第八章 结构与性能的关系

合集下载

第八章发动机与整车性能匹配

第八章发动机与整车性能匹配
3) 汽车百公里油耗:
q100 100B f va
B Pe be / 1000
Pe pmeiVs n / 30
q100
Pe be iVs ik i0 pmebe 0.00884 10 f va f r
4)传动效率及传动损失
Pe PT 100% Pe
Pe : E/G输出功率;P T : 传动系统内部功率损失
r
=0.5~0.6,道路附着系数,N:驱动轮垂直反力。
③ 根据最低稳定车速确定第一档速比: 越野车 松软路面上轮胎对地面的附着力最低车速amin
0.377n min r iI v a min i0 i
4)变速器各档传动比的确定 变速器最高档和最低档确定后,中间各档位初步 可按几何级数公比法确定: 几何公比,挡位数k
第八章 发动机与整车性能匹配
§8-1 汽车动力传动装置及主要参数的确定 §8-2 汽车行驶基本原理及特性 §8-3 发动机与传动装置性能匹配 §8-4 整车性能的改进途径
整车匹配的必要性:
整车的动力性、经济性及排放性E/G性能
E/G性能好≠汽车性能就好;
汽车性能:POWER TRAIN 匹配的结果。
1
确定主减速比时,考虑以下三个方面的因素:
① 满足汽车动力性和经济性的要求;
② 相啮合齿轮的齿数间没有公约数,保证主、从 动齿轮各齿之间都能正常啮合,起到自动磨合作 用; ③大小齿轮的齿数之和>40。保证重合系数和轮齿 的抗弯强度。 对轿车,一般小齿轮齿数Z1≥9;货车Z1≥6
5)差速器:汽车转弯时,左右轮转弯半径不同 旋转速度不同。差动装置就是适应这种左右车轮的 转速差同时向车轮传递动力。
1:主动叉所在平面与主从

第八章-材料的热学性能-2

第八章-材料的热学性能-2

第四节 热传导
一、材料的热传导
1.定义:当固体材料一端的温度比另一端高时,热量会 从热端自动地传向冷端,这个现象就称为热传导。
2.傅里叶定律和热导率 假设固体材料垂直于x轴方向的截面积为ΔS,材料沿x 轴方向的温度变化率(温度梯度)为 ddTx,在单位时间内 通过与热流垂直的单位面积的热量称为热流密度q。
合金元素对膨胀系数的影响取决于它形成碳化物 还是固溶于铁素体。固溶于铁素体中的合金元素 和渗碳体都使钢的膨胀系数降低,而形成合金碳
化物的合金元素使钢的膨胀系数增大。
不同组成相对钢膨胀系数的影响(20-250 ℃ )
五 热膨胀系数的测定及应用
1 热膨胀系数的测定
(1) 望远镜直读法 将试样装在加热炉炉管的托座上,在精密温度程序控制仪 控制下升温,通过放大倍率在10倍以上的望远镜直读,测 量试样加热过程中的线膨胀变化。
式中αt,αt1,αt2分别为合金与组成相的线膨胀系数。 若两相弹性模量相差较大,考虑到各相弹性相互作用的影响,则:
式中E1和E2分别为组成相的弹性模量。
多相合金的膨胀系数对各相的大小、分布及形状不敏感, 主要取决于组成相的性质和数量。
⑤钢的热膨胀特性取决于组成相的性质和数量。
钢的组织中,马氏体比容为最大,奥氏体比容最小, 铁素体和珠光体居中。铁素体和渗碳体的比容有固定 值,而马氏体、奥氏体和珠光体的比容都要随含碳量 的增加而增大。钢的平均线膨胀系数则相反,奥氏体 最大,铁素体和珠光体次之,马氏体为最小。通常钢 的平均线膨胀系数大约为(10~25) ×10-6K-1。
固体中能量的载体
固体的导热
自由电子 声子(点阵波)
光子(电磁辐射)
电子 • 纯金属 导热
声子 • 绝缘体 导热

