压力容器应力分析

合集下载

压力容器应力分析_厚壁圆筒弹性应力分析

压力容器应力分析_厚壁圆筒弹性应力分析

工程上一般将设计压力在10≤p≤100MPa之间的压力容器称为高压容器,而将100MPa压力以上的称为超高压容器。

高压容器不但压力高,而且同时伴有高温,例如合成氨就是在15~32MPa压力和500℃高温下进行合成反应。

一般来说,高压和超高压容器的径比K > 1.2,称此类容器为“厚壁容器”。

本章讨论的对象,是厚壁圆筒型容器。

承受压力载荷或者温差载荷的厚壁圆筒容器,其上任意点的应力,是三向应力状态。

即存在经向应力(又称轴向应力)、周向应力和径向应力。

针对厚壁筒的应力求解,将在平衡方程、几何方程、物理方程三个方面进行分析。

2.2.1 弹性应力-压力载荷引起的弹性应力(1)轴向(经向)应力ϭz222200002200002220()1i z i i i i i i i z i iP P FP P p R p R F R R p R p R p p KR K R R K R σππππσ−=−=⋅−⋅=−−−⋅===−−径比(2) 周向应力ϭ和径向应力ϭrθ三对截面:一对圆柱面,相距dr一对纵截面,相差dθ一对横截面,长度为1Ϭz作用在横截面上Ϭr作用在圆柱面上Ϭθ作用在纵截面上平衡方程(沿径向列平衡方程)()()112sin 102r r r d d r dr d rd dr θθσσθσθσ++⋅−⋅−⋅=sin 22d d θθ≈略去高阶无穷小,并使得到平衡方程r r d r drθσσσ−=几何方程()r w dw wdwdr drε+−==径向应变周向应变()r w d rd wrd r θθθεθ+−==上述表达式是Lame 在1833年推得的,又称为Lame 公式。

当仅有内压时,p o =0,有()222222211111112i o i o r z i z r p R K r p R K r p K θθσσσσσσ⎧⎛⎞=⋅−⎪⎜⎟−⎝⎠⎪⎪⎛⎞⎪=⋅+⎜⎟⎪−⎝⎠⎨⎪⎛⎞=⋅⎪⎜⎟−⎝⎠⎪⎪=+⎪⎩246810010********σθ R i / σθ R oK可见,当K 越大时,应力的分布就越不均匀。

第二章 压力容器应力分析2.5-2.6

第二章 压力容器应力分析2.5-2.6

长圆筒
短圆筒
刚性圆筒 L/Do和Do/t很小时,壳体的刚性很大,此时圆柱 壳体的失效形式已经不是失稳,而是压缩强度破 坏。
14
2.5.2 外压薄壁圆柱壳弹性失稳分析
过程设备设计
长圆筒和短圆筒失稳时临界压力计算方法: 一、受均布周向外压的长圆筒的临界压力
二、受均布周向外压的短圆筒的临界压力 三、临界长度 四、周向外压及轴向载荷联合作用下的失稳 五、形状缺陷对圆筒稳定性的影响
10
2.5.1 概述
过程设备设计
3. 影响Pcr的因素:
对于给定外直径Do和厚度t Pcr与圆柱壳端部约束之间距离和圆柱壳上两个刚性元件 之间距离L有关; Pcr随着壳体材料的弹性模量E、泊松比μ的增大而增加; 非弹性失稳的Pcr还与材料的屈服点有关。
11
2.5.2 外压薄壁圆柱壳弹性失稳分析
过程设备设计
c、圆环的挠曲微分 方程2-87式
M M O pRwo w
16
2.5.2 外压薄壁圆柱壳弹性失稳分析
过程设备设计
图2-39 圆环变形的几何关系
17
2.5.2 外压薄壁圆柱壳弹性失稳分析
pR3 RM pR w d 2w 1 c. 圆环的挠曲微分方程:2-87式 2 w d EJ EJ
对圆筒的初始不圆度严格限制
26
2.5.3 其他回转薄的的临界压力
过程设备设计
2.5.3 其他回转薄壳的的临界压力
半球壳 椭球壳 碟形壳 锥壳
27
2.5.3 其他回转薄壳的的临界压力
过程设备设计
1、半球壳
临界应力经典公式
pcr
3 1 2
0.3

