固定床反应器
固定床反应器培训

故障四
设备振动大。排除方法:检查固定床反应器的安装基础是 否牢固,如有问题及时加固;检查设备部件是否有松动或 损坏,如有及时修复或更换。
04
固定床反应器的优化与改 进
催化剂的优化选择
总结词
催化剂是固定床反应器的核心要素,其选择和优化对反应效果具有决定性影响。
详细描述
在选择催化剂时,需要考虑其活性、选择性、稳定性和成本效益。通过实验研究和模拟计算,可以评 估不同催化剂的性能,并选择最适合特定反应的催化剂。此外,催化剂的优化还可以通过改进制备方 法、添加助剂或进行表面改性来实现。
固定床反应器的基本结构
催化剂
固定床反应器中的催化剂通常 装填在反应器的底部或中部,
以固定床的形式存在。
反应物料
反应物料从反应器的顶部进入 ,通过催化剂层进行化学反应 。
换热器
为了控制反应温度,固定床反 应器通常配备换热器,以便在 必要时对反应物料进行加热或 冷却。
出料口
反应后的物料从反应器的底部 或侧部出料口排出。
证和模拟分析来评估新型反应器的性能。
05
固定床反应器的安全与环 保
安全操作规程
操作人员需经过专业培训,熟悉 固定床反应器的结构、工作原理
和操作规程。
操作过程中应严格遵守安全操作 规程,确保设备运行稳定、安全
可靠。
定期对固定床反应器进行检查和 维护,确保设备处于良好状态。
环保要求与处理措施
固定床反应器应符合环保要求 ,确保废气、废水和固废等污 染物达标排放。
操作条件的优化调整
总结词
操作条件如温度、压力、流量等对固定 床反应器的性能具有重要影响。
VS
详细描述
通过实验确定最佳的操作条件是必要的。 这包括最佳的温度、压力、气体流量等参 数。此外,操作条件的优化还可以通过控 制反应物的浓度、反应时间、反应器内构 件设计来实现。优化后的操作条件可以提 高反应效率、降低能耗和减少副反应的发 生。
第6章 固定床反应器

流体在固定床中的流动,与空管中的流体流动相似,只是流 道不规则而已。故此可将空床中流体流动的压力降计算公式修正 后用于固定床。
第6章 固定床反应器
6.2 固定床中的传递过程 6.2.2 床层压降
《化学反应工程》
2 um 1 B p a. 厄根方程 f '( )( ) 固定床压力降计算公式: 3 L dS B
第6章 固定床反应器
6.1 概述
《化学反应工程》
气-固相催化反应器
固定床 反应器
流化床 反应器
绝热式
换热式
自热式
单段绝热
多段绝热
内冷式
外冷(热)式
第6章 固定床反应器
6.1 概述
《化学反应工程》
固定床反应器的种类
(1)绝热式反应器
单段绝热床反应器
多段绝热床反应器
第6章 固定床反应器
6.1 概述
s (dV / da )2
第6章 固定床反应器
6.2 固定床中的传递过程 6.2.1 粒子直径和床层空隙率
《化学反应工程》
平均直径dP:是指不同大小颗粒直径的平均值。
①算术平均法 :
d p xi d i
i 1
xi为直径等于di的颗粒所占的质量分数。
n
②调和平均法:
n xi 1 d p i 1 d i
第6章 固定床反应器
6.1 概述
《化学反应工程》
固定床反应器的种类
(3)自热式反应器
甲烷化炉 CO+3H2 CH4+H2O
CO2+4H2
CH4+2H2O
强放热反应
第6章 固定床反应器
6.1 概述
《化学反应工程》
化学反应工程 第六章 固定床反应器

一、颗粒层的若干物理特性参数
密度
– 颗粒密度ρp
• 包括粒内微孔在内的全颗粒密度;
– 固体真密度ρs
• 除去微孔容积的颗粒密度;
– 床层密度/堆积密度ρB
• 单位床层容积中颗粒的质量(包括了微孔和颗粒 间的空隙);
p s (1 p ) B p(1 B )
一、颗粒层的若干物理特性参数
i
Wi FA0
i
xi dx A
r xi1
i
也即
Z 0 Ti
xi x i 1
Ti
1 (
ri
)dx A
0
i 1,2, N
min
Z 0
xi
1 ri
xA xi
1 ri 1
xA xi
0
i 1,2, N 1
对 Z 0 的处理 Ti
Z
Ti Ti
xi dx A