第八章 大分子的热运动、力学状态及其转变

第八章 大分子的热运动、力学状态及其转变

程.
• 高聚物的 不是一单一数值,运动单元越大,运 高聚物的τ 不是一单一数值,运动单元越大, 动所需时间越长, 运动单元越小, 动所需时间越长,则τ 大,运动单元越小,则τ 小, 所以高聚物的τ 严格地讲是一个分布,称为“ 所以高聚物的 严格地讲是一个分布,称为“松 弛时间谱” 弛时间谱” • 当观察时间的标度与聚合物中某种运动单元 例如链段) 值相当时, (例如链段)的τ 值相当时,我们才能观察到这 种运动单元的松弛过程, 种运动单元的松弛过程,但仍然观察不到其它运 动单元的松弛过程。 动单元的松弛过程。
例1: : • 古代欧洲教堂的玻璃几个世纪后呈下厚上薄(重力 古代欧洲教堂的玻璃几个世纪后呈下厚上薄( 作用) 作用) • 塑料雨衣长期悬挂,会在悬挂方向出现蠕变(重力 塑料雨衣长期悬挂,会在悬挂方向出现蠕变( 作用), 作用), 这些是塑料(固体)呈现液体的力学行为。 这些是塑料(固体)呈现液体的力学行为。 例2: : • 在倾倒高聚物熔体时,若用一根棍子快速敲打流 在倾倒高聚物熔体时, 则熔体液流也会脆性碎掉。 体,则熔体液流也会脆性碎掉。 这是高聚物熔体呈现固体力学行为的例子。 这是高聚物熔体呈现固体力学行为的例子。
化学组成: 碳链、杂链、元素、无机 化学组成: 碳链、杂链、元素、 结构单元键接方式: 结构单元键接方式:头-头、头-尾 高分子的构造:线形、支化、 近程结构 高分子的构造:线形、支化、交联 共聚物的组成与结构:无规、交替、嵌段、 共聚物的组成与结构:无规、交替、嵌段、接枝 高分子链的构型:几何异构、 高分子链的构型:几何异构、光学异构 高分子的大小:分子量、均方末端距、 高分子的大小:分子量、均方末端距、均方半径 远程结构 高分子的形态:构象、 高分子的形态:构象、柔顺性 晶态结构 非晶态 取向态 液晶态 多组分聚合物体系

东华大学2010纺织材料学_真题名词解释_答案

东华大学2010纺织材料学_真题名词解释_答案

20101.分子的内旋转与分子构象:分子的内旋转:大分子链中的单键在能绕着它相邻的键按一定键角旋转。

分子构象:分子链由于围绕单键内旋转而产生的原子在空间的不同排列形式。

(?)2.相对湿度和预调湿:相对湿度:指空气中水汽压与饱和水汽压的百分比。

预调湿:对纤维材料进行(45±2)℃的预烘,此烘干过程称为预调湿。

3.差微摩擦效应与毡缩性:差微摩擦效应:羊毛纤维特有的现象即顺鳞片摩擦的摩擦系数小于逆鳞片摩擦系数,△μ=μ逆-μ顺>0,用δ表示:δ=2x(μ逆-μ顺)/(μ逆+μ顺)= △μ/。