2E

压力容器应力分析

压力容器应力分析
32
rm R2 sin m
m 90 o
rm R2 sin m R2 cos
sj
prm pR2 V 2rm t cos 2t cos 2t
(2-5)
33
sj
p R1 R2 t
sq
(2-3)
将式(2-5)代入
式(2-3)得:
R2 s q s j (2 ) R1
90°时,锥体变成平板,应力
39
D、椭球形壳体
图2-8 椭球壳体的应力
40
推导思路:
PR2 s 2t s q s (2 R2 ) R1
式(2-5)(2-6) 椭圆曲线方程 R1和R2
sq , sj
2 2 2
pR2 p a x (a b ) sj 2t 2t b
● 回转薄壳应力分析 2. 2. 2. 2. 2. 1 2 3 4 5 概述 薄壁圆筒的应力 回转薄壳的无力矩理论 无力矩理论的基本方程 无力矩理论的应用
3
2.1 概述
(1) 应力分析的意义
(1)研究容器在外载荷作用下,有效抵抗变形和
破坏的能力,处理强度、刚度和稳定性问题,保 证容器的安全性和经济性。 (2)压力容器所受载荷 a.压力载荷:均布于容器壳体; b.机械载荷:重力、支座反力、管道的推力等; c.热载荷.
sj
p R1 R2 t
sq
(2-3)
区域平衡方程: 平行圆半径:
V V ' 2rms j t cos 2 prdr 0 (2-4)
r R2 sin
rm
30
◇分析几种工程中典型回转薄壳的薄膜应力: 球形薄壳 承受气体内压的回转薄壳 薄壁圆筒 锥形壳体 椭球形壳体 储存液体的回转薄壳 圆筒形壳体 球形壳体

压力容器应力分析报告

压力容器应力分析报告

压力容器应力分析报告1. 引言压力容器是工业中常见的设备,用于存储和传输压力较高的气体或液体。

在设计和使用压力容器时,应力分析是至关重要的环节,它可以帮助工程师评估容器的结构强度和可靠性。

本报告将介绍如何进行压力容器的应力分析,并给出实例以帮助读者更好地理解。

2. 压力容器的基本原理压力容器是由材料制成的结构,能够承受内部压力的作用。

其设计目标是保证容器在各种工作条件下都能安全运行,并且在设计寿命内不发生破裂或变形。

压力容器主要受到内部压力和外部载荷的影响,因此需要进行应力分析来确定内部应力和变形。

3. 压力容器的材料压力容器的材料选择是应力分析的重要一环。

常见的材料包括钢、铝合金等。

选择合适的材料要考虑容器的工作温度、压力和介质等因素。

不同材料的物理和力学性质会对应力分析产生不同的影响,因此需要通过材料测试和模拟来获取材料参数。

4. 压力容器的边界条件在进行应力分析时,需要确定压力容器的边界条件。

这包括容器的几何形状、支撑方式、固定约束等。

边界条件的选择会直接影响应力分布和变形情况。

通过准确描述边界条件,可以更精确地进行应力分析。

5. 压力容器的应力分析方法压力容器的应力分析可以使用有限元分析方法。

有限元分析是一种数值计算方法,将结构离散成有限数量的小单元,通过求解单元之间的力学关系,得到整个结构的应力和变形情况。

有限元分析可以模拟复杂的几何形状和载荷条件,因此在应力分析中得到了广泛应用。

6. 压力容器的应力分析实例为了更好地理解压力容器的应力分析,我们以一个简单的圆筒形压力容器为例进行分析。

假设容器直径为D,高度为H,材料为钢,内部压力为P。

通过有限元分析软件,可以得到容器内部壁的应力分布情况。

根据分析结果,我们可以评估容器的结构强度,以及在不同工作条件下的变形情况。

7. 结论通过应力分析,我们可以评估压力容器的结构强度和可靠性。

合理选择材料、确定边界条件,并使用适当的分析方法,可以有效地进行应力分析。

压力容器应力分析与安全设计

压力容器应力分析与安全设计
压力容器应力分析与安全设计
钢制压力容器 用材料许用应 力的取值方法
碳素钢或低合金钢>420℃,铬钼合金钢>450℃, 奥氏体不锈钢>550℃时,同时考虑基于高温蠕变极限
或持久强度
的许用应力


