九年级数学圆与直线的关系
课题九年级数学《直线与圆的位置关系1》教学设计

课题:九年级数学《直线与圆的位置关系(1)》教学设计常州市新北区实验中学曹亦祥 213022【教材简解】《圆》这一章是在直线型图形的有关性质和判定的基础上,进一步探索特殊的曲线型图形——圆的有关性质,本章在平面几何中乃至整个初中数学教学中都占有极其重要的地位。
直线和圆的位置关系这一单元内容又是《圆》这一章的核心内容,因为学过这一部分内容后,以前学过的直线形的几何知识可以更丰富地结合圆这一背景来进行考查,知识的综合性、能力的要求将明显地增强,所以这一部分内容的学习也是学生学习《圆》这一章的难点。
学生在此之前学习了圆的基本性质,了解点和圆的三种位置关系及对应的数量关系,这些都为本节课的学习奠定了基础。
而直线与圆的位置关系中最重要的位置关系是直线与圆相切,它在日常生活、生产中有着丰富的应用,教材后续的三课时安排的是系统地学习切线的性质与判定知识。
所以在整章教材体系中,《直线与圆的位置关系(1)》起到了承前启后的作用,地位相当重要。
【目标预设】1.经历探索直线与圆的位置关系的活动过程,理解根据直线与圆公共点个数不同,将直线与圆的位置关系分三类:相离、相切、相交;2.类比研究点与圆位置关系的方法研究直线与圆的位置关系,感悟直线与圆的位置关系决定圆心与直线的距离d与圆的半径r之间数量关系;反之可用d与r 之间的数量关系来判断直线与圆的位置关系,体会“类比”和“数形结合”的思想;3.知道直线与圆的位置关系可以转化为点(垂足)与圆的位置关系来研究,体会两者之间的联系,感悟“转化”的思想;4.学会用运动观点审视直线与圆的位置关系,有意识地去分析运动问题中的变量与不变量,运用所学知识解决问题。
【教学重点、难点】教学重点:会用d与r的数量关系来判断直线与圆的位置关系;教学难点:1.探索直线与圆的位置关系及与之对应的数量关系,理解直线与圆的位置关系可以转化为点(垂足)与圆的位置关系;2.在动态问题中能运用d与r的数量关系来判断直线与圆的位置关系。
初中数学直线和圆的位置关系知识点总结

初中数学直线和圆的位置关系知识点总结直线和圆的位置关系是初中数学中的一个重要知识点,它涉及到点、线、圆之间的相对位置关系。
我们可以通过以下几个方面来总结这一知识点:1.判定圆和直线的位置关系:a.直线包含于圆内:当直线上的所有点都在圆内时,称直线包含于圆内。
此时,直线与圆的交点为无穷个(无限多个)。
b.直线与圆相交:当直线和圆有一个或两个交点时,称直线与圆相交。
相交的情况还可以细分为相离相交、相切相交和截割相交。
-相离相交:直线和圆相切于两个点,相交与标准的两个正数圆相交;-相切相交:直线和圆相交于一个点,直线切圆;-截割相交:直线和圆相交于两个点,直线截割圆;c.直线与圆相离:当直线上的所有点都不在圆内时,称直线与圆相离。
此时,直线与圆的交点为零个。
d.直线与圆重合:当直线上的所有点都在圆上时,称直线与圆重合。
2.圆心与直线间的距离:a.圆心到直线的距离:圆心到直线的距离等于圆心到直线的垂直距离,垂直距离是圆心到直线的最短距离。
b.两圆心间的距离:两个圆心之间的直线距离等于两个圆相切时的直线距离。
3.判断点与直线的位置关系:a.点在直线上:当一个点恰好在直线上时,称这个点在直线上。
b.点在直线上方:当一个点位于直线的上方时,称这个点在直线上方。
c.点在直线下方:当一个点位于直线的下方时,称这个点在直线下方。
4.判断点与圆的位置关系:a.点在圆内:当一个点位于圆内时,称这个点在圆内。
b.点在圆上:当一个点正好位于圆上时,称这个点在圆上。
c.点在圆外:当一个点位于圆外时,称这个点在圆外。
5.判断直线与圆相交的条件:a.直线与圆有交点的条件:直线和圆有交点当且仅当直线的距离小于圆的半径。
b.直线与圆相切的条件:直线和圆相切当且仅当直线的距离等于圆的半径。
6.判断两圆的位置关系:a.内离:两圆的圆心之间的距离大于两个圆的半径之和,此时两个圆的内部没有共同点。
b.相离:两圆的圆心之间的距离等于两个圆的半径之和,此时两个圆相切于外公切点。
直线与圆的位置关系讲义

九年级数学时间: 学生:第讲直线与圆的位置关系【知识点】1直线和圆的位置关系有三种:, 。
2设r为O O的半径,d为圆心O到直线l的距离, d r, 则直线l与O O相交。
d r,则直线l与O O相切d r,则直线l与O O相离。
3圆的切线的性质:圆的切线垂直于_________________ 的半径。
4圆的切线的判定定理:经过直径的一端,并且____________ 这条直径的直线是圆的切线。
5圆的切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.三角形的内切圆:(1)定义:与三角形三边都相切的圆称为三角形的内切圆。