毡缩性:羊毛纤维在湿热或化学试剂作用下,经机械外力反复作用,纤维集合体逐渐收缩紧密并相互穿插纠缠,交编毡化的特性。

4.浸润的滞后性与平衡态浸润:浸润滞后性:指固体表面第一次浸润和第二次浸润间存在的差异,且第一次浸润角恒大于第二次浸润角。

平衡态浸润:纤维的浸润是指纤维与液体发生接触时的相互作用过程,这一过程中达到平衡不变的液体形状的浸润,称为平衡态浸润。

5.复合纺:利用两种或两种以上不同性状的单纱或长丝束加工成一根纱线。

6.织物结构相和织物组织:织物结构相:织物中经纬纱线相互交织呈屈曲状态的构相,一般由经纱屈曲波高与纬纱屈曲波高的比值来决定。

织物组织:机织物中经纬纱线相互交织的规律和形式。

7.织物的耐热性及热稳定性:在热作用下,织物形态稳定,无过大的变形或软化,强度和模量无明显下降,化学性能稳定,无明显分解和挥发;在低温环境下不脆化,不龟裂损伤,柔软可用。

附:纺织材料学------纺织基础知识第一章绪论第二章天然纤维素纤维第三章天然蛋白质纤维第四章化学纤维第五章纺织材料的吸湿性第六章纤维材料的机械性质第七章纤维材料的光学、电学性质第八章纱线结构与性能第九章织物的基本结构参数、基本性质第一章绪论1.1 特点 1.2 研究内容1.3纺织纤维的分类(普通纤维)1.4 纱线的分类 1.5 织物分类 1.6 纺织材料的发展内容提要:本课程的地位、性质、特点、基本内容,纺织材料的概念及简要分类。

聚合物合成工艺学教案

聚合物合成工艺学教案

一、教案概述聚合物合成工艺学教案教学目标:1. 了解聚合物的基本概念、分类和性质。

2. 掌握聚合反应的基本原理和常见聚合反应类型。

3. 熟悉聚合物合成的工艺条件和流程。

4. 能够分析和解决聚合物合成过程中的问题。

教学内容:1. 聚合物的基本概念和分类2. 聚合反应的基本原理3. 常见聚合反应类型及特点4. 聚合物合成的工艺条件和流程5. 聚合物合成过程中的问题分析与解决教学方法:1. 讲授:讲解聚合物的基本概念、分类和性质,聚合反应的基本原理,常见聚合反应类型及特点。

2. 案例分析:分析聚合物合成的工艺条件和流程,以及聚合物合成过程中的问题。

3. 小组讨论:分组讨论聚合物合成过程中的问题,并提出解决方案。

4. 实践操作:进行聚合物合成的实验操作,加深对聚合反应的理解。

教学评估:1. 课堂参与度:评估学生在讨论中的积极参与程度和思考深度。

2. 实验报告:评估学生对聚合物合成实验的操作技能和问题分析能力。

3. 期末考试:考察学生对聚合物合成工艺学的整体理解和掌握程度。

二、第一章:聚合物的基本概念和分类教学目标:1. 了解聚合物的基本概念和分类。

2. 掌握聚合物的命名和表示方法。

3. 熟悉聚合物的性质和应用领域。

教学内容:1. 聚合物的基本概念2. 聚合物的分类3. 聚合物的命名和表示方法4. 聚合物的性质5. 聚合物的应用领域教学方法:1. 讲授:讲解聚合物的基本概念、分类和性质。

2. 案例分析:分析具体的聚合物实例,了解其应用领域。

教学评估:1. 课堂参与度:评估学生在讨论中对聚合物概念的理解和应用能力。

2. 课后作业:评估学生对聚合物分类和命名表示方法的掌握程度。

三、第二章:聚合反应的基本原理教学目标:1. 了解聚合反应的基本原理。

2. 掌握单体、活性种和聚合物链的生长。

3. 熟悉聚合反应的动力学和速率控制因素。

教学内容:1. 聚合反应的基本原理2. 单体、活性种和聚合物链的生长3. 聚合反应的动力学4. 聚合反应的速率控制因素教学方法:1. 讲授:讲解聚合反应的基本原理和动力学。