r xi1
i
xi x i 1
Ti
1 (
ri
)dx A
0
i 1,2, N
按中值定理:
Z
Ti
xi x i 1
Ti
1 (
ri
)dx A
(xi
x
i
1
)
Ti
• 双套管式、三套管式
流体流向:轴向、径向
固定床反应器的数学模型
拟均相数学模型:
忽略床层中颗粒与流体之间温度和浓度的差别 –平推流的一维模型 –轴向返混的一维模型 –同时考虑径向混合和径向温差的二维模型
第九章 固定床反应器

在非球颗粒充填的床层中,同一截面上的ε值, 除壁效应影响所及的范围外,都是均匀的。 但球形或圆柱形颗粒充填的床层,在同一横截面 上的 ε 值,除壁效应影响所及的范围外,还在一 平均值上下波动。 由于壁效应的影响,床层直径与颗粒直径之比越 大,床层空隙率的分布越均匀。 通常所说的床层空隙率指的是平均空隙率。
• 9.3固定床反应器内的传质与传热
• 9.4 固定床反应器的计算方法
5
9.1固定床反应器的特点及结构
• 定义*:凡是流体通过不动的固体物料所 形成的床层而进行反应的装臵都称作固定
床反应器。
• 其中尤以用气态的反应物料通过由固体催
化剂所构成的床层进行反应的气-固相催
化反应器占最主要的地位。
6
9.1.1固定床反应器的特点及工业应用
• 自热式反应器示意图
21
• 优、缺点:
• 逆流:优点是原料气进入床层后能较快地升温而接 近最佳温度,缺点是反应后期易于过冷。
• 无论逆流还是并流,反应前期放热速率都最大。 • 有些并流式催化反应器中设臵一绝热床,经预热后 的原料气先进入绝热床中反应,使反应气体迅速升 温,然后再进入与原料气进行换热的催化剂管中反 应,这样做既保留并流式后期降温速度慢的优点, 又克服了原料气进入床层后升温速度慢的缺点。
32
图9-6消除初始动能的方法示意图
33
图9-7附加导流装臵示意图
34
9.2.3固定床反应器的床层压力降
• 流过床层的流体,其径向流速分布是不均匀的。
• 径向流速分布:从床层中心处算起,随着径向位臵的增大, 流速增加,在离器壁的距离等于1~2倍颗粒直径处,流速最 大,然后随径向位臵的增大而降低,至壁面处为零。床层直 径与颗粒直径之比越小,径向流速分布越不均匀。
固定床反应器名词解释

固定床反应器1. 定义固定床反应器是一种常见的化学反应器,用于进行气体相或液体相的催化反应。
它由一个固定的反应床和进料和出料设备组成。
在固定床反应器中,催化剂通常以颗粒或块状填充在反应床中,进料通过固定床内流动,与催化剂发生反应,并最终得到产品。
2. 结构固定床反应器通常由以下几个主要部分组成:•反应器壳体:通常由金属或合金制成,具有足够的强度和耐腐蚀性能,以承受高温高压下的工作条件。
•反应床:位于壳体内部,用于填充催化剂和提供充分的接触面积。
催化剂可以是颗粒状、块状或其他形式。
•进料装置:用于将原料引入反应床中。
通常包括进料管道、阀门和喷嘴等。
•出料装置:用于将产物从反应床中取出。
通常包括出料管道、阀门和收集装置等。
•加热或冷却装置:用于控制反应器的温度,以保持反应的适宜条件。
•压力控制装置:用于控制反应器内部的压力,以保证安全运行。
3. 工作原理固定床反应器的工作原理可以简单描述为以下几个步骤:1.进料:原料通过进料装置引入反应床中。
进料可以是气体相、液体相或两相混合物。
2.反应:进料与催化剂在反应床中接触,发生化学反应。
催化剂提供了活性位点,促进了反应的进行。
3.产物生成:经过一定时间的反应,原料转化为产物。
产物随着流体经过固定床而逐渐形成。
4.出料:产物通过出料装置从固定床中取出,并送入下游处理单元进行分离和纯化。
5.催化剂再生:在一些催化反应中,催化剂会逐渐失活。
此时需要对催化剂进行再生或更换。
4. 特点和优势固定床反应器具有以下特点和优势:•高效性:由于固定床中填充了催化剂,反应物与催化剂之间的接触面积大,反应效率高。
•稳定性:固定床反应器在运行过程中,催化剂相对稳定地停留在床层中,不易流失和损坏。
•可控性:通过控制进料速率、温度和压力等参数,可以实现对反应过程的精确控制。
