不同进制之间的转换方法
不同进制之间的转换方法

不同进制之间的转换方法
不同进制之间的转换方法主要有以下几个:
1. 二进制到十进制:将二进制数的每一位与对应的权重相乘,然后求和。
例如,二进制数1011转换为十进制数的计算过程是:1×2³ + 0×2² + 1×2¹ + 1×2⁰= 8 + 0 + 2 + 1 = 11。
2. 十进制到二进制:对于一个十进制数,可以通过反复除以2并取余数的方法,将每一次的余数倒序排列得到对应的二进制数。
例如,十进制数11转换为二进制数的计算过程是:
11÷2=5余1,5÷2=2余1,2÷2=1余0,1÷2=0余1,倒序排列得到1011。
3. 十进制到十六进制:将十进制数不断地除以16,得到的余数再转换为对应的十六进制数。
其中余数大于9时,需要使用A、B、C、D、E、F等字母表示。
例如,十进制数11转换为十六进制数的计算过程是:11÷16=0余11,所以十六进制数为B。
4. 十六进制到十进制:将十六进制数的每一位与对应的权重相乘,然后求和。
其中十六进制的A、B、C、D、E、F等字母转换为10、11、12、13、14、15进行计算。
例如,十六进制数BAE转换为十进制数的计算过程是:11×16² + 10×16¹ +
14×16⁰= 2816 + 160 + 14 = 2990。
各种进制之间转换方法

各进制转换方法(转载)一、计算机中数的表示: 首先,要搞清楚下面3个概念•数码:表示数的符号« 基:数码的个数•权:每一位所具有的值、各种进制的转换问题1. 二、八、十六进制转换成十进制2. 十进制转换成二、八、十六进制3. 二进制、八进制的互相转换4. 二进制、十六进制的互相转换1、二、八、十六进制转换成十进制方法:数码乘以相应权之和例(HloJ-l/25+lx24+l/23+0/22+ h2:+h20 -(59)10例(136)8=lx82+3x8l+6x8°=(94)10例(1F2^)1S=1X163+15X16S +2\16] + 10/16° = (7978)102、十进制转换成二、八、十六进制方法:连续除以基,直至商为0,从低到高记录余数例把十进制数159转换成八进制数 8| 198辽(159)IO =(237)8例把十进制数59转换成二进制数(59)IO =(111O11)22 余余余余余余8 159例把十进制数459转换成十六进制数u | 1| C| B(459)io=(1CB)ib '3、二进制、八进制的互相转换方法:*二进制转换成八进制:从右向左,每3位一组(不足3位左补0),转换成八进制*八进制转换成二进制:用3位二进制数代替每一位八进制数例(1101001)2=(001,101,001)2=(151)8例(246)8=(010,100,110)2=(10100110)24、二进制、十六进制的互相转换方法:二进制转换成十六进制:从右向左,每4位一组(不足4位左补0),转换成十六进制*十六进制转换成二进制:用4位二进制数代替每一位十六进制数例(11010101111101)2=(0011,0101,0111,1101)2=(357D)16例(4B9E)16=(0100,1011,1001,1110)2=(100101110011110)2三、各种进制数的运算方法:逢满进具体计算与平时十进制的计算类似,以十六进制为例: 加法:05C3 + 3D2542 E83D25…05C3376205C3 X OOAB3F61 + 399E3D941。
各种进制之间的转换方法

各种进制之间的转换方法⑴二进制B转换成八进制Q:以小数点为分界线,整数部分从低位到高位,小数部分从高位到低位,每3位二进制数为一组,不足3位的,小数部分在低位补0,整数部分在高位补0,然后用1位八进制的数字来表示,采用八进制数书写的二进制数,位数减少到原来的1/3。
例:◆二进制数转换成八进制数: = 110 110 . 101 100B↓↓ ↓ ↓6 6 . 5 4 =◆八进制数转换成二进制数:3 6 . 2 4Q↓ ↓ ↓ ↓011 110 . 010 100 =◆低位,每4位二进制数为一组,不足4位的,小数部分在低位补0,整数部分在高位补0,然后用1位十六进制的数字来表示,采用十六进制数书写的二进制数,位数可以减少到原来的1/4。
例:◆二进制数转换成十六进制数:.100111B = 1011 0101 1010 . 1001 1100B↓ ↓ ↓ ↓ ↓B 5 A . 9C = 5A◆十六进制数转换成二进制数:= A B . F EH↓ ↓ ↓ ↓1010 1011. 1111 1110 = .1111111B先把八进制数Q转换成二进制数B,再转换成十六进制数H。
例:◆八进制数转换成十六进制数:= 111 100 000 010 . 100 101B= .100101B= 1111 0000 0010 . 1001 0100B= F 0 2 . 9 4H=◆十六进制数转换成八进制数:= 0001 1011 . 1110B== 011 011 . 111B= 3 3 . 7Q=⑷二进制数B转换成十进制数D:利用二进制数B按权展开成多项式和的表达式,取基数为2,逐项相加,其和就是相应的十进制数。