物质结构教案课件

物质结构教案课件

物质结构教案PPT课件第一章:物质的组成与结构1.1 物质的定义与分类物质的概念物质的分类:纯净物、混合物1.2 元素与化合物元素的定义与性质化合物的定义与性质元素与化合物的关系1.3 原子结构原子的定义与性质原子核与电子层原子的大小与质量1.4 分子结构分子的定义与性质分子间的相互作用分子的形状与结构第二章:晶体结构2.1 晶体的定义与性质晶体的概念晶体的特点:有序排列、周期性、规则形状晶体的性质:熔点、硬度、导电性2.2 晶体的类型离子晶体分子晶体金属晶体原子晶体2.3 晶体结构的原子排列晶胞的概念晶胞中原子的排列方式晶体的空间群第三章:化学键与分子间作用力3.1 化学键的定义与分类化学键的概念离子键共价键金属键3.2 分子间作用力分子间作用力的概念范德华力氢键疏水作用力3.3 键长、键能与键角键长的定义与测量键能的概念与计算键角的概念与测量第四章:物质的状态与相变4.1 物质的状态固态液态气态等离子态4.2 相变与相图相变的概念相图的定义与类型相变的类型与原因4.3 相律与相图的应用相律的概念与表达式相图的应用领域相图与物质性质的关系第五章:物质的性质与结构的关系5.1 物质的化学性质化学反应与化学键化学键的断裂与形成物质的化学稳定性5.2 物质的物理性质熔点与沸点密度与比热容导电性与磁性5.3 物质的结构与性质的关系结构决定性质性质反映结构结构与性质的调控与应用第六章:金属结构与性能6.1 金属的电子结构自由电子的概念金属的电子气模型金属的导电性与导热性6.2 金属的晶体结构金属晶体的类型:面心立方、体心立方、简单立方金属晶体的原子排列金属晶体的性质:硬度、韧性、延展性6.3 合金的结构与性能合金的定义与分类合金的性能:强度、韧性、耐腐蚀性常见合金的应用领域第七章:非金属结构与性能7.1 非金属的晶体结构非金属晶体的类型:原子晶体、分子晶体、离子晶体非金属晶体的原子排列非金属晶体的性质:硬度、熔点、导电性7.2 非金属材料的结构与性能陶瓷的结构与性能玻璃的结构与性能塑料的结构与性能7.3 纳米材料的结构与性能纳米材料的概念纳米材料的结构特点纳米材料的性能:强度、韧性、催化性第八章:有机化合物的结构与性能8.1 有机化合物的基本概念有机化合物的定义与特点有机化合物的命名规则有机化合物的结构表示方法8.2 有机化合物的结构与性能碳原子的杂化类型有机化合物的键角与空间结构有机化合物的性能:熔点、沸点、溶解性8.3 有机化合物的同分异构现象同分异构体的概念同分异构体的类型:构型异构、构态异构、位置异构同分异构体与性能的关系第九章:生物大分子的结构与性能9.1 生物大分子的概念与分类生物大分子的定义蛋白质的结构与性能核酸的结构与性能糖类的结构与性能9.2 生物大分子的相互作用生物大分子之间的相互作用力生物大分子的折叠与组装生物大分子的功能与性能9.3 生物大分子的应用生物大分子的药物应用生物大分子的生物传感器应用生物大分子的生物材料应用第十章:物质结构与技术进展10.1 材料科学技术的进展新材料的研发与设计材料制备技术的发展材料性能的调控与优化10.2 物质结构表征技术X射线晶体学核磁共振谱学质谱学电子显微学10.3 物质结构与可持续发展绿色化学与环保材料生物可降解材料资源循环利用与节能减排第十一章:晶体学基础11.1 晶体学的基本概念晶体的基本特征晶格与晶胞晶体的对称性11.2 晶体的分类与点群晶体的分类点群的概念与表示空间群的概念与表示11.3 晶体的生长与制备晶体生长的基本原理晶体生长的方法与技术晶体制备的应用领域第十二章:电子显微学12.1 电子显微镜的基本原理电子显微镜的工作原理电子束与样品的相互作用电子显微镜的分辨率12.2 透射电子显微镜(TEM)TEM的工作原理与结构TEM的应用领域TEM样品制备技术12.3 扫描电子显微镜(SEM)SEM的工作原理与结构SEM的应用领域SEM样品制备技术第十三章:材料性能测试与分析13.1 材料性能的测试方法机械性能测试:拉伸、压缩、弯曲、冲击热性能测试:热导率、比热容、熔点电性能测试:电阻、电导、介电常数13.2 材料分析方法光谱分析:紫外、可见、红外、拉曼色谱分析:气相色谱、液相色谱质谱分析13.3 材料性能的表征与评价材料性能的表征参数材料性能的评价方法材料性能的优化与调控第十四章:材料设计与应用14.1 材料设计的基本原理材料设计的目标与方法材料设计的软件与工具材料设计的案例分析14.2 材料的应用领域金属材料:航空航天、汽车、建筑陶瓷材料:电子、光学、生物聚合物材料:包装、医疗、纺织14.3 材料的选择与评价材料的选择标准材料的评价方法材料的应用前景第十五章:物质结构与未来挑战15.1 物质结构的现代研究方法高通量实验方法:X射线衍射、核磁共振计算化学方法:分子动力学、量子化学实验与计算的结合15.2 物质结构研究的挑战与机遇纳米材料的结构与性能关系生物大分子的结构与功能关系新能源材料的结构与性能关系15.3 物质结构研究的未来方向智能化材料设计生物仿生材料研究可持续发展的材料研究重点和难点解析本文档详细介绍了物质结构的基本概念、各类材料的结构与性能、晶体学基础、电子显微学、材料性能测试与分析、材料设计与应用以及物质结构研究的未来挑战等十五个章节。