压力容器应力分析与安全设计
表9-2 钢制压力容器用材料许用应力的取值方法
材料
许用应力 取下列各值中的最小值/MPa
压力容器应力分析与安全设计
3. 对边缘应力的处理
若用塑性好的材料制造筒体,可减少容器发生破坏的危险 性。 正是由于边缘应力的局部性与自限性,设计中一般不 按局部应力来确定厚度,而是在结构上作局部处理。但对 于脆性材料,必须考虑边缘应力的影响。
压力容器应力分析与安全设计
第二节 压力容器的安全设计
压力容器设计是保障压力容器安全的首要环 节。压力容器设计从安全角度包括强度安全设计和 结构安全设计,两者都离不开正确选材,不同材料 的容器的承载能力与结构可靠程度是不同的。
碳素钢、低合金 钢、铁素体高合
金钢
奥氏体高合金钢
压力容器应力分析与安全设计
4、焊接接头系数——焊缝金属与母材强度的比值,反映容器 强度受削弱的程度。
焊缝缺陷
夹渣、未熔透、 裂纹、气孔等
焊缝热影响区晶粒粗大
薄弱环节
母材强度或塑性降低
影响因素
接头形式 无损检测要求及长度比例
压力容器应力分析与安全设计
焊缝系数的大小与材料的焊接性能、被焊母材的厚度、焊接 结构、坡 口型式、焊接方法、焊缝无损检测长度比例以及焊前 预热处理及焊后热处理等因素有关。目前我国《钢制压力容器》 中的焊缝系数主要依据焊缝结构、坡口型式、无损检测的要求等 确定。焊缝系数的选择见下表。