(2)_________________________________ 内切圆的作法;______ .(3)_________________________ 内心的性质:内心是 _______ 的交点,内心到的距离相等,内心与三角形顶点的连线________ 这个内角。
【课前自测】1. (2011?成都)已知O O的面积为9n cm2,若点0到直线I的距离为n cm则直线l与。
O的位置关系是()A、相交B、相切 C 、相离D无法确定2.如图,从O O外一点A引圆的切线AB切点为B,连接AO并延长交圆于点C,连接BC若/ A= 26°,则/ ACB的度数为▲.3.已知O O的半径为5,圆心O到直线AB的距离为2,则O O上有且只有_______________ 到直线AB的距离为3.4.如图,已知AB是O O的一条直径,延长AB至C点,使得AC= 3BQ 个占I 八、、CD与O O相切,切点为D.若CD= d,则线段BC的长度等于5.如图23, PA与O O相切,切点为A, PO交O O于点C,点B是优弧CBA上一点,若 / ABC=32,则/ P的度数为【例题讲解】例1.如图,AB是O O的直径,点D在AB的延长线上,DC切O O于点C,若/ A=25°, 则/ D 等于A. 20°B.30°C.40°D.50°例2已知BD是O O的直径,OAL OB,M是劣弧AB上的一点,过M作O O的切线MP交OA的延长线于点P, MD交OA于点N。
九年级下册圆的知识点总结

九年级下册圆的知识点总结九年级下册的数学学习内容涉及到圆的相关知识,本文将对圆的性质、计算公式以及与其他几何图形之间的关系进行总结。
一、圆的性质1. 定义:圆是由平面上与一个固定点的距离恒定的所有点组成的集合。
2. 圆心与半径:圆心是距离所有边界点相等的点,半径是由圆心指向边界上的任意一点的线段,圆心与半径共同决定了一个圆。
3. 直径与周长:直径是通过圆心的两个边界点的线段,它的长度是半径的两倍。
周长是围绕圆边界的长度,可以用2πr表示,其中r为圆的半径。
4. 弧与弦:弧是圆上两个点之间的一段曲线,弦是圆上两个点之间的一条直线段,弦的两个端点也在圆上。
二、圆的计算公式1. 圆的面积公式:圆的面积可以通过πr²计算,其中π为一个不变的常数,约等于3.14,r是圆的半径。
2. 弧长公式:弧长可以根据圆心角的大小和圆的半径计算,如果圆心角θ(单位为弧度)对应的圆弧长度为L,那么L = rθ。
3. 弦长公式:给定圆心角θ和圆的半径r,弦长可以通过2rsin(θ/2)计算得到。
三、圆与其他几何图形的关系1. 圆与直线:圆与直线可以有多种位置关系,可能相离、相切或相交。
当一条直线与圆相交时,相交的点可能有两个、一个或没有。
2. 圆与三角形:圆可以与三角形有共同的一条边,这种情况下,圆称为三角形的内切圆;也可以与三角形相切于三条边,这种情况下,圆称为三角形的外切圆。
3. 圆与正多边形:正多边形是指所有边和角相等的多边形,能够内切于一个圆。
正多边形的外接圆则是能够将正多边形的所有顶点都包含在内部的一个圆。
总结:九年级下册的圆的知识点主要包括圆的性质、计算公式和与其他几何图形之间的关系。
圆的性质包括圆心和半径、直径和周长、弧和弦;计算公式包括圆的面积公式、弧长公式和弦长公式;圆与其他几何图形的关系包括圆与直线、三角形和正多边形之间的关系。
通过对这些知识点的学习和理解,可以更好地掌握圆的相关概念和运用技巧,为解决与圆相关的问题提供帮助。
九年级第三章圆知识点总结

九年级第三章圆知识点总结九年级的数学学科中,第三章圆是一个重要的知识点。
圆是一个几何图形,是由平面上的所有与定点距离相等的点组成的。
在这个章节中,学生需要掌握圆的性质、圆的表达式和圆与直线的关系等内容。
下面将从不同的角度对这些知识点进行总结。
一、圆的定义和性质圆是一个几何图形,它由平面上的所有与定点距离相等的点组成。
圆的性质有以下几点:1. 圆的半径:圆的半径是从圆心到圆周上任意一点的距离,用字母r表示。
2. 圆的直径:圆的直径是通过圆心并在圆上的一条直线段,它的长度是圆的两倍,用字母d表示。
3. 圆的周长:圆的周长是圆周上的一段弧所对应的长度,用字母C表示。
圆的周长可以通过公式C = 2πr来计算,其中π是一个常数,约等于3.14。
4. 圆的面积:圆的面积是圆内部所包围的区域的大小,用字母A表示。
圆的面积可以通过公式A = πr^2来计算。
二、圆的表达式在数学中,我们常常需要用到圆的表达式来描述一个圆。
圆的表达式一般有两种形式:标准方程和一般方程。
1. 标准方程:标准方程是以圆心和半径为依据的表达式形式。
标准方程的一般形式为:(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径的长度。
2. 一般方程:一般方程是以圆的一般性质为依据的表达式形式。
一般方程的一般形式为:x^2 + y^2 + Dx + Ey + F = 0,其中D、E、F为常数。
