P 的运动而变化;当S 的值为2时,求点P 的横坐标的值.【答案】(1)在抛物线上,理由见解析(2)(3)BH FH DH AH= 9042180AC l r ππ⨯⨯===【解析】【分析】(1)求出抛物线解析式,故可判断;(2)证明四边形AOCB是平行四边形,故可求解;(3)先求出直线AC的解析式,过P点做y轴的平行线交AC于Q点,表示出△PAC的面积,故可求解.【详解】(1)∵抛物线顶点为M(2,可设抛物线为y=a(x-2)2代入A(4,0)得0=a(4-2)2解得a∴抛物线为y(x-2)2x2当x=-2时,y=×(-2)2(-2)=∴点C(-2,(2)如图,连接AB,BC,CO,∵B(2,,C(-2,)∴BC AO,BC=2-(-2)=4=OA∴BC=AO∴四边形AOCB是平行四边形∴四边形AOCB的面积为4×//(3)设直线AC 的解析式为y =kx +b把A (4,0),C (-2,)代入得 解得∴直线AC 的解析式为y =过P 点作y 轴的平行线交AC 于Q 点,设P (xx 2x ),则Q (x ,) ∵△PAC 的面积S =∴ 解得x 1+1,x 2+1∴点P的横坐标为.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法的应用、平行四边形的平行与性质、三角形的面积求解方法.23. 如图1,在△ABC 中,∠C =90°,∠ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .042k b k b =+⎧⎪⎨=-+⎪⎩k b ⎧=⎪⎪⎨⎪=⎪⎩2162x x ⎡⎤⎛⎫⨯⨯--=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦(1)求证:△BDA ≌△BFE ;(2)①CD +DF +FE 的最小值为 ;②当CD +DF +FE 取得最小值时,求证:AD ∥BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断∠MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.【答案】(1)见解答;(2;②见解答;(3)是,∠MPN =30°.【解析】【分析】(1)由旋转60°知,∠ABD =∠EBF 、AB =AE 、BD =BF ,故由SAS 证出全等即可;(2)①由两点之间,线段最短知C 、D 、F 、E 共线时CD +DF +FE 最小,且CD +DF +FE 最小值为CE ,再由∠ACB =90°,∠ABC =30°,AC =1求出BC 和AB ,再由旋转知AB =BE ,∠CBE =90°,最后根据勾股定理求出CE 即可;②先由△BDF 为等边三角形得∠BFD =60°,再由C 、D 、F 、E 共线时CD +DF +FE 最小,∠BFE =120°=∠BDA ,最后ADF =∠ADB -∠BDF =120°-60°=60°,即证;(3)由中位线定理知道MN ∥AD 且PN ∥EF ,再设∠BEF =∠BAD =α,∠PAN =β,则∠PNF =60°-α+β,∠FNM =∠FAD =60°+α-β,得∠PNM =120°.【详解】解:(1)证明:∵∠DBF =∠ABE =60°,∴∠DBF -∠ABF =∠ABE -∠ABF ,∴∠ABD =∠EBF ,在△BDA 与△BFE 中,,BD BF ABD EBF AB BE ⎧⎪∠∠⎨⎪⎩===∴△BDA ≌△BFE (SAS );(2)①∵两点之间,线段最短,即C 、D 、F 、E 共线时CD +DF +FE 最小,∴CD +DF +FE 最小值为CE ,∵∠ACB =90°,∠ABC =30°,AC =1,∴BE =AB =2,BC,∵∠CBE =∠ABC +∠ABE =90°,∴CE,;②证明:∵BD =BF ,∠DBF =60°,∴△BDF 为等边三角形,即∠BFD =60°,∵C 、D 、F 、E 共线时CD +DF +FE 最小,∴∠BFE =120°,∵△BDA ≌△BFE ,∴∠BDA =120°,∴∠ADF =∠ADB -∠BDF =120°-60°=60°,∴∠ADF =∠BFD ,∴AD ∥BF ;(3)∠MPN 的大小是为定值,理由如下:如图,连接MN ,∵M ,N ,P 分别是DF ,AF ,AE 的中点,∴MN ∥AD 且PN ∥EF ,∵AB =BE 且∠ABE =60°,==∴△ABE 为等边三角形,设∠BEF =∠BAD =α,∠PAN =β,则∠AEF =∠APN =60°-α,∠EAD =60°+α,∴∠PNF =60°-α+β,∠FNM =∠FAD =60°+α-β,∴∠PNM =∠PNF +∠FNM =60°-α+β+60°+α-β=120°,∵△BDA ≌△BFE ,∴MN =AD =FE =PN , ∴∠MPN =(180°-∠PNM )=30°. 【点睛】本题是三角形与旋转变换综合应用,熟练掌握旋转的性质、三角形全等的判定与性质、平行线的判定、勾股定理的应用、中位线的性质及等腰、等边三角形的判定与性质是解题关键 .的121212。
2021年山东省临沂市兰陵县中考数学一模试卷(解析版)

2021年山东省临沂市兰陵县中考数学一模试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.B.﹣6C.6D.﹣2.如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠EGF=()A.66°B.56°C.68°D.58°3.如图所示,该几何体的俯视图是()A.B.C.D.4.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆5.将一个篮球和一个足球随机放入三个篮子中,则恰有一个篮子为空的概率为()A.B.C.D.6.下列不等式错误的是()A.﹣2<﹣1B.π<C.D.>0.37.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b9.在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是()A.样本的容量是4B.样本的中位数是3C.样本的众数是3D.样本的平均数是3.510.如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为()A.﹣B.C.﹣D.11.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<012.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3),计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米13.如图,在平面直角坐标系xOy中,△AOB经过两次图形的变换(平移、轴对称、旋转)得到△OCD,这个变化过程不可能是()A.先平移,再轴对称B.先轴对称,再平移C.先轴对称,再旋转D.先旋转,再平移14.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M,N分别是BD,BC上的动点,则CM+MN的最小值是()A.B.2C.2D.4二、填空题(本题共5小题,每小题3分,共15分)15.计算:=.16.已知a+b=3,a2+b2=5,则ab=.17.不等式组的解集是.18.如图,在Rt△ABC中,∠C=90°,点D是AC边上的一点,DE垂直平分AB,垂足为点E.若AC=8,BC=6,则线段DE的长度为.19.定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125﹣log381=.三、解答题(本大题共7小题,共63分)20.计算:(﹣)÷.21.某学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理分析数据:班级平均数中位数众数1班8380802班83b903班a8080根据以上信息回答下列问题:(1)填空:表格中a=,b=;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,.试估计需要准备多少张奖状?22.北京时间2020年11月24日04时30分,在海南文昌发射中心,嫦娥五号搭载长征五号遥五运载火箭发射升空,为我国探月工程中“绕、落、回”三步战略画上完美句号.如图,一枚运载火箭从地面L处发射,当火箭到达A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°;1s后火箭到达B点,此时测得仰角为45.54°(所有结果取小数点后两位).(1)求地面雷达站R到发射处L的水平距离;(2)求这枚火箭从A到B的平均速度是多少?(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93,sin45.54°≈0.71,cos45.54°≈0.70,tan45.54°≈1.02)23.如图,Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tan D=,求的值.24.我们学习了正比例函数、一次函数的图象与性质后,进一步研究函数y=|x|的图象与性质.(1)我们知道,请利用以前所学知识在给出的平面直角坐标系中画出该函数图象;(2)通过观察图象,写出该函数的一条性质:;(3)利用学过的平移知识,说说函数y=|x﹣4|+1是怎样由函数y=|x|平移得来的?并利用(1)中给出的平面直角坐标系画出函数y=|x﹣4|+1图象.25.如图,在正方形ABCD中,动点E,F分别在边DC,CB上移动(不与顶点重合),且满足DE=CF.连接AE和DF,交于点P.(1)请你写出AE与DF的数量关系和位置关系,并说明理由;(2)由于点E,F的移动,使得点P也随之运动.①请用文字描述并且在图中画出点P的运动路径;②若AD=10,请求出线段CP的最小值.26.