压力容器应力分析报告

压力容器应力分析报告

压力容器应力分析报告引言压力容器是一种用于储存或者输送气体、液体等介质的设备。

由于容器内的介质压力较高,容器本身需要能够承受这种压力而不发生破裂。

因此,对压力容器进行应力分析是非常重要的,它可以帮助我们判断容器的安全性并提供设计和改进的依据。

本报告旨在对压力容器进行应力分析,以评估其在工作条件下的应力分布情况,并根据分析结果提出相应的建议和改进措施。

1. 压力容器的工作原理和结构在进行应力分析之前,我们首先需要了解压力容器的工作原理和结构。

1.1 工作原理压力容器通过在容器内部创建高压环境来储存或者输送介质。

这种高压状态可以通过液体或气体的压力产生,也可以通过外部作用力施加于容器上。

容器的结构需要能够承受内部或外部压力的作用而不发生破裂。

1.2 结构压力容器通常由壳体、端盖、法兰、密封件等部分组成。

壳体是容器的主要结构部分,可以是圆柱形、球形或者其他形状。

端盖用于封闭壳体的两个端口,而法兰则用于连接不同部分的容器或其他设备。

密封件的选择和设计对于保证容器的密封性和安全性至关重要。

2. 压力容器应力分析方法在进行压力容器应力分析时,我们可以采用不同的方法和工具。

下面将介绍两种常用的应力分析方法。

2.1 解析方法解析方法是一种基于数学模型和理论计算的应力分析方法。

通过建立压力容器的几何模型和材料性质等参数,可以使用解析方程和公式计算容器内部和外部的应力分布情况。

这种方法适用于简单结构和边界条件的容器,具有计算简单、速度快的优点。

2.2 有限元方法有限元方法是一种基于数值计算的应力分析方法。

它将复杂的压力容器分割成有限个小单元,通过求解每个小单元的应力状态,再将它们组合起来得到整个容器的应力分布。

有限元方法可以考虑更多的几何和材料非线性,适用于复杂结构和边界条件的容器,具有更高的精度和可靠性。

3. 压力容器应力分析结果和讨论在进行压力容器应力分析后,我们得到了容器内部和外部的应力分布情况。

根据具体的分析方法和参数,以下是一些可能的结果和讨论。

03_压力容器应力分析_无力矩理论的应用

03_压力容器应力分析_无力矩理论的应用
2 2பைடு நூலகம்
R
( 0 )
2.2 回转薄壳应力分析 2.2.3 无力矩理论的应用
由Laplace方程,得 p R2 t R1 代入整理,得 2 cos = 5 6 cos 6t 1 cos
2 2
③ 求解Laplace方程:
2.2.3 无力矩理论的应用

p R1 R2 t


p R1 R2 t

pR 2t
④应力分布图:
pR 2t pR 2t
2.2 回转薄壳应力分析
薄壁圆筒
2.2.3 无力矩理论的应用
2.2 回转薄壳应力分析
2.2.3 无力矩理论的应用
2.2 回转薄壳应力分析 2.2.3 无力矩理论的应用
(2)承受液体内压的回转薄壳 特点:壳体内各点的内压力与距液面的高度有 关,液体的重量要考虑。 圆筒形壳体
R1 R2 R rR
2.2 回转薄壳应力分析 2.2.3 无力矩理论的应用
p p0 x
G r x
思考3:下列圆筒中的应力分布
2.2 回转薄壳应力分析 2.2.3 无力矩理论的应用
思考4:下列锥形壳中的应力分布
2.2 回转薄壳应力分析 2.2.3 无力矩理论的应用
思考5:求下列半圆壳中的应力分布
(顶部为敞口)
R cos cos 1 3t cos 1 2 2 R 2 cos 2 cos 1 3t cos 1
2.2 回转薄壳应力分析
2.2.3 无力矩理论的应用
2.2.3 无力矩理论的应用
Laplace 方程 区域平衡方程

第2章 压力容器应力分析

第2章 压力容器应力分析

郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
图2-12 组合壳
图2-13 连接边缘的变形
郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
w1 w2
1 2
Q M 0 w1p w1 0 w1M 0 w2p wQ2 w2 0 Q M 1p 1Q 1M 2p 2 2
图2-11 储存液体的球壳
郑州大学化工与能源学院
过程设备设计
2.2.4 无力矩理论的应用
三、无力矩理论的 应用条件 为保证回转薄壳处于薄膜状态,壳体形状、 加载方式及支承一般应满足如下条件: 1、几何形状、载荷、材料连续; 2、壳体的边界处不受横向剪力、弯矩和扭 矩作用。 3、壳体的边界处的约束沿经线的切线方向, 不得限制边界处的扭角与挠度。
第2章 压力容器应力分析
第2.2节
回转薄壳应力分析
过程设备设计
第2-2节 回转薄壳应力分析
压力容器的各种壳体,多属于回转薄壳。 壳体—以两个曲面为界,且曲面之间的距 离远比其他方向尺寸小得多的构件。 壳体的厚度—两曲面之间的距离,用“t或 δ”表示。 壳体的中面—与壳体内、外两个曲面等距 离的曲面。
过程设备设计
第2章
压力容器应力分析
第2章 压力容器应力分析
第2.1节 载荷分析
过程设备设计
第2-1节 载荷分析
载荷:能够在压力容器上产生应力、 应变的 因素,如:压力、风载荷、地震载荷等。 2.1.1 载荷分类:压力载荷和非压力载荷。 1、压力载荷:它是压力容器承受的基本载荷。 一般采用表压。 压力容器中的压力载荷主要来源有: ①泵或压缩机; ②液体膨胀或汽化; ③饱和蒸汽压。 (另外,液体重量产生液体静压力) 压力容器上的压力,可能是内压、外压或两 者都有。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档