三、圆与直线的关系圆与直线之间有一些重要的关系。
下面将介绍一些常见的关系:1. 切线:切线是与圆相切并且只与圆相交于切点的直线。
切线与半径的关系是垂直关系,切线与圆的切点处的切线段等于半径的长度。
2. 弦:弦是连接圆上任意两点的直线段。
弦的长度小于等于直径的长度。
3. 弧:弧是圆上的一段曲线。
圆周上的任意两点可以确定一个弧。
4. 正切线:正切线是一条通过圆外一点且与圆相切的直线。
正切线的长度等于该点到圆心的距离。
综上所述,九年级第三章圆是一个重要且有趣的数学知识点。
九年级数学直线和圆的位置关系

高档题型解析及思路拓展
例题3
解析
思路拓展
已知直线$l_{1}$和圆$O_{1}$相切于点 $P$,直线$l_{2}$过点$P$且与圆 $O_{1}$相交于另一点$Q$,求直线 $l_{2}$的方程。
由于直线$l_{1}$和圆$O_{1}$相切于点 $P$,因此点$P$是切点,且直线 $l_{1}$在点$P$处的切线斜率与直线 $l_{2}$的斜率相等。我们可以通过求 出点$P$的坐标和切线斜率,再利用点 斜式求出直线$l_{2}$的方程。
若直线与圆相切,则直线到圆心的距 离等于半径,由此可求出切线方程。
直线与圆的交点坐标
联立直线方程和圆方程求解,可得交 点坐标。若有两个交点,则它们关于 圆心对称。
02
直线与圆的位置关系分类
相离关系
定义
直线与圆没有公共点,称为相离。
判定方法
通过比较圆心到直线的距离与圆的 半径大小来判断。若圆心到直线的 距离大于圆的半径,则直线与圆相 离。
直线与圆的交点个数
通过观察图形或计算,确定直线与圆的交点个数。若有两个交点,则直线与圆 相交;若有一个交点,则直线与圆相切;若没有交点,则直线与圆相离。
综合应用举例
解法一
联立直线l和圆C的方程,消去一 个未知数得到一个一元二次方程 。根据判别式的值判断位置关系 。
解法二
计算圆心(a,b)到直线l的距离d,根 据d与半径r的大小关系判断位置关 系。
圆的性质
圆上任意一点到圆心的距 离等于半径;圆的任意弦 所对的圆周角等于弦所对 圆心角的一半。
圆的切线
与圆有且仅有一个交点的 直线称为圆的切线,切线 与半径垂直。
直线与圆的交点问题
直线与圆的位置关系
直线与圆的切线问题
初三数学直线和圆的位置关系

初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。
新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结人教版九年级数学下册知识点总结12.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:经过切点的半径垂直于圆的切线。
2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。
三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。
光线叫做投影线,投影所在的平面叫做投影面。
由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
3.3.由三视图描述几何体三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。
3.4.简单几何体的表面展开图将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。
圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。
AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。
AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。
圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课时直线与圆的位置关系课型:同步复习【教学目标】掌握圆与直线的位置关系、切线以及切线长定理、三角形的内切圆和内心【教学重点】切线、切线长定理;三角形内心【教学难点】切线、切线长性质定理的应用【教学过程】【知识点回顾】1. 直线与圆的位置关系如果圆O的半径是,圆心O到直线的距离为,根据直线和圆相交、相切、相离的定义,容易得到:直线与圆的位置相交相切相离关系公共点个数210圆心到直线的距离与半径的关系公共点的名称交点切点直线名称切线注意:① 判断直线与圆的位置关系,可以转化为比较圆心到直线的距离与半径大小比较② 直线与圆的位置关系与点和圆的位置关系既有相似之处,也有区别,要注意区分例1:圆O的半径为5,圆心O到直线的的距离为4,则直线与圆O的位置关系是( )A 相交B 相切C 相离D 无法确定例2:在一个圆中,给出下列命题,其中正确的是( )A 若圆心到两条直线的距离都等于圆的半径,则着两条直线不可能垂直B 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D 若两条弦平行,则这两条弦之间的距离一定小于圆的半径例3:如图,在平面直角坐标系中,圆O的半径为1,则直线与圆O的位置关系是( )A 相离B 相切C 相交D 都有可能2.