如图,抛物线y=﹣x2+bx+5与x轴交于A,B两点.(1)若过点C的直线x=2是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P,使点B关于直线OP的对称点B'恰好落在对称轴上.若存在,请求出点P的坐标;若不存在,请说明理由.(2)当b≥4,0≤x≤2时,函数值y的最大值满足3≤y≤15,求b的取值范围.参考答案一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.B.﹣6C.6D.﹣【分析】只有符号不同的两个数是互为相反数,在数轴上表示,分别位于原点的两侧,且到原点距离相等的两点所表示的数是互为相反数.解:的相反数是﹣,故选:D.2.如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠EGF=()A.66°B.56°C.68°D.58°【分析】由平行线的性质可得∠FEB=180°﹣∠EFD=116°,∠BEG=∠EGF,利用角平分线的定义可得∠BEG=58°,从而得解.解:∵AB∥CD,∠EFD=64°,∴∠FEB=180°﹣∠EFD=116°,∠BEG=∠EGF,∵∠FEB的角平分线EG交CD于点G,∴∠∠BEG=58°,∴∠EGF=58°.故选:D.3.如图所示,该几何体的俯视图是()A.B.C.D.【分析】根据俯视图的概念求解可得.解:该几何体的俯视图是故选:B.4.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【分析】证明平行四边形是平移重合图形即可.解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFDC重合,∴平行四边形ABCD是平移重合图形,故选:A.5.将一个篮球和一个足球随机放入三个篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.6.下列不等式错误的是()A.﹣2<﹣1B.π<C.D.>0.3【分析】对于选项A,根据两个负数绝对值大的反而小即可得﹣2<﹣1;对于选项B,由,即可得;对于选项C,由>3,可得;对于选项D,由实数大小的比较可得.由此可得只有选项C错误.解:A、根据两个负数绝对值大的反而小可得﹣2<﹣1,原不等式正确,故此选项不符合题意;B、由3<π<4,可得,原不等式正确,故此选项不符合题意;C、∵>3,<3,可得<,原不等式错误,故此选项符合题意;D、由=0.3333…,可得,原不等式正确,故此选项不符合题意.故选:C.7.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.9.在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是()A.样本的容量是4B.样本的中位数是3C.样本的众数是3D.样本的平均数是3.5【分析】先根据方差的公式得出这组数据为2、3、3、4,再根据样本容量、中位数、众数和平均数的概念逐一求解可得答案.解:由题意知,这组数据为2、3、3、4,所以这组数据的样本容量为4,中位数为=3,众数为3,平均数为=3,故选:D.10.如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为()A.﹣B.C.﹣D.【分析】根据函数的关系式可求出交点坐标,进而确定a、b的值,代入计算即可.解:法一:由题意得,,解得,或(舍去),∴点P(,),即:a=,b=,∴﹣=﹣=﹣;法二:由题意得,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴﹣==;故选:C.11.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<0【分析】直接利用一次函数的性质结合函数图象上点的坐标特点得出答案.解:如图所示:A、图象经过第一、三、四象限,则k>0,故此选项错误;B、图象与y轴交于点(0,﹣1),故b=﹣1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.12.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3),计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米【分析】连接OC,如图,利用折叠的性质得到CD垂直平分OB,OE=BE,再根据垂径定理得到CE=DE,然后利用勾股定理计算出CE=,从而得到CD的长.解:连接OC,如图,∵点B落在圆心O的位置,∴CD垂直平分OB,∴CE=DE,OE=BE=1,在Rt△OCE中,∵OC=2,OE=1,∴CE==,∴CD=2CE=2(分米).故选:B.13.如图,在平面直角坐标系xOy中,△AOB经过两次图形的变换(平移、轴对称、旋转)得到△OCD,这个变化过程不可能是()A.先平移,再轴对称B.先轴对称,再平移C.先轴对称,再旋转D.先旋转,再平移【分析】利用轴对称.平移,旋转的性质一一判断即可.解:A、向下平移3个单位,再沿y轴翻折,可得△COD,正确,本选项不符合题意.B、沿y轴翻折,再向下平移3个单位,可得△COD,正确,本选项不符合题意.C、沿x轴翻折,再绕(0,﹣1.5)旋转180°,可得△COD,正确,本选项不符合题意.D、先旋转,再平移,不可能得到△COD,本选项符合题意.故选:D.14.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M,N分别是BD,BC上的动点,则CM+MN的最小值是()A.B.2C.2D.4【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.解:如图,在BA上截取BE=BN,因为∠ABC的平分线交AC于点D,所以∠EBM=∠NBM,在△BME与△BMN中,所以△BME≌△BMN(SAS),所以ME=MN.所以CM+MN=CM+ME≥CE.因为CM+MN有最小值.当CE是点C到直线AB的距离时,即C到直线AB的垂线段时,CE取最小值为:4×sin60°=.故选:C.二、填空题(本题共5小题,每小题3分,共15分)15.计算:=.【分析】代入特殊角三角函数值,先算乘法,然后再算减法.解:原式=﹣2×=2﹣=,故答案为:.16.已知a+b=3,a2+b2=5,则ab=2.【分析】根据完全平方公式变形求解即可.解:∵a+b=3,a2+b2=5,∴(a+b)2﹣(a2+b2)=2ab=32﹣5=4,∴ab=2.故答案为:2.17.不等式组的解集是x>2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:解不等式2x﹣1>3,得:x>2,解不等式2﹣x<1,得:x>1,则不等式组的解集为x>2,故答案为:x>2.18.如图,在Rt△ABC中,∠C=90°,点D是AC边上的一点,DE垂直平分AB,垂足为点E.若AC=8,BC=6,则线段DE的长度为.【分析】先求出AE长,根据相似三角形的判定得出△AED∽△ACB,得出比例式,代入求出DE长即可.解:∵∠C=90°,AC=8,BC=6,∴AB===10,∵DE垂直平分AB,∴∠DEA=90°,AE==5,∴∠DEA=∠C,又∵∠A=∠A,∴△AED∽△ACB,∴,即∴DE=.故答案为:.19.定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125﹣log381=﹣1.【分析】根据53=125,得出log5125=3,根据34=81,得出log381=4,从而得出答案.解:∵53=125,∴log5125=3,∵34=81,∴log381=4,∴原式=3﹣4=﹣1,故答案为:﹣1.三、解答题(本大题共7小题,共63分)20.计算:(﹣)÷.【分析】先化简小括号内的式子,将括号外的除法转为乘法,然后约分即可.解:(﹣)÷=[]•=()•=•=.21.某学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理分析数据:班级平均数中位数众数1班8380802班83b903班a8080根据以上信息回答下列问题:(1)填空:表格中a=83,b=85;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,.试估计需要准备多少张奖状?【分析】(1)根据平均数和中位数的定义求解即可;(2)根据中位数和众数的意义即可判断;(3)总人数乘以样本中满分人数所占比例即可.解:(1)3班成绩的平均数a==83,2班成绩重新排列为:60,70,80,80,80,90,90,90,90,100,所以2班成绩的中位数b==85,故答案为:83、85;(2)2班成绩比较好,理由如下:从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.22.北京时间2020年11月24日04时30分,在海南文昌发射中心,嫦娥五号搭载长征五号遥五运载火箭发射升空,为我国探月工程中“绕、落、回”三步战略画上完美句号.如图,一枚运载火箭从地面L处发射,当火箭到达A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°;1s后火箭到达B点,此时测得仰角为45.54°(所有结果取小数点后两位).(1)求地面雷达站R到发射处L的水平距离;(2)求这枚火箭从A到B的平均速度是多少?(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93,sin45.54°≈0.71,cos45.54°≈0.70,tan45.54°≈1.02)【分析】(1)在Rt△ARL中,利用cos43°=可求出答案;(2)求出AL、BL、AB的长,即可求出移动的速度.