2023届高考备考大一轮复习第八章物质结构与性质(6)分子间作用力 超分子(2)课件

2023届高考备考大一轮复习第八章物质结构与性质(6)分子间作用力  超分子(2)课件
b.烃基(符号R—)是推电子基团,烃基越长推电子效应__越___大___, 使羧基中的羟基的极性___越___小__,羧酸的酸性___越__弱___,则甲酸的
酸性强于乙酸的酸性,乙酸的酸性大于丙酸。
考点突破
考点突破5:有机酸酸性强弱比较
例1.下列物质中,酸性最强的是 A
A.HCOOH
B.HOCOOH
人教版(2019版)
2023届高三化学高考备考
大一轮复习
第八章 物质结构与性质
第06讲 分子间作用力 超分子(第2课时)
任务二:分子的性质
分子的极性

分子的手性

的 物质溶解性


物质的酸性
分子结构的修饰
(1)相似相溶规律:非 极性溶质一般能非溶极于性___ _____ 溶剂,极 性溶质一极般性能溶于____ __ 溶剂。易如蔗糖和氨 ___难___ 溶于水, ______溶于四氯易化碳。萘和碘 ___难___ 溶于四氯化碳,_ _____
(2)在上述试管中再加入约1 mL四氯化碳,振荡试管,观察到的现象是什么? 碘被四氯化碳萃取,形成紫红色的碘的四氯化碳溶液。
(3)若再继续向试管里加入1 mL浓碘化钾水溶液,振荡试管,观察到的现象是什 么?为什么?
碘的四氯化碳溶液紫色变浅,这是因为在水溶液里发生如下反应:I2+I- I-3 。
(4)实验表明碘在纯水还是在四氯化碳中溶解性较好?为什么?

