分式 回顾与思考
分式的混合运算教学反思3篇

分式的混合运算教学反思3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!分式的混合运算教学反思3篇下面是本店铺整理的分式的混合运算教学反思3篇(带分数的混合运算教学反思),以供借鉴。
分式方程教学反思〈最新〉

分式方程教学反思〈最新〉分式方程教学反思身为一名优秀的人民教师,课堂教学是重要的工作之一,通过教学反思可以有效提升自己的课堂经验,如何把教学反思做到重点突出呢?下面是本人整理的分式方程教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
分式方程教学反思1本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。
本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。
教学难点是如何将分式方程转化成整式方程。
本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。
我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。
这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。
因此,学生学的效果也较好。
我认为比较成功的1、把思考留给学生,课堂教学试一试这个环节中,我把更多的思维空间留给学生。
问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。
我主要在做题方法上指导,思维方式上点拨。
改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。
2、积极正确的引导,点拨。
保证学生掌握正确知识,和清晰的解题思路。
由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。
还有在解分式方程过程中容易出现的问题都给学生做了强调。
3、及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。
学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。
对于困难的学生也做个别辅导。
虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。
第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。
分式方程教学反思12篇

分式方程教学反思12篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!分式方程教学反思12篇分式方程教学反思1本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学XX应用打下了良好的基础,因而在教材中具有不可忽略的地位与作用。
分式方程教学反思范文模板

分式方程教学反思范文模板分式方程教学反思作为一名优秀的教师,我们的任务之一就是教学,对学到的教学新方法,我们可以记录在教学反思中,教学反思我们应该怎么写呢?以下是收集整理的分式方程教学反思,仅供参考,希望能够帮助到大家。
分式方程教学反思1应用题教学是培养学生分析问题和解决问题的一个非常重要的手段。
但应用题阅读量大、建模难度高,学生往往无从下手。
在教学中,我发现教师教的吃力,学生学的也很吃力,很多学生看见应用题就有一种说不出的恐惧感。
于是在列分式方程解应用题的教学中,我试着运用表格分析法来进行应用题的教学,让学生有章可循,并取得了很好的效果。
一、教学案例展示例题:某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致。
已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完。
问这两个操作员每分钟各能输入多少名学生的成绩?分析:题中涉及工作量、工作效率、工作时间三量关系,甲、乙两种状态。
根据题意,设乙每分钟能输入x名学生的成绩,则甲每分钟能输入2x名学生的成绩,用表格分析问题。
步骤一:列出表格步骤二:依次填写表格信息表格的第一行填写题中最清晰的量,即工作量(甲、乙的工作量均为2640名学生);表格的第二行填写题中所设的量,即工作效率(甲的工作效率是2x名/分钟,乙的工作效率):表格第三行填写第三个量,即工作时间分式方程教学反思21、解可化为一元一次方程的分式方程的基础是会解一元一次方程,综合知识运用点多,难点在于要正确地把分式方程化为一元一次方程,问题的关键是在去分母,包括正确乘于各分母的最简公分母、正确去括号、合并同类项等,学生在做题时要很小心才行,如果其中有一步走错了,特别是去分母这一步错了,后面的功夫便白费了,所以在教学中教师要引导学生耐心地攻克每一个难点,千万不要在去分母时忘记把没有分母的项也乘于它们的最简公分母。
分式回顾与思考学案

分式回顾与思考学案下面是查字典数学网为您推荐的分式回顾与思考学案,希望能给您带来帮助。
分式回顾与思考学案1、学习目标(1)知识目标:①用分式表示生活中的一些量。
②分式的基本性质及分式的有关运算法则。
③分式方程的概念及其解法。
④列分式方程,建立现实情境中的数学模型(2)能力目标:①有目的地梳理知识,形成这一章完整的知识体系。
②进一步体验类比与转化在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用。
(3)情感目标:①在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人。
2、学习重点:①分式的概念及其基本性质。
②分式的运算法则。
③分式方程的概念及其解法④分式方程的应用3、学习难点:①分式的运算及分式方程的解法。
②分式方程的应用一、本章知识结构图.式子分数分式A、B是两个整数,B0 A、B是两个整式,B含有字母,字母的取值应保证B0M是不等于零的数,分数基本性质,分数通分 M是不等于零的整式,分式基本性质M是不等于零的数,分数基本性质,分数约分 M是不等于零的整式,分式基本性质,分式约分分数乘法法则分式的乘法法则分数除法法则分式除法法则同分母分数加减法法则同分母分式加减法法则异分母分数加减法法则异分母分式加减法法则二、分式概念及运算法则三、典型例题例1、当x为何值时,①下列分式有意义;②它的值为零,(1) ; (2)例2、约分(1) ; (2)例3、计算:(1) ( - ) (2) -例4、解方程 = -3四、课后练习(一)细心填一填1、分式,当x =__________时分式的值为零。
2、当x __________时分式有意义。
3、① ② 。
4、约分:① __________,② __________。
5、计算: __________。
6、一项工程,甲需x小时完成,乙需y小时完成,则两人一起完成这项工程需要__________ 小时。
7、要使的值相等,则x=__________。
八年级数学下册 第十六章分式复习教案 人教新课标版