解:(1)在Rt△ARL中,RL=AR•cos43°≈4.38(km),(2)在Rt△ARL中,AL=AR•sin43°≈4.08(km),在Rt△BRL中,BL=RL•tan45.54°≈4.468(km),∴AB=BL﹣AL=0.388≈0.39(km),∴速度为0.39km/s,答:雷达站到发射处的水平距离为4.38km,这枚火箭从A到B的平均速度为0.39km/s.23.如图,Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tan D=,求的值.【分析】(1)由于题目没有说明直线AB与⊙O有交点,所以过点O作OF⊥AB于点F,然后证明OC=OF即可;(2)连接CE,先求证∠ACE=∠ODC,然后可知△ACE∽△ADC,所以,而tan ∠D==,于是得到结论.解:(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=.24.我们学习了正比例函数、一次函数的图象与性质后,进一步研究函数y=|x|的图象与性质.(1)我们知道,请利用以前所学知识在给出的平面直角坐标系中画出该函数图象;(2)通过观察图象,写出该函数的一条性质:当x>0时,y随x的增大而增大(答案不唯一);(3)利用学过的平移知识,说说函数y=|x﹣4|+1是怎样由函数y=|x|平移得来的?并利用(1)中给出的平面直角坐标系画出函数y=|x﹣4|+1图象.【分析】(1)通过列表、描点、画图,在平面直角坐标系中画出函数y=|x|的图象:(2)根据图象得出结论;(3)根据平移的性质即可求得.解:(1)列表:x…﹣3﹣2﹣10123…y…3210123…描点、连线画出函数y=|x|的图象如图:(2)由图象可知,当x>0时,y随x的增大而增大(答案不唯一),故答案为当x>0时,y随x的增大而增大(答案不唯一);(3)函数y=|x﹣4|+1是由函数y=|x|向右平移4个单位,再向上平移1个单位得来的,利用(1)中给出的平面直角坐标系画出函数y=|x﹣4|+1图象.25.如图,在正方形ABCD中,动点E,F分别在边DC,CB上移动(不与顶点重合),且满足DE=CF.连接AE和DF,交于点P.(1)请你写出AE与DF的数量关系和位置关系,并说明理由;(2)由于点E,F的移动,使得点P也随之运动.①请用文字描述并且在图中画出点P的运动路径;②若AD=10,请求出线段CP的最小值.【分析】(1)结论:AE=DF,AE⊥DF,证明△ADE≌△DCF(SAS),可得结论;(2)①点P在运动中保持∠APD=90,设正方形ABCD的中心为O,推出点P的运动路径是以AD为直径的圆的(去除端点D,O);②设AD的中点为G,连接CG交圆弧于点P,此时线段CP的长度最小,利用勾股定理求出CG,可得结论.解:(1)结论:AE=DF,AE⊥DF,理由:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵DE=CF,在△ADE和△DCF中,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠DCF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)①如图,∵点P在运动中保持∠APD=90,设正方形ABCD的中心为O,∴点P的运动路径是以AD为直径的圆的(去除端点D,O),②设AD的中点为G,连接CG交圆弧于点P,此时线段CP的长度最小.在Rt△CDG中,CG===5,∴CP=CG﹣GP=5﹣5,即线段CP的最小值是5﹣5.26.如图,抛物线y=﹣x2+bx+5与x轴交于A,B两点.(1)若过点C的直线x=2是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P,使点B关于直线OP的对称点B'恰好落在对称轴上.若存在,请求出点P的坐标;若不存在,请说明理由.(2)当b≥4,0≤x≤2时,函数值y的最大值满足3≤y≤15,求b的取值范围.【分析】(1)①根据抛物线的对称轴公式即可求出解析式;②如图,若点P在x轴上方,点B关于OP对称的点B'在对称轴上,连接OB′、PB,根据轴对称的性质得到OB'=OB,PB'=PB,求出点B的坐标,利用勾股定理得到,再根据PB'=PB,列出方程解答,同理得到点P在x轴下方时的坐标即可;(2)当b≥4时,确定对称轴的位置,再结合开口方向,确定当0≤x≤2时,函数的增减性,从而得到当x=2时,函数取最大值,再列出不等式解答即可.解:(1)①抛物线y=﹣x2+bx+5的对称轴为直线,∴若过点C的直线x=2是抛物线的对称轴,则,解得:b=4,∴抛物线的解析式为y=﹣x2+4x+5;②存在,如图,若点P在x轴上方,点B关于OP对称的点B'在对称轴上,连接OB′、PB,则OB'=OB,PB'=PB,对于y=﹣x2+4x+5,令y=0,则﹣x2+4x+5=0,解得:x1=﹣1,x2=5,∴A(﹣1,0),B(5,0),∴OB'=OB=5,∴,∴,设点P(2,m),由PB'=PB可得:,解得:,∴P(2,);同理,当点P在x轴下方时,P(2,﹣).综上所述,点P(2,)或P(2,﹣);(2)∵抛物线y=﹣x2+bx+5的对称轴为直线,∴当b≥4时,,∵抛物线开口向下,在对称轴左边,y随x的增大而增大,∴当0≤x≤2时,取x=2,y有最大值,即y=﹣4+2b+5=2b+1,∴3≤2b+1≤15,解得:1≤b≤7,又∵b≥4,∴4≤b≤7.。
山东省枣庄市第四十一中学2021-2022学年中考数学模拟试题含解析

2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°2.如图,是反比例函数4y (x 0)x =>图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内(不包括边界)的整数点个数是k ,则抛物线2y (x 2)2=---向上平移k 个单位后形成的图象是( )A .B .C .D .3.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .圆柱D .圆锥4.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--5.如图,等腰△ABC 中,AB =AC =10,BC =6,直线MN 垂直平分AB 交AC 于D ,连接BD ,则△BCD 的周长等于( )A .13B .14C .15D .166.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°7.已知点A 、B 、C 是直径为6cm 的⊙O 上的点,且AB=3cm ,AC=32 cm ,则∠BAC 的度数为( ) A .15°B .75°或15°C .105°或15°D .75°或105°8.方程(2)0x x +=的根是( )A .x=2B .x=0C .x 1=0,x 2=-2D . x 1=0,x 2=29.如图,在ABC ∆中,,4,AB AC BC ==面积是16,AC 的垂直平分线EF 分别交,AC AB 边于,E F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A .6B .8C .10D .1210.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是( )A .3B .4C .5D .711.关于x 的一元二次方程x 2-2x -(m -1)=0有两个不相等的实数根,则实数m 的取值范围是( )A .0m >且1m ≠B .0m >C .0m ≥且1m ≠D .0m ≥12.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:34()2b a b --=________. 14.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.15.如图,在矩形ABCD 中,AB=8,AD=6,点E 为AB 上一点,AE=23,点F 在AD 上,将△AEF 沿EF 折叠,当折叠后点A 的对应点A′恰好落在BC 的垂直平分线上时,折痕EF 的长为_____.16.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________17.化简:1mm-÷21mm-=_____.18.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.20.(6分)如图,在△ABC中,∠ACB=90°,AC=1.sin∠A=45,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.(1)求证;四边形PBEC是平行四边形;(2)填空:①当AP的值为时,四边形PBEC是矩形;②当AP的值为时,四边形PBEC是菱形.21.(6分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.22.(8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求23.证:△ADE∽△ABC;若AD=3,AB=5,求的值.24.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y 轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.25.(10分)已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.26.(12分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10 10 35030 20 850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).①用含a的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a 的取值范围.27.