物质的酸性
分子结构的修饰
①羧酸的酸性可用pKa的大小来衡量,相同条件下pKa越小, 酸越性强 _ _ _ _ _ _ _ _ 。
②羧酸的酸性强弱与其分子的组成和结构有关。 大于
a.三氟乙酸的酸性大于三氯乙酸,这是因为氟的电负性

活性染料染色原理

活性染料染色原理

6、 羧基砒啶均三嗪型活性染料(国内的R型)
芳香环
对纤维素纤维染色时,直接性大,反应性强,能在高温和中性条件 下与纤维素纤维反应,可用于涤纶纤维/纤维混纺织物的一浴一步 法染色。
7、双活性基活性染料:具有双活性基 可提高固色率至80%~90%的水平,而且由于染料分子的增大,提 高对纤维的亲合力,在高温染色条件下有利于染料的渗透与匀染。
③а—溴代丙烯酰胺基的活性染料与羊毛纤维反应时,可发生亲 核取代和亲核加成反应其反应过程如下;
六. 活性染料的染色过程: 上染(吸附,扩散)→ 固色 → 皂洗
(一)和纤维素纤维的反应: 1、 活性染料的共平面性不如直接染料强。
直接性太高,溶液中染料量减少,不利于扩散和透染。 染料的扩散性好,纤维与染料的接触多,利于透染和匀染。
第八章 活性染料
➢ 双偶氮结构:紫、黑、棕、灰等深色品种。
NaO3SOH4C2O2S
NN
OH NH2 NN
NaO3S
SO3Na
活性黑KN-B (C.I.反应性黑5)
SO2CH2CH2OS
O Cu O NHCOCH3 NN
NaO3SOH2CH2CO2S
NaO3S
2、碱性条件下固色:加碱(纯碱,磷酸三钠,小苏打) 反 应 性 强 的 染 料 , 应 在 弱 碱 条 件 下 固 色 。
3. pH值太高,虽然纤维-染料键形成加快, 但染料的水解也在加速,影响更大。
4.温度 提高温度,使纤维-染料与染料水解都增加,但对水解的影响更大。 此外温度太高,还会降低平衡上染百分率(对X型明显) 。
4~5级
注:酸性水解条件:HAc pH值3.5,40℃,1h; 碱性水解条件:纯碱pH 值11.5,90℃,1h, 最后用褪色卡平级
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 结构与性能的关系
§8.4 其它性质
§8.4.1 化学稳定性 (chemical stability)
a-SAA 在碱性溶液 中比在酸性 溶液中稳定。 在强酸中, 羧酸皂易析 出羧酸;硫 酸酯盐易水 解。磺酸盐 在酸碱中均 稳定。 c-SAA 胺盐类在碱 中不稳定, 容易析出游 离胺,但较 耐酸;而季 铵盐在酸和 碱中均较稳 定。
季 铵 盐 c-SAA 具 有 强杀菌性,但一般 降解细菌对之有较 大的耐受性,故仍 能降解,降解规律 与其他 SAA 相似。 am-SAA 生 物 降 解 性较好。
官景渠, 李济生. 表面活性剂在环境中的生物降解 [J]. 环境科学 , 1993, 15(2):81-85. Chemistry and chemical engineering institute 郭睿, 胡应燕, 梁文庆. 月桂酸酯季铵盐阳离子表面活性剂的生物降解研究[J]. 2010, 27(3):225-228
Chemistry and chemical engineering institute
第八章 结构与性能的关系
溶液的表面吸附现象
Surface inactive substance
溶液表面层的组成与本体溶液组成不同的现象。
溶质 溶剂
非表面活性物质在表面的浓度低于在本体的浓度。
C<CB 负吸附
Surface active substance
阳离子
0.5g/kg; a-SAA 为 2十六烷基三甲基溴化氨 80.5g/kg; n-SAA 50g/kg 十六烷基溴化吡啶 以上。毒性较大的 OP/NP/TX 在 5g/kg 左 右 。
可称无毒, 但污 0.1 染 水 域 ; a-SAA 0.2 介于两者之间。 am-SAA较低。