例:◆二进制数转换成十进制数:= 1×25+1×24+0×23+0×22+1×21+0×20+1×2-1= 32+16+2+=◆求8位二进制数能表示的最大十进制数值:最大8位二进制数是BB = 1×27+1×26+1×25+1×24+1×23+1×22+1×21+1×20= 255⑸十进制数D转换成二进制数B:十进制数转换成二进制数时,整数部分和小数部分换算算法不同,需要分别进行。
数字的转换与换算认识不同进制的转换和换算方法

数字的转换与换算认识不同进制的转换和换算方法数字的转换与换算是数学中非常基础且重要的概念。
在数字的世界中,经常会涉及到不同进制的转换和换算。
本文将介绍不同进制的转换方法以及对应的换算方法,帮助读者更好地理解数字的转换与换算。
一、二进制的转换与换算方法二进制是我们最常见的进制之一,它由0和1两个数字组成。
在计算机领域,二进制广泛应用于信息的存储与处理。
下面介绍二进制的转换与换算方法。
1. 十进制转二进制:将给定的十进制数不断除以2,直到商为0,最后将每次的余数从下往上排列即可得到对应的二进制数。
例如,将十进制数14转换为二进制数。
```14 ÷ 2 = 商7 余07 ÷ 2 = 商3 余13 ÷ 2 = 商1 余11 ÷2 = 商0 余1```从下往上排列余数,得到二进制数1110,即14的二进制表示为1110。
2. 二进制转十进制:将给定的二进制数从右往左分别乘以2的n次方(n为从右往左的位数),然后将结果相加。
例如,将二进制数1101转换为十进制数。
```1 × 2^3 = 81 × 2^2 = 40 × 2^1 = 01 × 2^0 = 1```将结果相加,得到十进制数13,即1101的十进制表示为13。
二、八进制的转换与换算方法八进制也是计算机领域常用的进制之一,它由0至7这8个数字组成。
以下介绍八进制的转换与换算方法。
1. 十进制转八进制:将给定的十进制数不断除以8,直到商为0,最后将每次的余数从下往上排列即可得到对应的八进制数。
例如,将十进制数255转换为八进制数。
```255 ÷ 8 = 商31 余731 ÷ 8 = 商3 余73 ÷ 8 = 商0 余3```从下往上排列余数,得到八进制数377,即255的八进制表示为377。
2. 八进制转十进制:将给定的八进制数从右往左分别乘以8的n次方(n为从右往左的位数),然后将结果相加。
进制间互转的原理

进制间互转的原理一、十进制与二进制之间的转换1、十进制转换为二进制(1)整数部分方法1(除2取余法):每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
举例:将十进制的10转换为二进制第一步,将商10除以2,商5余数为0;第二步,将商5除以2,商2余数为1;第三步,将商2除以2,商1余数为0;第四步,将商1除以2,商0余数为1;第五步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,得结果(1010)2;(2)小数部分(方法:乘2取整法)将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是0,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:将0.45转换为二进制(保留到小数点第四位)0.45*2=0.9取0;0.9*2=1.8取1;0.8*2=1.6取1;0.6*2=1.2取1;0.2*2=0.4取0;0.4*2=0.8取0;0.8*2=1.6取1;大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。
那么,我们可以得出结果将0.45转换为二进制约等于 (0.0111)2。
注:整数的转换是精确的,小数的转换可能出现无穷小数或循环小数的情况。
进制转换方法的公式

进制转换方法的公式进制转换,是将十进制、八进制、十六进制和二进制之间的数值进行转换的一种数学操作。
进制转换公式是将不同数字系统之间的数据转换成另一种数字系统的基本方法。
在数学上,进制转换是一个有效的方法,它可以帮助我们更好地理解数字系统之间的转换关系。
下面我们就来学习关于进制转换的公式。
首先要明确的是,不同进制之间是可以相互转换的。
比如十六进制和十进制之间可以进行转换,八进制和十进制之间也可以转换,二进制和十进制之间也可以转换等等。
例如,如果数字d=1011,有多少种表示方法?我们可以用下面的公式来转换:(1)十进制转换公式:十进制 = (d1 2^0) + (d2 2^1) + (d3 2^2) + (d4 2^3)(2)八进制转换公式:八进制 = (d1 8^0) + (d2 8^1) + (d3 8^2) + (d4 8^3)(3)十六进制转换公式:十六进制 = (d1 16^0) + (d2 16^1) + (d3 16^2) + (d4 16^3) 例如,上面提到的数字d=1011,它的十进制表示是11(d1=1,d2=0,d3=1,d4=1),八进制表示是13(d1=1,d2=3),十六进制表示是B(d1=B)。