(12分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B 以及∠ODC 度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D .点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC 度数是解题关键.2、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线2y (x 2)2=---向上平移5个单位后形成的图象.【详解】 解:如图,反比例函数4y (x 0)x=>图象与坐标轴围成的区域内(不包括边界)的整数点个数是5个,即k 5=,∴抛物线2=-+-,=--+,即2y x4x1y(x2)2=---向上平移5个单位后可得:2y(x2)3∴形成的图象是A选项.故选A.【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.3、A【解析】侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.4、A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.5、D【解析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.6、B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.7、C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=32,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC 中,AD=6,AC=32,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.8、C【解析】试题解析:x(x+1)=0,⇒x=0或x+1=0,解得x1=0,x1=-1.故选C.9、C【解析】⊥,在根据三角形的面积公式求出AD的连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故AD BC=,推出长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA MC +=+≥,故AD的长为BM+MD的最小值,由此即可得出结论.MC DM MA DM AD【详解】连接AD ,MA∵△ABC 是等腰三角形,点D 是BC 边上的中点∴AD BC ⊥ ∴1141622S ABC BC AD AD ==⨯⨯=△ 解得8AD =∵EF 是线段AC 的垂直平分线∴点A 关于直线EF 的对称点为点C∴MA MC =∵AD AM MD ≤+∴AD 的长为BM+MD 的最小值∴△CDM 的周长最短 ()CM MD CD =++12AD BC =+ 1842=+⨯ 10=故选:C .【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键. 10、C【解析】如图所示:过点O 作OD ⊥AB 于点D ,∵OB=3,AB=4,OD⊥AB,∴BD=12AB=12×4=2,在Rt△BOD中,OD2222325OB BD-=-=故选C.11、A【解析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.12、A【解析】根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选A.【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、47a b -+【解析】根据平面向量的加法法则计算即可【详解】34()46472b a b b a b a b --=-+=-+. 故答案为:47a b -+【点睛】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.14、2【解析】分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.详解:根据三角形的三边关系,得第三边>4,而<1.又第三条边长为整数,则第三边是2.点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.15、4或【解析】①当AF <12AD 时,由折叠的性质得到AF=A′F ,∠FA′E=∠A=90°,过E 作EH ⊥MN 于H ,由矩形的性质得到,根据勾股定理得到A′当AF >12AD 时,由折叠的性质得到AF=A′F ,∠FA′E=∠A=90°,过A′作HG ∥BC 交AB 于G ,交CD 于H ,根据矩形的性质得到DH=AG ,HG=AD=6,根据勾股定理即可得到结论.【详解】①当AF <12AD 时,如图1,将△AEF 沿EF 折叠,当折叠后点A 的对应点A′恰好落在BC 的垂直平分线上,则A′E=AE=23,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,则AM=12AD=3,过E作EH⊥MN于H,则四边形AEHM是矩形,∴MH=AE=23,∵A′H=22=3A E HE'-,∴A′M=3,∵MF2+A′M2=A′F2,∴(3-AF)2+(3)2=AF2,∴AF=2,∴EF=22AF AE+=4;②当AF>12AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则3,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,过A′作HG∥BC交AB于G,交CD于H,则四边形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=12HG=3,∴EG=22A E A G'-'=3,∴DH=AG=AE+EG=33,∴A′F=22HF A H+'=6,∴EF=22A E A F'+'=43,综上所述,折痕EF的长为4或43,故答案为:4或43.【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.16、75°【解析】先根据同旁内角互补,两直线平行得出AC∥DF,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.【详解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案为:75°.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.17、m【解析】解:原式=1mm-•21mm-=m.故答案为m.18、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=1°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=1°;故答案是1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大【解析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y 随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得100150 ab=⎧⎨=⎩答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥3313,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,3313≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足3313≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.20、证明见解析;(2)①9;②12.5.【解析】(1)根据对角线互相平分的四边形为平行四边形证明即可;(2)①若四边形PBEC是矩形,则∠APC=90°,求得AP即可;②若四边形PBEC是菱形,则CP=PB,求得AP即可.【详解】∵点D是BC的中点,∴BD=CD.∵DE=PD,∴四边形PBEC是平行四边形;(2)①当∠APC=90°时,四边形PBEC是矩形.∵AC=1.sin∠A=45,∴PC=12,由勾股定理得:AP=9,∴当AP的值为9时,四边形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=45,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC 是菱形.【点睛】本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质.21、1 3【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解. 【详解】解:原式=()()2a a1 a11a1a2---⨯--=a a2 -∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0, ∴a=-1,将a=-1代入aa2-得,原式=1 3【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.22、(1)120;(2)42人;(3) 90°;(4)【解析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【详解】(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【点睛】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.23、(1)证明见解析;(2)35.