•适用性广:固定床反应器适用于多种气相和液相反应,可用于生产各种化学品和燃料等。
5. 应用领域固定床反应器广泛应用于工业生产和实验室研究中。
固定床反应器的详细介绍

固定床反应器的详细介绍又称填充床反应器,内部装填有固体催化剂或固体反应物,以实现多相反应。
固体物通常呈颗粒状,堆积成一定高度(或厚度)的床层,床层静止不动,流体通过床层进行反应。
固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。
用于气固相或液固相非催化反应时,床层则填装固体反应物。
涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。
优点:(1)催化剂机械磨损小。
(2)床层内流体的流动接近于平推流,与返混式的反应器相比,可用较少量的催化剂和较小的反应器容积来获得较大的生产能力。
(3)由于停留时间可以严格控制,温度分布可以适当调节,因此特别有利于达到高的选择性和转化率。
(4)可在高温高压下操作。
缺点:(1)固定床中的传热较差。
(2)催化剂的再生、更换均不方便,催化剂的更换必须停产进行。
(3)不能使用细粒催化剂,但固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。
目前,蜂窝状、纤维状催化剂也已被广泛使用。
固定床反应器的分类(一)按传热方式分类1、绝热式反应器绝热式固定床催化反应器在反应过程中,床层不与外界进行热量交换。
其最外层为隔热材料层(耐火砖、矿渣棉、玻璃纤维等),常称作保温层,作用是防止热量的传出或传入,减少能量损失,维持一定的操作条件并起到安全防护的作用。
绝热式反应器可分为单段绝热式反应器和多段绝热式反应器。
(1)单段绝热式反应器一般为高径比不大的圆筒体,结构简单,生产能力大,但反应过程中温度变化较大。
适合的反应:①反应热效应较小的反应。
②温度对目的产物收率影响不大的反应。
③虽然反应热效应大,但单程转化率较低的反应或者有大量惰性物料存在,使反应过程中温升小的反应。
(2)多段绝热式反应器催化剂床层的温度波动较小,但结构比较复杂,催化剂装卸困难。
多段绝热反应器按段间换热方式的不同可分为三类:①间接换热式②原料气冷激式③非原料气冷激式2、换热式反应器当反应热效应较大时,为了维持适宜的温度条件,必须利用换热介质来移走或供给热量。
化学反应工程:固定床反应器

B
式中,RH —— 水力半径。
6.2.2 床层压降 床层压降是固定床反应器设计的重要参数,要求床层压 降不超过床内压力的15%。 床层压降的计算 (1)
p d S 2 u L m
3 B 150 1 R 1.75 B eM
h0可由经验公式计算
(6-31)
h0 d p
d p e 2 (b) [a1 ] dt y
(6-32) (适用范围:y > 0.2)
式中, y —— 无量纲数
4e L 4(d p / dt )(L / dt )(e / ) y 2 Gcp dt Pr Rep
b —— 无量纲数
(6-44)
其中
Re G /(Se )
6.3 拟均相一维模型
概述
一、拟均相模型 忽略床层中催化剂颗粒与流体之间温度与浓度差别,将气相反应 物与催化剂看成均匀连续的均相物系。 (1)一维拟均相模型 只考虑沿气体流动方向的温度和浓度变化。根据流动形式还可分 为平推流一维模型和轴向分散一维模型。 (2)二维拟均相模型 同时考虑轴向和径向的温度和浓度分布。 二、非均相模型 考虑颗粒与流体之间的温度差和浓度差。 一般来说,模型考虑得越全面,对过程模拟越精确,但计算工作 量也越大,甚至无法求解。因此,在工程计算允许的误差范围内应尽 可能选用简单模型。
流体与颗粒间传热温差的计算 热量平衡
H ArA hp am (tG tS ) hp amt
式中,am Se / B —— 单位重量催化剂的外表面积; —— 床层比表面积Se的校正系数。
球形: 1 圆柱形: 0.9 片状: 0.81 无定形: 0.9 ; ; ;
固定床反应器.ppt1

优点