《分式》复习教案教学内容本节课主要内容是对本单元进行回顾.教学目标1.知识与技能会进行分式的基本运算(加、减、乘、除、乘方),熟练掌握分式方程的解法,能应用“建模”思想解决实际问题.2.过程与方法经历回顾分式概念、计算、应用的过程,提高观察、类比归纳、猜想等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的基本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模”.3.关键:把握分式的基本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式基本性质、约分、通分、混合运算,•以及分式方程、应用内容后进行反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式达到巩固提高本单元知识的目的.教学过程一、回顾交流,巩固反馈【组织交流】教师活动:打开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是(1)单元知识结构图;(2)课本P41“回顾与思考”的5个问题;(3)自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的基本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.(投影显示本单元知识体系,见课本P41)1.分式的基本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:(1)基本性质中的字母表示整数,(,A A M A A M B B M B B M⨯÷==⨯÷,M ≠0) (2)要特别强调M ≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用基本性质时,重点要考查M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、相同因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是(1)因式分解,(2)约分.5.分式的加减法本质就是(1)通分,(2)分解因式,(3)约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,下列分式有意义?(1)22461;(2);(3)512x x x x m-++. 思路点拨:(1)令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.(•x ≠-15);(2)由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m 2≥0,所以m ≠0即可.演练题2:当x 取什么数,下列分式的值为零?(1)23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=-32;(2)x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x 为何值时,2||5x x -的值为零;(x ±5) 2.x 为何值时,259x x +-没有意义;(x=9) 3.x 为何值时,6721a a -+的值等于1.(a=2) 4.课本P42复习题16第6题.四、X 例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性. 学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.五、随堂练习,巩固深化1.计算. 22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原计划每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模”方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8(无解)2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P43“复习题16”第11,12题.八、布置作业,专题突破1.课本P42“复习题16”第1,2(3)(4)(6),3(2)(4)(6),4,5,8,9,10题.2.选用课时作业设计.九、课后反思课时作业设计【驻足“双基”】1.x______时,分式755x x +-有意义. 2.分式2134,,11m m m +-的最简公分母是________. 3.计算:(a+b )·2222a b a b a b---=______. 4.当x=______时,分式752x x-与的值相等. 5.当m=______时,方程233y m y y =---会产生增根. 6.若分式29(3)(4)a a a -+-的值为零,则a 的值是( ). A .±3 B .-3 C .3 D .以上结论都不对7.能使分式233x x x+---2值为零的x 的值是( ). A .x=4 B .x=-4 C .x=-4或x=4 D .以上结论都不对8.计算.(1)2(1)1132(2)(1)(1)(1)1166x x x x x x x x x x x +---÷-+-++-- 9.化简求值:133(2),(2)(1)24x x x x x x +÷-+=+-+其中. 10.解方程:1122x x x----=-3 【提升“学力”】 11.a 为何值时,关于x 的方程12325x a x a +-=-+的解等于零? 12.某个体商贩一次同时卖出两件上衣,每件都以135元出售,其中一件盈利25%,另一件亏本25%,讨论在这次买卖中,该商贩能否赚到钱?13.某某到某某铁路长300千米,为适应两省、市经济发展的要求,客车的行车速度每小时比原来增加了40千米,这样使得由某某至某某的时间缩短了1.5小时,•求列车原来的速度及现在的速度.请参照上面的应用题,编一道类似的应用题(不需要求解)这道应用题应满足:(1)不改变分式方程的形式; (2)改变实际背景和数据.答案:1.x ≠5 2.m (m+1)(m-1) 3.a+b 4.-5 5.-3 6.C 7.A8.(1)2211,(2)9.1610.2()11.13(3)5x x a x x --==--增根 (提示:先把a 看作已知数,•按照解分式方程的步骤求出x ,然后令x=0,得到关于a 的方程,求出a 值.(8-a )x=1-5a ,当a ≠8时,x=15151,0,150,885a a a a a a --=-=∴=--解唯一令则.) 12.赚不到 13.设列车原来的速度为x 千米/时,则30030040x x -+=1.5.。
分式 回顾与思考