【解析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35考点:相似三角形的判定24、(1)(1,﹣4a );(2)①y=﹣x 2+2x+3;②M (52,74)、N (32,154);③点Q 的坐标为(1,﹣)或(1,﹣4﹣).【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D 的坐标.(2)①以AD 为直径的圆经过点C ,即点C 在以AD 为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD =90°,A 点坐标可得,而C 、D 的坐标可由a 表达出来,在得出AC 、CD 、AD 的长度表达式后,依据勾股定理列等式即可求出a 的值.②将△OBE 绕平面内某一点旋转180°得到△PMN ,说明了PM 正好和x 轴平行,且PM =OB =1,所以求M 、N 的坐标关键是求出点M 的坐标;首先根据①的函数解析式设出M 点的坐标,然后根据题干条件:BF =2MF 作为等量关系进行解答即可.③设⊙Q 与直线CD 的切点为G ,连接QG ,由C 、D 两点的坐标不难判断出∠CDQ =45°,那么△QGD 为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q 的坐标,然后用Q 点纵坐标表达出QD 、QB 的长,根据上面的等式列方程即可求出点Q 的坐标.详解:(1)∵y =ax 2﹣2ax ﹣3a =a (x ﹣1)2﹣4a ,∴D (1,﹣4a ).(2)①∵以AD 为直径的圆经过点C ,∴△ACD 为直角三角形,且∠ACD =90°;由y =ax 2﹣2ax ﹣3a =a (x ﹣3)(x +1)知,A (3,0)、B (﹣1,0)、C (0,﹣3a ),则:AC 2=9a 2+9、CD 2=a 2+1、AD 2=16a 2+4由勾股定理得:AC 2+CD 2=AD 2,即:9a 2+9+a 2+1=16a 2+4,化简,得:a 2=1,由a <0,得:a =﹣1,②∵a =﹣1,∴抛物线的解析式:y =﹣x 2+2x +3,D (1,4).∵将△OBE 绕平面内某一点旋转180°得到△PMN ,∴PM ∥x 轴,且PM =OB =1;设M (x ,﹣x 2+2x +3),则OF =x ,MF =﹣x 2+2x +3,BF =OF +OB =x +1;∵BF =2MF ,∴x +1=2(﹣x 2+2x +3),化简,得:2x 2﹣3x ﹣5=0解得:x 1=﹣1(舍去)、x 2=52. ∴M (52,74)、N (32,154). ③设⊙Q 与直线CD 的切点为G ,连接QG ,过C 作CH ⊥QD 于H ,如下图:∵C (0,3)、D (1,4),∴CH =DH =1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2;设Q (1,b ),则QD =4﹣b ,QG 2=QB 2=b 2+4;得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b =﹣4±26; 即点Q 的坐标为(1,426-+)或(1,426--).点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD 和⊙Q 半径间的数量关系是解题题目的关键.25、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在⊙O 上依次截取六段弦,使它们都等于OA ,从而得到正六边形ABCDEF ;(2)连接BE ,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA ,AB BC CD DE EF AF =====,则判断BE 为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF 为矩形.【详解】解:(1)如图,正六边形ABCDEF 为所作;(2)四边形BCEF 为矩形.理由如下:连接BE ,如图,∵六边形ABCDEF 为正六边形,∴AB=BC=CD=DE=EF=FA ,∴AB BC CD DE EF AF =====,∴BC CD DE EF AF AB ++=++,∴BAE BCE =,∴BE 为直径,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四边形BCEF 为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.26、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-34a ;② a≤1. 【解析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x 分钟、y 分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;(2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;②根据“小王四月份的工资不少于1500元”即可列出不等式.【详解】(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟,由题意得: 10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩, 答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,∴一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(25×8﹣4a )=600-3a 4; ②依题意:1.5a+2.8(600-3a 4)≥1500, 1680﹣0.6a≥1500,解得:a≤1.【点睛】 本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.27、 (1)y =x 2+6x+5;(2)①S △PBC 的最大值为278;②存在,点P 的坐标为P(﹣32,﹣74)或(0,5). 【解析】(1)将点A 、B 坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P 作y 轴的平行线交BC 于点G ,将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =x+1,设点G(t ,t+1),则点P(t ,t 2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP 与CD 交于点H ,当点P 在直线BC 下方时,求出线段BC 的中点坐标为(﹣52,﹣32),过该点与BC 垂直的直线的k 值为﹣1,求出 直线BC 中垂线的表达式为:y =﹣x ﹣4…③,同理直线CD 的表达式为:y =2x+2…④,、联立③④并解得:x =﹣2,即点H(﹣2,﹣2),同理可得直线BH 的表达式为:y =12x ﹣1…⑤,联立⑤和y =x 2+6x+5并解得:x =﹣32,即可求出P 点;当点P(P′)在直线BC 上方时,根据∠PBC =∠BCD 求出BP′∥CD ,求出直线BP′的表达式为:y =2x+5,联立y =x 2+6x+5和y =2x+5,求出x ,即可求出P.【详解】解:(1)将点A 、B 坐标代入二次函数表达式得:2555016453a b a b -+=⎧⎨-+=-⎩, 解得:16a b =⎧⎨=⎩, 故抛物线的表达式为:y =x 2+6x+5…①,令y =0,则x =﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P 作y 轴的平行线交BC 于点G ,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣52,﹣32)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立①⑤并解得:x=﹣32或﹣4(舍去﹣4),故点P(﹣32,﹣74);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣32,﹣74)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.。
山东省青岛市2021年中考数学试题和答案解析详解完整版

三、作图题(本大题满分4分)
15.已知: 及其一边上的两点 , .
求作: ,使 ,且点 在 内部, .
【答案】见解析
四、解答题(本大题共9小题,共74分)
16.(1)计算: ;
(2)解不等式组: ,并写出它的整数解.
【答案】(1) ;(2) ,整数解 -1,0,1
17.为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘.请用列表或画树状图的方法说明这个游戏是否公平.
21.如图,在 中, 为 边的中点,连接 并延长,交 的延长线于点 ,延长 至点 ,使 ,分别连接 , , .
(1)求证: ;
(2)当 平分 时,四边形 是什么特殊四边形?请说明理由.
【答案】(1)见解析;(2)矩形,见解析
22.科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度 (米)与小钢球运动时间 (秒)之间的函数关系如图所示;小钢球离地面高度 (米)与它的运动时间 (秒)之间的函数关系如图中抛物线所示.
【答案】>
13.如图,正方形 内接于 , , 分别与 相切于点 和点 , 的延长线与 的延长线交于点 .已知 ,则图中阴影部分的面积为___________.