1.化学反应速率较快、在完成同样的生产能力时 所需的催化剂和反应器体积较小。 2.可以严格控制停留时间,调节温度的分布。 3.催化剂可连续使用。 4.可在高温、高压条件下操作。
存在的不足
1.催化剂载体导热性不良,床层中的传热性 能较差。可能出现“飞温”。 2.如果使用的催化剂较小颗粒,会造成流体 阻力增大,破坏正常操作,使得催化剂的 活性内表面得不到充分利用。 3.催化剂的再生、更换不方便。
多段绝热式固定床反应器
﹙a﹚ 中间换 热式
﹙b﹚中间 换热式
﹙c﹚中间 换热式
﹙d﹚冷激式
﹙e﹚ 冷激式
以各种载热体为介质的对外换热式 反应器多为列管是结构如下图所示 类似于列管式换热器
列管式固定床反应器中,合理选择载热体及其温度的控制是保 持反应稳定进行的关键。载热体的温度与反应温度的温差宜小 ,但必须移走反应过程中释放出的大量热量。这就要求有较大 的传热面积和传热系数。
二、固定床反应器的类型与结构 为适应不同的传热要求和传热方式,已 出现多种固定床反应器结构形式。主 要分为绝热式和换热式两类。 绝热式固定床反应器又可以分为单段式 和多段式。 换热式固定床反应器按换热介质不同可 分为对外换热式和自然式。 按照反应气体在催化床中的流动方向, 按照反应气体在催化床中的流动方向, 固定床反应器可分为轴向绝热式 轴向绝热式和 固定床反应器可分为轴向绝热式和径向 绝热式。 绝热式。
载热体的选择 240 ℃以下 250-300 ℃ 300-500 ℃ 600 ℃以上 加压热水 导热油 熔盐 烟道气
何谓热点? 一般沿轴 向温度分 布都有一 最高温度 ,称为“ 热点”。 在热点以前放热速率大于移热速率,则床层温度升高,热点过 后恰恰相反,故床层温度逐渐降低。控制热点温度是使反应顺 利进行的关键。热点温度过高,使反应选择性降低催化剂变劣 甚至使反应失去稳定性而产生“飞温”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
床 层 粒 子 总 质 量 m cat
B
床 层 总 体 积
vR
(2) 催化剂粒子直径
① 球型粒子 dP ② 非球型粒子,用相当直径来表示:
A. 体积相当直径 dV :即采用体积相同的球形颗粒直径来表示。
dv
( ) 6Vp
1 3
VP为非球形颗粒粒子体积 (6-1)
Vp
1 6
dv3
B. 面积相当直径da :即采用外表面积相同的球形颗粒直径表示。
床层压降计算式:(经验关联式)
P L
f
( )( ) um 2 ds
1B B 3
(6-11)
式中:
f
150 ReM
1.75
ReM
ds um (1B )
为修正雷诺数
(6-12)
代入上式得:
( )( )( ) P d s
3 B
u m 2 L 1 B
1 5 0d (s 1 u m B) 1 .7 5
床 层 比 表 面 积 Se
6(1B)
S
为单位体积催化剂床层所具有的外表面积:
e
Se (1B)a vpp 6(1B)/ds
(6-9)
4 d sB
d e 4 R H 6 (1 B )
d ssd v
2B
3 (1 B ) sd v(6-10)
(5) 床层压降
流体通过催化剂床层产生压降的原因主要来自两个方面: (1) 流体与粒子间摩擦阻力(低流速下主要受其影响); (2) 流体在孔道中流动时突然扩大,缩小,撞击产生的阻力。 (高流速时主要受此项影响)。
① 颗粒密度(又称假密度) p: 包括粒内微孔在内的全部颗粒的密度。
② 骨架密度p(又称粒 真子 密体 度粒 积 子 )包 质 :括 量 粒孔 子容 骨积 架 (包m vp p 括粒内微孔)密度。
S
③ 床层密S 度 (又粒 称子 堆体 密积 粒 度子 不 )质 包 :量 括 单孔 位容 体积 积 催化vm 骨 剂架 p床层具有的质量。
器,无加热装置(实验室用电阻丝加 热),实际工业过程通过加高温水蒸气
产物
供热。
• 多段绝热床反应器
实际是单段绝热式的改进型, 原料气
在段间设置热交换装置,既
保持了单段结构简单等优点,
每一段的过程完全类似于单 催
层式,又能在一定程度上调
化 剂
节反应温度。换热装置的设
置有多种方式,根据具体反