在进制转换的公式中,也有一些特殊的情况,比如二进制转换公式。
由于二进制只有两个数字0和1,因此它的转换公式更加简单:二进制 = (d1 2^0) + (d2 2^1) + (d3 2^2) + (d4 2^3)通过这个公式,我们可以快速转换出1的任何进制的表示方法。
此外,进制转换的公式还可以用于进制转换计算。
例如,下面这个例子使用了进制转换计算:已知7 (八进制) = 7 (十进制)根据上述进制转换公式,我们可以推出:7 (八进制) = 7× 8^0 = 7×1 = 7 (十进制)从上面的例子中可以看出,进制转换的公式不仅可以帮助我们快速转换不同数的表示方法,还可以用于计算。
进制数的转换

进制数的转换在计算机科学中,进制数是十分重要的概念。
进制数是指使用一定的进位规则,将数字表示为不同进制下的数。
常见的进制有二进制、八进制、十进制和十六进制。
在计算机中,二进制是最常用的进制,因为计算机内部的所有数据都是以二进制形式存储的。
因此,我们需要掌握进制数的转换方法,以便在编程和计算机科学中应用。
一、二进制转八进制和十六进制将二进制数转换为八进制或十六进制,需要先将二进制数转换为十进制数,然后再将十进制数转换为八进制或十六进制。
下面是一个将二进制数转换为八进制和十六进制的示例:1. 将二进制数10110101转换为八进制数。
首先,将二进制数转换为十进制数:101101012 = 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 ×23 + 1 × 22 + 0 × 21 + 1 × 20= 18110然后,将十进制数181除以8,得到商22和余数5。
将余数5作为八进制数的第一位。
将商22再次除以8,得到商2和余数6。
将余数6作为八进制数的第二位。
最后,将商2作为八进制数的第三位。
因此,二进制数10110101转换为八进制数265。
2. 将二进制数10110101转换为十六进制数。
首先,将二进制数转换为十进制数:101101012 = 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 ×23 + 1 × 22 + 0 × 21 + 1 × 20= 18110然后,将十进制数181除以16,得到商11和余数5。
将余数5作为十六进制数的第一位。
将商11再次除以16,得到商0和余数11。
将余数11转换为十六进制中的B,作为十六进制数的第二位。
因为商为0,所以最后的十六进制数为5B。
二、八进制和十六进制转二进制将八进制或十六进制数转换为二进制数,需要将每个八进制或十六进制位转换为对应的三个或四个二进制位。
二进制,八进制,十进制和十六进制之间的互相转换【超详细】!

⼆进制,⼋进制,⼗进制和⼗六进制之间的互相转换【超详细】!在进⾏讲解之前,我们先在下⾯放置⼀个对应表,因为在理解下⾯转换的时候,你可以随时查看该表。
㈠:⼆进制转⼗进制⑴⼆进制转⼗进制的第⼀个⽅法是要从右到左⽤⼆进制的每个数去乘以2的相应次⽅,⼩数点后则是从左往右2的0次⽅是1(任何数的0次⽅都是1,0的0次⽅⽆意义)2的1次⽅是22的2次⽅是42的3次⽅是82的4次⽅是162的5次⽅是322的6次⽅是642的7次⽅是1282的8次⽅是2562的9次⽅是5122的10次⽅是1024㈡⼗进制转⼆进制⽅法为:⽤2整除⼗进制整数,可以得到⼀个商和余数;再⽤2去除商,⼜会得到⼀个商和余数,如此进⾏,直到商为⼩于1时为⽌,然后把先得到的余数作为⼆进制数的低位有效位,后得到的余数作为⼆进制数的⾼位有效位,依次排列起来。
具体如下图所⽰:㈢⼆进制转⼋进制⼆进制数转换成⼋进制数:从⼩数点开始,整数部分向左、⼩数部分向右,每3位为⼀组⽤⼀位⼋进制数的数字表⽰,不⾜3位的要⽤“0”补⾜3位,就得到⼀个⼋进制数。
(具体⽤法如下图)㈣:⼋进制转成⼆进制⼋进制转换成⼆进制数:⼋进制数通过除2取余法,得到⼆进制数,每个⼋进制对应三个⼆进制,不⾜时在最左边补充零。
(具体⽤法如下图)㈤⼆进制转⼗六进制⽅法为:与⼆进制转⼋进制⽅法近似,⼋进制是取三合⼀,⼗六进制是取四合⼀。
(注意事项,4位⼆进制转成⼗六进制是从右到左开始转换,不⾜时补0)。
(具体⽤法如下图)㈥⼗六进制转⼆进制⼗六进制转⼆进制:⼗六进制数通过除2取余法,得到⼆进制数,每个⼗六进制对应四个⼆进制,不⾜时在最左边补充零。
(具体⽤法如下图)(七)、⼗进制转⼋进制或者⼗六进制有两种⽅法第⼀:间接法—把⼗进制转成⼆进制,然后再由⼆进制转成⼋进制或者⼗六进制。
这⾥不再做图⽚⽤法解释。
第⼆:直接法—把⼗进制转⼋进制或者⼗六进制按照除8或者16取余,直到商为0为⽌。
(⼋)、⼋进制或者⼗六进制转成⼗进制⽅法为:把⼋进制、⼗六进制数按权展开、相加即得⼗进制数。