切线的判定定理与性质定理判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线性质定理:圆的切线垂直于过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线必经过圆心例4:如图,AB是圆O的直径,点C在AB的延长线上,CD是圆O的切线,D为切点,若∠A=25°,则∠C等于( )A 25°B 35°C 40°D 50°例5:如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(-3,0),将圆P沿 轴正方向平移,使圆P与轴相切,则平移的距离为( )A 1B 1或5C 3D 5例4图例6:如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F。
下列结论:① CE=CF;② 线段EF的最小值为;③当AD=2时,EF与半圆相切。
其中正确结论是_____________例5图 例6图3.三角形的内切圆、内心三角形的内切圆:三角形的三边都与圆O相切,则圆O为三角形的内切圆;点O为三角形的内心。
注意:① 任意三角形有且只有一个内切圆,而一个圆有无数个外切三角形② 三角形的内心到三角形三边的距离相等;三角形内心是三角形三个角平分线的交点③ 锐角三角形、直角三角形、钝角三角形的内心都在三角形的内部例7:下列四边形中,一定有内切圆的是 ( )A 矩形B 等腰梯形C 菱形D 平行四边形例8:如图,O是△ABC的内心,过点O作EF//AB,与AC、BC分别交E、F,则( )A B C D例8图 例9图例9:如图,圆O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,CD=1,则圆O的半径等于________例10:如图,AB是圆O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB(1) 求证:BC是圆O的切线(2) 若圆O的半径为,OP=1,求BC的长4.切线长的定义和定理切线长:在经过圆外一点的圆的切线上,这点与切点之间的线段长切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角注意:① 切线和切线长是两个不同的概念;切线是直线,切线长是线段的长② 切线长定理是证明线段相等、角相等、弧相等、线段成比例以及垂直关系的重要依据如图,PA、PB分别是圆O的切线,A、B为切点,AC是圆O的直径,已知∠BAC=35°,∠P的度数为( )A 35°B 45°C 60°D 70°例12:如图Rt△ABC的内切圆圆O与两直角边AB、BC分别相切于点D,E,过劣弧DE(不包括端点D、E)上任意一点P作圆O的切线MN与AB、BC分别交于点M、N,若圆O的半径为r,则Rt△MBN的周长为( )A rBC 2r D例11图 例12图 例13图 例14图如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于点F,与DC相交于E点,则△ADE的面积=__________例14:如图,在平面直角坐标系中,有一个正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为的圆内切于△ABC,则的值为___________1.已知圆O的半径是6cm,点O到同一平面内直线的距离为5cm,则直线与圆O的位置关系是( )A 相交B 相切C 相离D 无法判断2.下列说法正确的是( )A 垂直于半径的直线是圆的切线B 圆的切线垂直于半径C 经过半径的外端的直线是圆的切线D 圆的切线垂直于过切点的半径如图,AB是圆O的直径,AC是圆O的切线,连接OC交圆O于点D,连接BD,∠C=40°,则∠ABD的度数是( )A 30°B 25°C 20°D 15°第3题图 第4题图 第5题图4.如图,P是圆O的直径BA延长线上一点,PC与圆O相切,切点为C,点D是圆O上一点,连接PD,已知PC=PD=BC。
下列结论:①PD与圆O相切;②四边形PCBD是菱形;③PO=AB;④∠PDB=120°其中正确的个数为()4个 B 3个 C 2个 D 1个是△ABC的内切圆的圆心,若∠BAC=80°。