应选择。如CO与H2合成反应 器。
da
ap
a
为非球粒子外表面积
p
(6-2)
ap
d
2 a
C. 比表面相当直径ds :即采用比表面积相同的球形颗粒的直径来表 示。
ds
6 sv
6V p ap
sv
ap Vp
ds2
d 1
3
6
s
6 dS
Sv 为非球粒子比表面积 (6-3)
(6-4)
③ 粒子的形状系数 s :即体积相同的球形颗粒的外表面积与非球形
颗粒外表面积之比。
s
as ap
(6-5)
为a s等体积球形颗粒外表面积,当体积相等时,球形粒子外表面
积最小,显然有: ;s 1的大小 s反映粒子的形状与球体的差异程
度(P162表6-1列出了一些粒子的球形系数)。
④ 各种相当直径的关系
dS
6 6V p sv ap
6V p
as/s
s6 d 1 6d v 2v 3
VRV骨架 VR
wBws
w
B
1
B
s
床层空隙率大小的影响因素
① 催化剂的粒径及其粒径分布; ② 催化剂颗粒的形状; ③ 颗粒的表面粗糙度; ④ 催化剂颗粒粒径与床层直径的比值; ⑤ 催化剂的充填方式等。 P163图6-9列出了部分催化剂床层空隙率关系曲线,可 供参考。
(4)固定床的当量直径de
n
1 x1 x2
dp d1 d2xnຫໍສະໝຸດ xidndi
(6-8)
i1
x为i 直径为 的d 粒i 子所占的重量分率。
(3)床层空隙率
床层空隙率指的是颗粒间自由体积与整个床层体积之比,是催化
剂床层的重要特性之一。
床 层 空 隙 体 积床 层 体 积 - 颗 粒 骨 架 体 积
B 床 层 体 积
床 层 体 积
催 化 剂
原 产物 原
料
料
气
气
• 径向反应器
气体在反应器内通过多孔 的分气管作径向流动通过 催化剂床层,缩短了气体 流程,阻力变小,压降变 小,所以可以用较细的颗 粒。如工业上甲苯歧化制 苯和二甲苯的反应器。
原料气 催化剂 产物
6.2 固定床中的传递过程
颗粒层的若干物理特性参数
(1) 催化剂密度表征
固定床的当量直径定义为床层水力半径的4倍。
de 4RH (RH为水力半径)
床 层 流 道 有 效 截 面 积 上 下 同 乘 床 高 L 床 层 空 隙 容 积
R H
润 湿 周 边
润 湿 总 面 积
床 层 空 隙 容 积 床 层 总 体 积
床 层 空 隙 率 B
dsB
润 湿 总 面 积 床 层 总 体 积
sdv
s
aS ap
d dva2 2
(dv )2 da
1
d v
2
s
d
a
s 1
1
2 s
1
(6-6) (6-7)
则有: d v d s
da dv
所以有: da dv ds
在固定床流体力学研究中,常采用比表面相当直径;在传热传质 研究中,常采用面积相当直径。
⑤ 混合粒子的平均粒径:采用调和平均法计算
产物
• 外热式固定床反应器
这类反应器用的最为普遍, 大多数是列管式。 通常管内装 催化剂,壳程走传热介质。优点 是传热效果好,床层温度易控 制,管径一般不大(25-50mm), 气体流动类似于平推流,反应的 转化率选择性较高,并且单根管 类似于实验条件,放大容易。如 乙炔与氯化氢合成氢乙烯反应 器。
原料气
催 化 剂
蒸汽
补充水 调节阀 产物
• 外热式薄层反应器
大多数是列管式。通常上
层装催化剂,管内走反应
催化剂
原料
气体,壳程走传热介质。
优点是传热效果好,反应
换
后的气体可实现急速降温
热
或升温,通常反应时间短, 介
质
气体流动类似于平推流。
如甲醇氧化反应器。
产物
• 自热式固定床反应器
在这类反应器内,原料气 先与反应后的气体通过管 壁进行热交换,预热,再 进行反应,一般用于热效 应不大的高压反应。例如 合成氨反应器。不过现在 趋向多段绝热式。
固定床反应器
(3) 固定床反应器的型式简介
单层绝热床反应器
这种反应器通常高径比不大,催化
原料气
剂均匀堆于床内。内部无换热构件(下
部催化剂支撑结构,上部气体分布装
置)。结构简单,造价便宜,反应器体
催
积得到充分利用。但通常只用于化学
化
剂
反应热效应不大,并且反应温度范围
相对较宽的过程。例如乙苯脱氢反应