Chemistry and chemical engineering institute
第八章 结构与性能的关系
§8.4.4 纤维柔软、平滑及抗静电作用 1
纤维的柔软平滑剂是 具有减小纤维表面摩 擦系数能力的物质, 大 部 分 是 SAA 或 表 面 活 性 物 质 。 此 类 SAA 疏水基为直链脂肪烃 基,支链或芳基结构 的烃不易定向紧密排 列,不适合作柔软、 平滑剂。
2
降低动摩擦系数效果:矿 物油好,高级醇和PEO醚 类 n-SAA 次 之 , 多 元 醇 SAA 较差, c-SAA 最差; 降低静摩擦系数:则相反。 因此,纺织品的柔软、平 滑剂主要是 c-SAA ;纺纱、 抽丝时用矿物油、动植物 油、高级醇。
陈朝晖
化学与化学工程学院
第八章 结构与性能的关系
§9.1 SAA在水溶液表面上的吸附
Text
Text
Text
表面张力 (surface tension)是液体 的重要性质, 也是SAA溶液 非常重要的性 质。
表面张力数据 是研究溶液表 面层性质、结 构、组成的基 础。
SAA在水溶液 表面疏水基朝 向空气,亲水 基朝向水溶液 内部,并形成 单分子层吸附 。
n-SAA 能耐受较高 浓度的酸碱。 一般能稳定 地存在于酸、 碱溶液中。
am-SAA TEXT SAA 含 醚 链 SAA 含酯基 在等电点时 在 强 酸 及 强 最 为 稳 定 。 容易生成沉 碱 溶 液 中 都 在 强 酸 溶 液 淀。但分子 易 发 生 水 解 , 中有可能分 中有季铵离 最不稳定。 解。 子者,则不 会出现沉淀。
* n
Add Your Title
+ SAA 分子较小 N一般 N+ BrBr-
SAA 分子量对性质 的影响显著。同类 SAA ,随疏水基中 碳原子数增加,溶 解度、CMC等减少。
的润湿性、渗透性 较好;分子较大的 洗涤、分散性好。 在洗涤方面,不同 种类的 SAA 也大致 是分子量较大的洗 涤力好。
的润湿性强;亲水
基在末端的,则比 在中间的去污力好。
Chemistry and chemical engineering institute
第八章 结构与性能的关系
§8.2.2 亲油基(lipophilic group)异构
同类SAA,分子大小相同,支化结构的SAA具有较好的 SO3Na 1 SO 润湿、渗透性能。 SO3Na SO3Na SO3Na SO3Na SO3Na 3Na
第八章 结构与性能的关系
§7.3 高分子SAA (Polymer SAA)
• 天然或合成分子量在数千以上的水溶性聚合物为高分子 SAA,多用作乳化和 分散剂,如蛋白质,纤维素、淀粉衍生物,聚乙烯醇(PVA)、聚丙烯酸(PAA)、 聚丙烯酰胺( PAM )、聚乙二醇(PEG)等水溶性聚合物 。
高分子SAA性能特点 分子量增 吸附稳定 大,表面 性高,分 活性降低。 散 和 乳 化 稳定性好, 也常作絮 凝剂。 一般不形成 经典胶束, 溶液具有胶 体性质,有 些具有无限 稀释单分子 胶束。 毒性小。
§8.4.3 生物降解性(biodegradability)
SAA被微生物分解成 H2O和 CO2 的过程,即称为 SAA的生物降 解。 Add Your Title
Add Your Title Add Your Title
n-SAA 的 R 的 降 解 规 律 与 a-SAA 相 同 , 对于a-SAA碳氢链 聚氧乙烯链越长越 疏水基,直链比支 不易降解,其聚合 链易生物降解。含 度 10 以上降解速度 芳香基的SAA降解 随链长增加明显减 困难。臭氧处理废 缓。此规律在OP类 水,有利于支链 的降解中同样存在。 SAA的降解。降解 图8-7 非离子表面活性剂的生物降解 最迅速的是 AS。 1-C13-AE9( 直链) 2-C13-AE9(支链) 3-C13-AE9(支链)
既 使 在 i-SAA 中 引 入 PEG 链,形成掺合型 (hybrid)SAA,或增大 分子中 PEG 长度,刺 激性降低,温和性增 大。分子中引入甘油 或其它多元醇与引入 PEG链结果相同。