2021-2022学年山东省青岛市温泉中学中考三模数学试题含解析

2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A.3B.23C.22D.42.6的绝对值是()A.6 B.﹣6 C.16D.163.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°4.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1B.a=1 C.a=﹣1 D.a=±15.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A .B .C .D .6.下列说法正确的是( )A .2a 2b 与–2b 2a 的和为0B .223a b π的系数是23,次数是4次C .2x 2y –3y 2–1是3次3项式D .3x 2y 3与–3213x y 是同类项 7.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )A .B .C .D .8.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°9.下列方程中,两根之和为2的是( )A .x 2+2x ﹣3=0B .x 2﹣2x ﹣3=0C .x 2﹣2x+3=0D .4x 2﹣2x ﹣3=010.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.12.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为BC的中点,P是直径AB上一动点,则PC+PD的最小值为________.13.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=kx的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=_____.14.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.15.当a =3时,代数式22121()222a a a a a a -+-÷---的值是______. 16.已知一块等腰三角形钢板的底边长为60cm,腰长为50 cm ,能从这块钢板上截得得最大圆得半径为________cm三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (3,1)在反比例函数k y x=的图象上. 求反比例函数k y x=的表达式;在x 轴的负半轴上存在一点P ,使得S △AOP =12S △AOB ,求点P 的坐标;若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.18.(8分)如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次函数值的x的取值范围;若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积;19.(8分)如图,在平面直角坐标系xOy 中,直线y =kx+m 与双曲线y =﹣2x 相交于点A (m ,2). (1)求直线y =kx+m 的表达式;(2)直线y =kx+m 与双曲线y =﹣2x的另一个交点为B ,点P 为x 轴上一点,若AB =BP ,直接写出P 点坐标.20.(8分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x 轴上的一个动点.求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.21.(8分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC 分别交于点M,N,求证:BM=CN.22.(10分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8良好16及格12不及格 4合计40(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.23.(12分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.24.在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使∠DAE=90°,连接CE.探究:如图①,当点D在线段BC上时,证明BC=CE+CD.应用:在探究的条件下,若AB=2,CD=1,则△DCE的周长为.拓展:(1)如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为.(2)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,∴等边三角形的高CD=223=,AC AD-=,∴侧(左)视图的面积为2×323故选B.点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.2、A【解析】试题分析:1是正数,绝对值是它本身1.故选A.考点:绝对值.3、C【解析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4、C【解析】根据一元一次方程的定义即可求出答案.【详解】 由题意可知:1012a a -≠⎧⎨⎩+=,解得a =−1 故选C .【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.5、A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A 选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键. 6、C【解析】根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误;B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y-3y 2-1是3次3项式,此选项正确;D 2y 3与﹣3213x y 相同字母的次数不同,不是同类项,此选项错误; 故选C .【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.7、B【解析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.8、C【解析】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.9、B【解析】由根与系数的关系逐项判断各项方程的两根之和即可.【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于--21=42,故D不符合题意,故选B.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-ba、两根之积等于ca是解题的关键.10、C 【解析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:如图:在△AEB 和△AFC 中,有90B C E F AE AF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选C .【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.二、填空题(本大题共6个小题,每小题3分,共18分)11、(36)【解析】分析:连接OB 1,作B 1H ⊥OA 于H ,证明△AOB ≌△HB 1O ,得到B 1H=OA=6,3详解:连接OB 1,作B 1H ⊥OA 于H ,由题意得,OA=6,AB=OC-23, 则tan ∠BOA=33AB OA =, ∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B 1OB=∠BOA=30°,∴∠B 1OH=60°,在△AOB 和△HB 1O ,111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△HB 1O ,∴B 1H=OA=6,OH=AB=23,∴点B 1的坐标为(-23,6),故答案为(-23,6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键. 12、2【解析】作出D 关于AB 的对称点D’,则PC+PD 的最小值就是CD’的长度,在△COD'中根据边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D’,连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为弧BC的中点,即'BD BD=,∴∠BAD'=12∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.则△COD'是等腰直角三角形.∵OC=OD'=12AB=1,2CD'=故答案为:2.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.13、1【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=12•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案为1.14、1.【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.15、1.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【详解】原式=212aa--÷()212aa--=()()a1a12a+--•()221aa--=1a1a+-,当a=3时,原式=3131+-=1,故答案为:1.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.16、15【解析】如图,等腰△ABC的内切圆⊙O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是△ABC的角平分线,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴22503040-=(cm),连接圆心O和切点E,则∠BEO=90°,又∵OD=OE ,OB=OB ,∴△BEO ≌△BDO ,∴BE=BD=30cm ,∴AE=AB-BE=50-30=20cm ,设OD=OE=x ,则AO=40-x ,在Rt △AOE 中,由勾股定理可得:22220(40)x x +=-,解得:15x =(cm).即能截得的最大圆的半径为15cm.故答案为:15.点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a 、b 、c ,面积为S ,内切圆的半径为r ,则2=++S r a b c.三、解答题(共8题,共72分)17、(1)3y =;(2)P (3-,0);(3)E (3-1),在. 【解析】(1)将点A 31)代入k y x=,利用待定系数法即可求出反比例函数的表达式; (2)先由射影定理求出BC=3,那么B 3,﹣3),计算求出S △AOB =12×3×4=23则S △AOP =12S △AOB 3.设点P 的坐标为(m ,0),列出方程求解即可;(3)先解△OAB ,得出∠ABO=30°,再根据旋转的性质求出E 3,﹣1),即可求解.【详解】(1)∵点A 31)在反比例函数k y x=的图象上, ∴k=33∴反比例函数的表达式为y =(2)∵A 1),AB ⊥x 轴于点C ,∴AC=1,由射影定理得2OC =AC•BC ,可得BC=3,B 3),S △AOB =12×4=∴S △AOP =12S △AOB 设点P 的坐标为(m ,0),∴12×|m|×,∴|m|=∵P 是x 轴的负半轴上的点,∴m=﹣∴点P 的坐标为(-0);(3)点E 在该反比例函数的图象上,理由如下:∵OA ⊥OB ,OA=2,OB=AB=4,∴sin ∠ABO=OA AB =24=12, ∴∠ABO=30°,∵将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,∴△BOA ≌△BDE ,∠OBD=60°,∴BO=BD=OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣BC ﹣DE=1,∴E (1),∵(﹣1)∴点E 在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义;坐标与图形变化-旋转.18、(1)()()31y x x =-+-;(2)2x <-或1x >;(3)1.【解析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【详解】(1)∵二次函数与x 轴的交点为()30A -,和()10B , ∴设二次函数的解析式为:()()31y a x x =+-∵()0,3C 在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x =-+-;(2)()()31y x x =-+-=−x 2−2x +3,∴二次函数的对称轴为直线1x =-;∵点C 、D 是二次函数图象上的一对对称点;()0,3C∴()2,3D -;∴使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=, 解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1,把x =0代入()()31y x x =-+-得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=12×1×3−12×1×1=1.【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.19、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(113-,0).【解析】(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题. 【详解】解:(1)∵点A(m,2)在双曲线2yx=-上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2)312y xyx=--⎧⎪⎨=-⎪⎩,解得12xy=-⎧⎨=⎩或233xy⎧=⎪⎨⎪=-⎩,∴B(23,﹣3),∴ABP(n,0),则有(n﹣23)2+32=2509,解得n=5或11 3 -,∴P1(5,0),P2(113-,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.20、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(,32),或P(1,32)【解析】(1)设抛物线顶点式解析式y=a (x-1)2+4,然后把点B 的坐标代入求出a 的值,即可得解;(2)令y=0,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P 的坐标,求出点P 的纵坐标,代入抛物线解析式即可求出点P 的坐标.【详解】解:(1)、∵抛物线的顶点为A (1,4),∴设抛物线的解析式y=a (x ﹣1)2+4,把点B (0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x ﹣1)2+4;令y=0,则0=﹣(x ﹣1)2+4,∴x=﹣1或x=3, ∴C (﹣1,0),D (3,0);∴CD=4,∴S △BCD =12CD×|y B |=12×4×3=6; (3)由(2)知,S △BCD =12CD×|y B |=12×4×3=6;CD=4, ∵S △PCD =12S △BCD , ∴S △PCD =12CD×|y P |=12×4×|y P |=3, ∴|y P |= 32, ∵点P 在x 轴上方的抛物线上,∴y P >0,∴y P = 32, ∵抛物线的解析式为y=﹣(x ﹣1)2+4; ∴32=﹣(x ﹣1)2+4,∴x=1±2,∴P (1+2, 32),或P (1﹣2,32). 【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.21、证明见解析.【解析】试题分析:作EF BC ⊥于点F ,然后证明Rt AME ≌Rt FNE ,从而求出所AM FN =,所以BM 与CN 的长度相等.试题解析:在矩形ABCD 中,AD =2AB ,E 是AD 的中点,作EF ⊥BC 于点F ,则有AB =AE =EF =FC ,90,90AEM DEN FEN DEN ∠+∠=∠+∠=,∴∠AEM =∠FEN ,在Rt △AME 和Rt △FNE 中,∵E 为AB 的中点,∴AB =CF ,∠AEM =∠FEN ,AE =EF ,∠MAE =∠NFE ,∴Rt △AME ≌Rt △FNE ,∴AM =FN ,∴MB =CN .22、(1)12;22;12;4;50;(2)详见解析;(3)1.【解析】(1)求出各自的人数,补全表格即可;(2)根据调整后的数据,补全条形统计图即可;(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.【详解】解:(1)填表如下: 体能等级调整前人数 调整后人数 优秀 8 12良好16 22及格12 12不及格 4 4合计40 50故答案为12;22;12;4;50;(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率为24%,则该校体能测试为“优秀”的人数为1500×24%=1(人).【点睛】本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点. 23、﹣2,﹣1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】>-解:解不等式(1),得x3解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,224、探究:证明见解析;应用:22+;拓展:(1)BC= CD-CE,(2)BC= CE-CD【解析】试题分析:探究:判断出∠BAD=∠CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论;(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论.试题解析:探究:∵∠BAC=90°,∠DAE=90°,∴∠BAC=∠DAE.∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,∴∠BAD=∠CAE.∵AB=AC,AD=AE,∴△ABD≌△ACE.∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.应用:在Rt△ABC中,,∴∠ABC=∠ACB=45°,BC=2,∵CD=1,∴BD=BC-CD=1,由探究知,△ABD≌△ACE,∴∠ACE=∠ABD=45°,∴∠DCE=90°,在Rt△BCE中,CD=1,CE=BD=1,根据勾股定理得,∴△DCE的周长为故答案为拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE∴BC=CD-BD=CD-CE,故答案为BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.∴BD=CE∴BC=BD-CD=CE-CD,故答案为BC=CE-CD.。
【中考冲刺】2021年山东省潍坊市中考数学模拟试卷(附答案)

∵ >0,
∴x>0时,y>0,y随着x的增大而减小,
x<0时,y<0,y随着x的增大而减小,
∵−6<0,
∴y1<0,
∵0<2<3,
∴
∴ ,
故选:A.
【点睛】
本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和反比例函数的增减性是解题的关键.
4.B
【分析】
根据圆内接四边形的性质得到∠DAB,进而求出∠EAB,根据圆周角定理得到∠EBA=90°,根据直角三角形两锐角互余即可得出结论.
【详解】
解:设OA1=A1A2=A2A3=…=A2010A2021=t,则P1(t, ),P2(2t, ),P3(3t, ),…,P2021(2021t, ),
所以S2021= .
故选:A.
【点睛】
本题考查了反比例函数系数k的几何意义:在反比例函数y= 的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.
三、解答题
19.解下列方程:
(1)
(2)
20.如图,一次函数 的图象交反比例函数 的图象于 两点,交 轴于点 .
(1)求反比例函数与一次函数的关系式.
(2)求 的面积.
(3)根据图象回答:当 为何值时,一次函数的值大于反比例函数的值?
21.如图,某中学依山而建,校门 处有一坡度 的斜坡 ,长度为 米,在坡顶 处看教学楼 的楼顶 的仰角 ,离 点 米远的 处有一个花台,在 处仰望 的仰角是 , 的延长线交校门处的水平面于点 .(提示: )
【点睛】
本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:
2021年山东省中考数学真题分类汇编:方程与不等式(附答案解析)

2021年山东省中考数学真题分类汇编:方程与不等式一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5 2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4 3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2 5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022 6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.29.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2 11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣812.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+B.+=C.+=D.=+13.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣B.k<C.k>﹣且k≠0D.k<且k≠0 14.(2021•济宁)不等式组的解集在数轴上表示正确的是()A.B.C.D.二.填空题(共7小题)15.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.16.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为.17.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.18.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n 的值为.19.(2021•枣庄)已知x,y满足方程组,则x+y的值为.20.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.21.(2021•东营)不等式组的解集为.三.解答题(共6小题)22.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.23.(2021•淄博)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)解答过程中可直接使用表格中的数据哟!1.18 1.39 1.64(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.24.(2021•威海)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?25.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?26.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27.(2021•烟台)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?2021年山东省中考数学真题分类汇编:方程与不等式参考答案与试题解析一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5【考点】一元一次方程的解;不等式的性质.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.【分析】把a看做已知数求出方程的解得到x的值,由﹣3<a≤3代入计算即可.【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.【点评】此题考查了解一元一次等式、一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【考点】不等式的性质.【专题】整式;推理能力.【分析】根据不等式的性质逐个判断即可.【解答】解:∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求解不等式①和②,即可求出不等式组的解集,再在数轴上表示出不等式组的解集即可得出答案.【解答】解:解不等式①,得x>﹣3;解不等式②,得x≤﹣1.∴不等式组的解集为:﹣3<x≤﹣1.∴不等式组的解集在数轴上表示为:.故选:A.【点评】本题主要考查了在数轴上表示不等式的解集,熟练应用求不等式组的解集的方法及在数轴上表示的方法进行求解是解决本题的关键.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2【考点】一元二次方程的解.【专题】一元二次方程及应用;运算能力.【分析】直接把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,然后解关于k的一元二次方程即可.【解答】解:把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,整理得k2﹣4k=0,解得k1=0,k2=4,即k的值为0或4.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【分析】根据一元二次方程根的定义得到m2+m=2021,则m2+2m+n=2021+m+n,再利用根与系数的关系得到m+n=﹣1,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥【考点】一元二次方程的定义;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】分k﹣1=0和k﹣1≠0两种情况,利用根的判别式求解可得.【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴△=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥,故选:D.【点评】本题主要考查根的判别式和一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得其解集,继而表示在数轴上即可.【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数,不等号方向要改变.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.2【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据时间=路程÷速度结合甲比乙提前12分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:﹣=0.2,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【考点】实数与数轴;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】解第一个不等式,求出解集,再根据不等式组的解集,利用“同大取大”的口诀可得答案.【解答】解:解不等式x+5<4x﹣1,得:x>2,∵不等式组的解集为x>2,∴m≤2,故选:A.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的步骤和依据及不等式组解集的确定.11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣8【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【分析】利用因式分解法求解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
.
.则点 到射线 的距离为__________.
【答案】3 【解析】分析:过 C 作 CF⊥AO,根据勾股定理可得 CM 的长,再根据角的平分线上的点到角的两边的距离相 等可得 CF=CM,进而可得答案.
详解:过 C 作 CF⊥AO. ∵OC 为∠AOB 的平分线,CM⊥OB,∴CM=CF. ∵OC=5,OM=4,∴CM=3,∴CF=3. 故答案为:3.
看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1 时,n
是正数;当原数的绝对值<1 时,n 是负数. 详解:数据 1.496 亿用科学记数法表示为 1.496×108. 故选 D. 点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
∵O 为△ABC 的中心,∴BO=CO,∠DBO=∠OBC=∠OCB=30°,∠BOC=120°. ∵∠DOE=120°,∴∠DOB=∠COE.在△OBD 和△OCE 中,∵∠DOB=∠COE,OB=OC,∠DBO=∠ECO,
∴△OBD≌△OCE,∴BD=CE,OD=OE,故①正确; 当 D 与 B 重合时,E 与 C 重合,此时△BDE 的面积=0,△ODE 的面积>0,两者不相等,故②错误; ∵O 为中心,OH⊥BC,∴BH=HC=2.
点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质 是解题的关键. 11. 我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式
的展开式的各项系数,此三角形称为“杨辉三角”.
根据“杨辉三角”请计算 A. 84 B. 56 C. 35 【答案】B
D.由一次函数 y=ax﹣a 的图象可得:a>0,此时二次函数 y=ax2﹣2x+1 的图象应该开口向上.故
选项错误. 故选 B.
点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数 y=ax﹣a 在不同情况 下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
点睛:本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.
16. 如图。在 的正方形方格图形中,小正方形的顶点称为格点.
的顶点都在格点上,则
的正
弦值是__________.
【答案】 【解析】分析:先根据勾股定理的逆定理判断出△ABC 的形状,再由锐角三角函数的定义即可得出结论.
证明△OBD≌△OCE.
二、填空题(每题 4 分,满分 24 分,将答案填在答题纸上)
13. 计算:
=__________.
【答案】1
【解析】分析:根据有理数的加法解答即可.
详解:|﹣2+3|=1.
故答案为:1.
点睛:本题考查了有理数的加法,关键是根据法则计算.
14. 若
是一元二次方程
的两个实数根,则
=__________.
【答案】-3
【解析】分析:根据根与系数的关系即可求出答案.
详解:由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,
∴x1+x2+x1x2=﹣3
故答案为:﹣3.
点睛:本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.
15. 如图, 为
的平分线.
4. 下列运算正确的是( )
A.
B.
C.
D.
【答案】C 【解析】分析:根据同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则、合并同类项的法则分别 进行计算即可.
详解:A.a3•a2=a5,故原题计算错误; B.(﹣a2)3=﹣a6,故原题计算错误; C.a7÷a5=a2,故原题计算正确; D.﹣2mn﹣mn=﹣3mn,故原题计算错误. 故选 C.
山东省中考数学模拟冲刺试卷
(含解析)
一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
1. 3 的相反数是( )
A. 3 B.
C. -3 D.
【答案】C 【解析】分析:根据相反数的定义,即可解答.
详解:3 的相反数是﹣3. 故选 C.
详解:∵AB2=32+42=25,AC2=22+42=20,BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC 为直角三角形,且 ∠ACB=90°,则 sin∠BAC= = .
故答案为: .
点睛:本题考查的是勾股定理以及锐角三角函数,熟知在任何一个直角三角形中,两条直角边长的 平方之和一定等于斜边长的平方是解答此题的关键.
=
=
=
,当 x=2 时,DE 的值最小为 2,△BDE 的周长
=BD+BE+DE=BE+EC+DE=BC+DE=4+DE,当 DE 最小时,△BDE 的周长最小,∴△BDE 的周长的最小值 =4+2=6.故④正确. 故选 C.
点睛:本题是几何变换-旋转综合题.考查了等边三角形的性质以及二次函数的性质.解题的关键是
点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则. 5. 已知一组数据:6,2,8, ,7,它们的平均数是 6.则这组数据的中位数是( ) A. 7 B. 6 C. 5 D. 4 【答案】A 【解析】分析:首先根据平均数为 6 求出 x 的值,然后根据中位数的概念求解.
故选 A.
点睛:本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.
7. 如图,函数
和
( 是常数,且 )在同一平面直角坐标系的图象可能是( )
A.
B.
C.
D.
【答案】B 【解析】分析:可先根据一次函数的图象判断 a 的符号,再判断二次函数图象与实际是否相符,判断正误 即可.
详解:A.由一次函数 y=ax﹣a 的图象可得:a<0,此时二次函数 y=ax2﹣2x+1 的图象应该开口向下.故 选项错误;
A. 图① B. 图② C. 图③ D. 图④
【答案】A
【解析】分析:根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即
可得解.
详解:图①,∠α+∠β=180°﹣90°,互余;
图②,根据同角的余角相等,∠α=∠β;
图③,根据等角的补角相等∠α=∠β;
图④,∠α+∠β=180°,互补.
∵∠OBH=30°,∴OH= BH= ,∴△OBC 的面积=
=.
∵△OBD≌△OCE,∴四边形 ODBE 的面积=△OBC 的面积= ,故③正确;
过 D 作 DI⊥BC 于 I.设 BD=x,则 BI= ,DI= .
∵BD=EC,BC=4,∴BE=4-x,IE=BE-BI= .在 Rt△DIE 中,DE=
B.由一次函数 y=ax﹣a 的图象可得:a>0,此时二次函数 y=ax2﹣2x+1 的图象应该开口向上, 对称轴 x=﹣ >0.故选项正确;
C.由一次函数 y=ax﹣a 的图象可得:a>0,此时二次函数 y=ax2﹣2x+1 的图象应该开口向上, 对称轴 x=﹣ >0,和 x 轴的正半轴相交.故选项错误;
17. 对于实数 a,b,定义运算“◆”:a◆b=
,例如 4◆3,因为 4>3.所以4◆3==5.若x,y 满足方程组
,则 x◆y=_____________.
【答案】60 【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.
详解:由题意得:5+2+8+x+7=6×5,解得:x=8,这组数据按照从小到大的顺序排列为:2,5,7,8, 8,则中位数为 7.
故选 A. 点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列, 如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数, 则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数 据的个数. 6. 如图,将一副三角尺按不同的位置摆放,下列摆放方式中 与 互余的是( )
∵AB2+BC2=22,∴AB=BC= m,∴阴影部分的面积是
= (m2).
故选 A.
点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键. 10. 给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当 x>1 时,函数值 y 随自变量 x 增大而增大“的是( ) A. ①③ B. ③④ C. ②④ D. ②③ 【答案】B 【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.
点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.
3. 一年之中地球与太阳之间的距离随时间而变化,1 个天文单位是地球与太阳之间的平均距离,即 1.496
亿 .用科学记数法表示 1.496 亿是( )
A.
B.
C.
D.
【答案】D
【解析】分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要
8. 分式方程
的解为( )
A.
B.
C.
D. 无解
【答案】D
【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方
程的解.
详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验 x=1 是增根,分式方程无解.
故选 D.
点睛:本题考查了分式方程的解,始终注意分母不为 0 这个条件.