第8章 回顾与思考(1)
【复习目标】
进一步掌握分式的有关概念及其基本性质,能够熟练、正确地进行分式的加、减、乘、除四则运算.
【重点难点】
1.分式的概念及其基本性质.
2.分式的运算法则
【学习过程】
知识回顾
分式的概念
分式有意义的条件
分式 分式的变号法则
分式的基本性质 分式的约分 分式的乘法
分式的除法.乘方
分式的通分 分式的加法
分式的减法
〖典型例题〗
例1 当x 取何值时下列分式有意义?
2
3x x -+, 211x x --, , 211x x -+
变式 (1)当x 时,分式1
1x 2+-x 的值为零。
(2). 当x= 时,分式1
2(1)x x --的值是零
(3). 当x 时,分式
x 321-的值为正数. (4) 若分式23x
x -的值为负数,则x 的取值范围是( ) A.x >3
B.x <3
C.x <3且x ≠0
D.x >-3且x ≠0 (5).已知x =-1时,分式
a
x b x +-无意义,x =4时分式的值为零,则a +b =________.) 例2 计算
〖课堂过关〗
〖反思拓展〗:对照目标我学到了什么?还有什么困惑? 〖课堂作业〗:课本P26复习题5、6、7、8、9
〖达标测试〗
基础自测
能力提升。
分式和方程教学反思8篇

分式和方程教学反思8篇分式和方程教学反思1本节课分式方程的解法部分属于重点,难点为利用分式方程解实际问题。
分式方程的解法是解决大多数数学问题的基础公具,应让学生们从思想上认识到它的重要性,解实际问题需正确找到等量关系,构建数学模型,把实际问题转化为数学计算问题,本节课学生对这条教学主线,理解较为清晰。
本节课我采用了启发讲授、合作探究、讲练相结合的教学方式。
在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”新课表理念。
使学生充分地动口、动脑,参与教学全过程。
在教学过程中,为了达到学习目标,强化重点内容并突破学习中的难点,在课堂教学过程中,根据教学目标和学生的具体情况,紧密联系实例,精心设计问题情境,使所有学生既能参与,又有探索的余地,全体学生在获得必要发展的前提下,不同的学生获得不同的体验。
达到了课堂教学的有效性。
在学法指导上,本着“授之以鱼,不如授之以渔”的原则,围绕本节课所学知识,激发学生积极思考,教会学生分析问题的方法,使学生既能在探索中获取知识,又能不断丰富数学活动的.经验,学会探索,提高分析问题、解决问题的能力。
本节课体现了本人,努力培养具有较高数学素养的一代新人的教育观点,达到了预期的教学效果。
分式和方程教学反思2进入初三总复习以来,我一直都在尝试探索一种比较适合总复习课的课堂教学模式,经过近两周的教学实践,我基本形成了以下的课堂教学流程:作业评析→出示学习目标→考点分析→学生独立完成学案→小结归纳→课堂检测,今天在进行“可转化为整式方程的分式方程”的复习课时,我也是按这样的流程来进行,没想到发生了一些意外,以致于影响了整堂课的教学效果。
在作业评析环节,我照常收集学生上堂课测验及课后作业中存在的问题,由学生讲解其解答方法与思路,然后再给时间让学生自行改正。
为了突出本节课与分式的化简求值的区别,我还收集了学生以往在分式的运算中容易出错的一个问题。
没想到仍有相当多的学生在解答这个问题时却依然遇到了当初那样的困难,出现了同样的错误,于是我不得不已再花时间让学生自我反思与自我改正解答的方法。