Chemistry and chemical engineering institute
第八章 结构与性能的关系
第八章 结构与性能的关系
SAA温和性
SAA类型
分子量大小
疏水基链长 及离子基团
PEG基 团引入
刺激性:cSAA最强,nSAA一般都很 低。多数aSAA和amSAA居于上述 两类之间。
小分子SAA容 易渗透,对皮 肤刺激性大; 大分子SAA比 较温和。
疏水基链越长, 分支化程度越 小, SAA对人 体越温和。离 子基团的极性 愈小,对皮肤、 毛发愈温和。
cmc
pC20 CMC
Chemistry and chemical engineering institute
第八章 结构与性能的关系
§8.2 分子异构对性能的影响
§8.2.1 亲水基(hydrophilic groups)位臵 1
一般亲水基在分子 (亲油基链的中间) 中间者,比在末端
2
如著名的润湿、渗透剂: 琥珀酸二异辛酯磺酸钠 (Dioctyl Sodium Sulfosuccinate)。它具有优 良的润湿、渗透性能。而 分子量相近的单酯以及十 八烯醇硫酸酯钠盐润湿、 渗透性能差;而去污力好。
无机盐稳定性 无机盐使i-SAA从溶液中析出;n-SAA及am-SAA不易析出。多价金属盐易
与a-SAA有机负离子形成不溶或溶度减小钙皂。
磺酸盐SAA和AEO类较为稳定。因其碳硫键及醚键不易破坏。全氟碳链稳 氧化剂稳定性定性最高。碳氟SAA可作为铬电镀槽的铬酸溶液中的防铬雾剂。
Chemistry and chemical engineering institute
第八章 结构与性能的关系
作业
• 1、氟碳SAA有什么特点?
• 2、乳化硅油的主要应用领域和特点
• 3、高分子SAA有什么特点?
Chemistry and chemical engineering institute
第八章 结构与性能的关系
Chapter 8 The relation between the structure and properties
陈朝晖
化学与化学工程学院
第八章 结构与性能的关系
§8.1 表面张力(surface tension)的降低
降低水的 表面张力 降低水的表面张力至一定值 所能 时 所 需 SAA 的达 浓到 度,称为 的 最 大 程 SAA降低表面张力的效率。 度,称为 SAA 降 低 表 降低水表面张力 面张力 pC20 是 SAA 20mN/m 时 SAA 浓度 的能力。 的对数值。 pC20值越大,表示降低表面张力的效 率越高。
3
毛及其它合成纤维的抗静 电剂中 SAA 占绝大多数。 i-SAA 具 有 良 好 的 抗 静 电 效果, n-SAA 较差。季铵 盐类 c-SAA 的抗静电效果 比较突出。
Chemistry and chemical engineering institute
第九章 表面活性剂在界面上的吸附
Chapter 9 Interfacial adsorption of SAA
4 支链结构对SAA性质的影响与亲水基位臵的影响相似。
Chemistry and chemical engineering institute
第八章 结构与性能的关系
§8.3 分子量(mecular weight)的影响
H C H2 C H C H2 C
Add Your Title
*
m Add Your Title
2
3
洗衣粉中,主SAA为烷基苯磺酸钠(alkylbenzene sulfonate)。 将正十二烷基与四聚丙烯基相比,后者润湿渗透性能较大, 去污力小。 琥珀酸二辛酯磺酸钠,辛基中有、无分支相比,虽然有相同 的HLB值,但在性质上它们却表现出明显的差别:前者有较 好的润湿、渗透力,cmc比后者大。很明显,有分支者不易 形成胶团,去污性能较差。
相关文档
最新文档