则∠BOC=( )A 130°B 100°C 50°D 65°.如图,△ABC的内切圆圆O与AB、BC、AC分别相切于点D、E、F,若∠DEF=52°,则∠A是( )A 52°B 76°C 26°D 128°.如图,在等腰直角三角形ABC中,AB=AC=8,O是BC的中点,以O为圆心作半圆,使它与AB、AC都相切,切点分别为D、E,则圆O的半径为( )A 8B 6C 5D 4第6题图 第7题图 第8题图 第9 .如图,已知直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D、C、E。
若半圆O的半径为2,梯形的腰AB为5,则梯形的周长是( )A 9B 10C 12D 14.如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆圆O切AB、BC、AC于D、E、F,则AF的长为( )A 5B 10C 7.5D 4知Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,则其内心和外心之间的距离是( A 10cm B 5cm C cm D 2cm.在△ABC中,AB=5cm,AC=4cm,BC=3cm,如果以C为圆心、2cm为半径作圆,则圆C________;如果以C为圆心、3cm长为半径作圆,则圆C与AB_________;若使圆C与AB相切,则圆C半径应该是_______.已知∠AOB=30°,C是射线OB上的一点,且OC=4.若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是__________________如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是______cm214.如图,直线AB、CD相较于点O,∠AOC=30°,半径为1cm的圆P的圆心在直线AB上且与点O的距离为6cm,如果圆P以1cm/s的速度沿AB由A向B的方向移动,那么_______s后圆P与直线CD相切。
第13题图 第14题图 第16题图 第.△ABC的内切圆和各边分别相切于D、E、F,则O是△DEF的_________________线的.如图,过圆O外一点P作圆O的两条切线PA、PB,切点分别为A、B。
下列结论中:① OP垂直平分AB;②∠APB=∠BOP;③ △ACP≌△BCP;④ PA=AB;⑤ 若∠APB=80°,则∠OBA=40°,正确结论的序号是____________如图,EB、EC是圆O的两条切线,B、C是切点,A、D是圆O上两点,如果∠E=46°,∠DCF=32°则∠A的度数是__________如图,AB为圆O的直径,PD切圆O于点C,交AB的延长线于点D,且∠D=2∠CAD(1)求∠D (2)若CD=2,求BD的长.如图,PA、PB分别与圆O相切于点A、B,点M在PB上,且OM//AP,MN⊥AP,垂足为N (1)求证:OM=AN(2)若圆O的半径r=3,PA=9,求OM的长(2014年天津)如图,AB是圆O的弦,AC是圆O的切线,A为切点,BC经过圆心。
若∠B=25°,则∠C的度数为( )A 20°B 25°C 40°D 50°(2014年长春)如图,在平面直角坐标系中,点A、B均在函数(的图象上,圆A与轴相切,圆B与轴相切。
若点B的坐标为(1,6),圆A的半径是圆B的半径的2倍,则点A的坐标为( )A (2,2)B (2,3)C (3,2)D (4,第1题图 第2题图第3题图(2014年内江)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD的长为( )A 2.5B 1.6C 1.5D 1(2014年淄博)如图,直线AB与圆O相切于点A,弦CD//AB,E、F为圆上的两点,且∠CDE=∠ADF。
若圆O的半径为,CD=4,则弦EF的长为( )A 4BC 5D 6(2014年西宁)圆O的半径为R,点O到直线的距离为,、是方程的两根,当直线与圆O相切时,的值为__________.(2014年绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图所示,圆O与矩形ABCD的边BC、AD分别相切、相交(E、F为交点),已知EF=CD=8,则圆O的半径为_________第4题图 第6题图 第7题图7.(2014年台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上两点A、B,并使AB与车轮内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=10cm,AB=60cm,则这个车轮的外圆半径为__________cm8.(2014年温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB。