压力容器应力分析及其设计
基于JB4732标准的压力容器应力分析

压力容器的静力学分析与模态分析压力容器的制造和使用都有严格规范标准,本文借助ANSYS软件对某型压力容器结构进行静力学分析与模态分析,结合压力容器分析设计标准JB4732-1995,对压力容器的应力结构进行评定,从而对压力容器结构进行强度校核。
本文所研究分析的压力容器结构如下所示,压力容器顶部开孔为非对称开孔,侧边开孔为对称开孔。
压力容器筒体外径为1218mm,总高度为4058mm,顶部接管内径为212mm,侧边接管内径为468mm,筒体壁厚为28mm。
压力容器的工作压力为3.2MPa,容器内工作温度为-25℃-55℃,整体结构材料为14Cr1Mo。
图1 压力容器结构三维模型(右图为剖视)表3.1 压力容器结构应力分析的材料参数材料弹性模量(Gpa)泊松比许用应力(MPa)14Cr1Mo 183 0.3 1403.1 有限元模型建立采用ANSYS Workbench进行静力学分析,需要先对压力容器结构进行网格划分,为提高计算精度,保证线性化应力后处理的准确性,对压力容器结构采用全六面体的网格划分,且在厚度方向上划分至少3层的网格。
网格单元类型采用高阶单元类型,在ANSYS 中的单元类型号为Solid186,Solid186单元结构如下图所示,该单元共有20个节点,单元形状为六面体,在六面体的顶点处共有8个节点,在六面体边的中点位置处共有12个节点,合计20个节点。
Solid186可以很好的适用于线性或非线性的有限元仿真分析,同时还支持塑性本构、蠕变本构等一些特殊的非线性材料。
Solid186属于实体单元,实体单元每个节点具有三个平动自由度,分别为UX,UY和UZ。
结构厚度方向上布置多层网格单元,可以很好的分析出结构在厚度方向上的应力变化梯度,提高计算精度[13]。
图2 Solid186单元类型结构图采用workbench自带的Mesh功能对压力容器结构进行网格划分,整体的网格尺寸设置为15mm,厚度方向划分三层网格。
压力容器应力分析报告

压力容器应力分析报告1. 引言压力容器是工业中常见的设备,用于存储和传输压力较高的气体或液体。
在设计和使用压力容器时,应力分析是至关重要的环节,它可以帮助工程师评估容器的结构强度和可靠性。
本报告将介绍如何进行压力容器的应力分析,并给出实例以帮助读者更好地理解。
2. 压力容器的基本原理压力容器是由材料制成的结构,能够承受内部压力的作用。
其设计目标是保证容器在各种工作条件下都能安全运行,并且在设计寿命内不发生破裂或变形。
压力容器主要受到内部压力和外部载荷的影响,因此需要进行应力分析来确定内部应力和变形。
3. 压力容器的材料压力容器的材料选择是应力分析的重要一环。
常见的材料包括钢、铝合金等。
选择合适的材料要考虑容器的工作温度、压力和介质等因素。
不同材料的物理和力学性质会对应力分析产生不同的影响,因此需要通过材料测试和模拟来获取材料参数。
4. 压力容器的边界条件在进行应力分析时,需要确定压力容器的边界条件。
这包括容器的几何形状、支撑方式、固定约束等。
边界条件的选择会直接影响应力分布和变形情况。
通过准确描述边界条件,可以更精确地进行应力分析。
5. 压力容器的应力分析方法压力容器的应力分析可以使用有限元分析方法。
有限元分析是一种数值计算方法,将结构离散成有限数量的小单元,通过求解单元之间的力学关系,得到整个结构的应力和变形情况。
有限元分析可以模拟复杂的几何形状和载荷条件,因此在应力分析中得到了广泛应用。
6. 压力容器的应力分析实例为了更好地理解压力容器的应力分析,我们以一个简单的圆筒形压力容器为例进行分析。
假设容器直径为D,高度为H,材料为钢,内部压力为P。
通过有限元分析软件,可以得到容器内部壁的应力分布情况。
根据分析结果,我们可以评估容器的结构强度,以及在不同工作条件下的变形情况。
7. 结论通过应力分析,我们可以评估压力容器的结构强度和可靠性。
合理选择材料、确定边界条件,并使用适当的分析方法,可以有效地进行应力分析。
压力容器应力分析与安全设计

钢制压力容器 用材料许用应 力的取值方法
碳素钢或低合金钢>420℃,铬钼合金钢>450℃, 奥氏体不锈钢>550℃时,同时考虑基于高温蠕变极限
或持久强度
的许用应力
即
或
压力容器应力分析与安全设计
表9-2 钢制压力容器用材料许用应力的取值方法
材料
许用应力 取下列各值中的最小值/MPa
压力容器应力分析与安全设计
3. 对边缘应力的处理
若用塑性好的材料制造筒体,可减少容器发生破坏的危险 性。 正是由于边缘应力的局部性与自限性,设计中一般不 按局部应力来确定厚度,而是在结构上作局部处理。但对 于脆性材料,必须考虑边缘应力的影响。
压力容器应力分析与安全设计
第二节 压力容器的安全设计
压力容器设计是保障压力容器安全的首要环 节。压力容器设计从安全角度包括强度安全设计和 结构安全设计,两者都离不开正确选材,不同材料 的容器的承载能力与结构可靠程度是不同的。
碳素钢、低合金 钢、铁素体高合
金钢
奥氏体高合金钢
压力容器应力分析与安全设计
4、焊接接头系数——焊缝金属与母材强度的比值,反映容器 强度受削弱的程度。
焊缝缺陷
夹渣、未熔透、 裂纹、气孔等
焊缝热影响区晶粒粗大
薄弱环节
母材强度或塑性降低
影响因素
接头形式 无损检测要求及长度比例
压力容器应力分析与安全设计
焊缝系数的大小与材料的焊接性能、被焊母材的厚度、焊接 结构、坡 口型式、焊接方法、焊缝无损检测长度比例以及焊前 预热处理及焊后热处理等因素有关。目前我国《钢制压力容器》 中的焊缝系数主要依据焊缝结构、坡口型式、无损检测的要求等 确定。焊缝系数的选择见下表。
压力容器应力分析报告

压力容器应力分析报告引言压力容器是一种用于储存或者输送气体、液体等介质的设备。
由于容器内的介质压力较高,容器本身需要能够承受这种压力而不发生破裂。
因此,对压力容器进行应力分析是非常重要的,它可以帮助我们判断容器的安全性并提供设计和改进的依据。
本报告旨在对压力容器进行应力分析,以评估其在工作条件下的应力分布情况,并根据分析结果提出相应的建议和改进措施。
1. 压力容器的工作原理和结构在进行应力分析之前,我们首先需要了解压力容器的工作原理和结构。
1.1 工作原理压力容器通过在容器内部创建高压环境来储存或者输送介质。
这种高压状态可以通过液体或气体的压力产生,也可以通过外部作用力施加于容器上。
容器的结构需要能够承受内部或外部压力的作用而不发生破裂。
1.2 结构压力容器通常由壳体、端盖、法兰、密封件等部分组成。
壳体是容器的主要结构部分,可以是圆柱形、球形或者其他形状。
端盖用于封闭壳体的两个端口,而法兰则用于连接不同部分的容器或其他设备。
密封件的选择和设计对于保证容器的密封性和安全性至关重要。
2. 压力容器应力分析方法在进行压力容器应力分析时,我们可以采用不同的方法和工具。
下面将介绍两种常用的应力分析方法。
2.1 解析方法解析方法是一种基于数学模型和理论计算的应力分析方法。
通过建立压力容器的几何模型和材料性质等参数,可以使用解析方程和公式计算容器内部和外部的应力分布情况。
这种方法适用于简单结构和边界条件的容器,具有计算简单、速度快的优点。
2.2 有限元方法有限元方法是一种基于数值计算的应力分析方法。
它将复杂的压力容器分割成有限个小单元,通过求解每个小单元的应力状态,再将它们组合起来得到整个容器的应力分布。
有限元方法可以考虑更多的几何和材料非线性,适用于复杂结构和边界条件的容器,具有更高的精度和可靠性。
3. 压力容器应力分析结果和讨论在进行压力容器应力分析后,我们得到了容器内部和外部的应力分布情况。
根据具体的分析方法和参数,以下是一些可能的结果和讨论。
第二章压力容器应力分析

《过程设备设计基础》教案2—压力容器应力分析课程名称:过程设备设计基础专业:过程装备与控制工程任课教师:第2章 压力容器应力分析§2-1 回转薄壳应力分析一、回转薄壳的概念薄壳:(t/R )≤0.1 R----中间面曲率半径 薄壁圆筒:(D 0/D i )max ≤1.1~1.2 二、薄壁圆筒的应力图2-1、图2-2 材料力学的“截面法”三、回转薄壳的无力矩理论1、回转薄壳的几何要素(1)回转曲面、回转壳体、中间面、壳体厚度 * 对于薄壳,可用中间面表示壳体的几何特性。
tpD td pR tpD Dt D p i 22sin 24422====⨯⎰θπθϕϕσσαασπσπ(2)母线、经线、法线、纬线、平行圆(3)第一曲率半径R1、第二曲率半径R2、平行圆半径r(4)周向坐标和经向坐标2、无力矩理论和有力矩理论(1)轴对称问题轴对称几何形状----回转壳体载荷----气压或液压应力和变形----对称于回转轴(2)无力矩理论和有力矩理论a、外力(载荷)----主要指沿壳体表面连续分布的、垂直于壳体表面的压力,如气压、液压等。
P Z= P Z(φ)b、内力薄膜内力----Nφ、Nθ(沿壳体厚度均匀分布)弯曲内力---- Qφ、Mφ、Mθ(沿壳体厚度非均匀分布)c、无力矩理论和有力矩理论有力矩理论(弯曲理论)----考虑上述全部内力无力矩理论(薄膜理论)----略去弯曲内力,只考虑薄膜内力●在壳体很薄,形状和载荷连续的情况下,弯曲应力和薄膜应力相比很小,可以忽略,即可采用无力矩理论。
●无力矩理论是一种近似理论,采用无力矩理论可是壳地应力分析大为简化,薄壁容器的应力分析和计算均以无力矩理论为基础。
在无力矩状态下,应力沿厚度均匀分布,壳体材料强度可以得到合理的利用,是最理想的应力状态。
(3)无力矩理论的基本方程a、无力矩理论的基本假设小位移假设----壳体受载后,壳体中各点的位移远小于壁厚。
考虑变形后的平衡状态时壳用变形前的尺寸代替变形后的尺寸直法线假设----变形前垂直于中面的直线变形后仍为直线,且垂直于变形后的中面。
压力容器设计中的应力分析与优化

压力容器设计中的应力分析与优化摘要:压力容器作为储存和运输压力物质的设备,在工业生产中扮演着重要角色。
由于其特殊性和复杂工作环境,容器壁面常受高压力和负荷作用,容易出现应力集中和应力腐蚀等问题,从而导致容器失效和严重事故的发生。
为确保压力容器的安全性和可靠性,应力分析与优化成为关键的设计环节。
本文探讨了压力容器设计中的应力分析方法,包括有限元法、解析法和试验方法,并提出了相应的优化策略,包括材料选择、结构设计、加强筋设计和压力分布均衡等方面。
强调了数值仿真与实验验证在优化策略中的重要性,通过综合运用这些方法,可以有效提高压力容器的性能和可靠性,确保其在各种复杂工况下安全运行。
关键字:压力容器,应力分析,优化策略,有限元法,解析法一、引言随着工业技术的不断发展和应用的不断扩大,压力容器作为一种重要的储存和运输压力物质的设备,在各行各业都扮演着不可或缺的角色。
由于压力容器的特殊性和工作环境的复杂性,容器壁面常常受到高压力和负荷的作用,导致应力集中和应力腐蚀等问题。
这些问题会导致容器的失效,从而引发严重的事故,对人员和环境安全造成严重威胁。
二、应力分析方法在压力容器设计中,应力分析是评估容器壁面应力分布和变形情况的关键步骤。
准确的应力分析可以揭示潜在的应力集中区域,为后续优化设计提供依据。
在应力分析中,常见的方法包括有限元法、解析法和试验方法。
2.1 有限元法:有限元法是目前最为广泛应用的应力分析方法。
它将复杂的容器结构离散为有限个简单单元,通过数值模拟的方式求解得出容器的应力分布。
有限元法能够考虑材料的非线性特性、几何的非线性变形以及复杂的边界条件,适用于各种复杂结构的压力容器。
在有限元分析中,需要建立容器的几何模型,将其划分为有限元网格。
根据材料特性、加载条件和边界条件,设定模拟参数。
通过迭代计算,求解得到容器内部应力和变形的数值结果。
有限元法具有高精度和较好的灵活性,可以在设计过程中快速验证多种设计方案的性能,是压力容器设计中不可或缺的分析手段。
压力容器应力分析标准

压力容器应力分析标准压力容器是一种用于承受内部压力的设备,通常用于储存或加工气体、液体或蒸汽。
在设计和制造压力容器时,应力分析是至关重要的步骤。
应力分析可以帮助工程师确定材料的合适性,以及在使用过程中可能出现的应力集中区域,从而确保压力容器的安全运行。
首先,压力容器应力分析需要遵循一定的标准和规范。
国际上广泛应用的压力容器设计规范包括ASME(美国机械工程师协会)的《压力容器规范》和欧洲的PED(压力设备指令)。
这些规范详细规定了压力容器的设计、制造、检验和使用要求,其中包括应力分析的相关内容。
在进行应力分析时,工程师需要考虑压力容器在运行过程中可能受到的各种载荷,包括内压、外压、温度载荷、地震载荷等。
针对这些载荷,工程师需要进行应力分析,计算压力容器的应力分布情况,以及应力集中的位置和程度。
通过应力分析,工程师可以评估材料的强度是否足够,以及是否需要采取一些措施来减轻应力集中的影响。
此外,应力分析还需要考虑压力容器的几何形状、焊接接头、支撑结构等因素。
这些因素都会对应力分布产生影响,因此在进行应力分析时需要全面考虑。
在实际工程中,工程师通常会利用有限元分析等计算工具来进行应力分析。
有限元分析是一种数值计算方法,可以对复杂结构的应力分布进行精确计算。
通过有限元分析,工程师可以得到压力容器各个部位的应力情况,从而指导后续的设计和制造工作。
总的来说,压力容器应力分析是压力容器设计和制造过程中不可或缺的一部分。
遵循相应的标准和规范,全面考虑各种载荷和因素,并利用适当的计算工具进行应力分析,可以确保压力容器的安全可靠运行。
在未来的工作中,我们需要不断改进应力分析的方法和技术,以适应不断发展的压力容器应用需求。
《压力容器应力分析》课件

未来的发展趋势与展望
智能化和自动化技术的应用
随着人工智能、大数据和云计算等技术的发展,压力容器应力分析将 更加智能化和自动化,能够提高分析的精度和效率。
多物理场耦合分析的深入研究
未来将进一步加强对多物理场耦合效应的研究,以更准确地预测压力 容器的复杂行为。
实验法能够提供实际工况下的应力数据,但实验条件难 以完全模拟实际运行环境,成本较高。
有限元法适用于复杂形状和边界条件的压力容器分析, 计算精度较高,应用广泛。
根据实际需求和条件选择合适的分析方法,综合运用多 种方法进行压力容器应力分析是发展趋势。
03
压力容器应力分析的步骤
确定分析目的
确定压力容器应力分析的目的,是为 了评估容器的强度、刚度和稳定性, 还是为了优化设计或解决特定问题。
案例三:某压力容器优化设计
案例概述
某压力容器在设计阶段,需要进行优化设计 以提高其性能和安全性。
结果展示
通过图表和数据,展示优化后的压力容器在 性能和安全性方面的提升情况。
分析方法
采用优化设计方法,对压力容器的结构、材 料和工艺进行多目标优化。
结论
根据分析结果,评估优化设计的可行性和效 果,并提出相应的改进建议。
案例一:某压力容器应力分析
案例概述
某压力容器在正常工作条件下,需要进行全 面的应力分析以确保其安全运行。
分析方法
采用有限元分析方法,对压力容器的各个部 件进行详细的应力分布计算。
结果展示
通过图表和数据,展示压力容器在正常工作 条件下各部件的应力分布情况。
结论
根据分析结果,评估压力容器的安全性能, 并提出相应的优化建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多选题
第1章压力容器导言
1.1介质危害性
介质危害性有多种,其中阻碍压力容器分类的是:()
A. 毒性
B. 腐蚀性
C. 氧化性
D. 易燃性
1.2压力容器分类
下列属于第三类压力容器的是:( c )
A .毒性程度为极度和高度危险介质的低压容器;
B .毒性程度为极度和高度危险介质且PV大于等于
0.2MPa.m3的低压容器;
C .易燃或毒性程度为为中度危险介PV大于等于10MPa.m3的中压储存容器;
D. 中压管壳式余热锅炉;
E .高压容器
1.3《容规》
《容规》适用于具备下列哪些条件的压力容器:(ABCD )
A. 最高工作压力(Pw)大于等于0.1MPa(不含液体静压力);
B .内直径(非圆形截面指其最大尺寸)大于等于0.15m;
C .容积(V)大于等于0.025m3;
D. 盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。
1.4 过程设备
过程设备在生产技术领域中应用十分广泛,是化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必须的关键设备。
下列属于过程设备在实际生产中应用的是:()
A . 加氢反应器
B . 超高压食品杀菌釜
C . 核反应堆
D .压缩机
1.5压力容器分类
凡属于下列情况之一者为一类压力容器();凡属于下
列情况之一者为二类压力容器();凡属于下列情况之一者为三类压力容器();
A .压力0.1MPa≤p<1.6MPa 的容器;
B .压力0.1MPa<p≤1.6MPa的容器;
C .压力 1.6MPa<p≤10.0MPa的容器;
D .压力 1.6MPa≤p<10.0MPa 的容器;
E .高压容器;
F .极度毒性和高度危险介质的中压容器;
G .极度毒性和高度危险介质的低压容器;
H .真空容器。
1.6压力容器分类
下列关于压力容器的分类错误的是:()
A .内装高度危害介质的中压容器是第一类压力容器。
B .低压搪玻璃压力容器是第二类压力容器。
C .真空容器属低压容器。
D .高压容器差不多上第三类压力容器。
1.7无力矩理论
下列哪些是无力矩理论的应用条件:()
A .壳体的厚度、中面曲率和载荷连续,没有突变;
B.构成壳体的材料的物理性能相同;
C.壳体的边界处不受横向剪力、弯矩和扭矩的作用;
D.壳体的边界处的约束沿经线的切线方向,不得限制边界处的转角与饶度。
1.8《压力容器安全技术监察规程》
《压力容器安全技术监察规程》适用于同时具备下类条件的压力容器:()
A .最高工作压力(Pw)大于等于0.1MPa(含液体静压力);
B .最高工作压力(Pw)大于等于0.1MPa(不含液体静压力);
C .内直径(非圆形截面指其最大尺寸)大于等于0.15m,且容积(V)大于等于0.025m3;
D .盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。
1.9设计标准
下列对GB150,JB4732和JB/T4735三个标准的有关表述中,正确的有:()
A .当承受内压时,JB4732规定的设计压力范围为
0.1MPa≤P≤35MPa.
B .GB150采纳弹性失效设计准则,而TB/T4735采纳塑性
失效设计准则。
C .GB150采纳基于最大主应力的设计准则,而JB4732采纳第三强度理论。
D .需做疲劳分析的压力容器设计,在这三个标准中,只能选用GB150.
E .GB150的技术内容与ASME VIII—1大致相当,为常规设计标准;而JB4732差不多思路与ASME VIII—2相同,为分析设计标准。
F .GB150中规定钢材许用应力时,低碳钢的屈服点及抗拉强度的材料设计系数分不为1.6与3.0。
1.10力容器分类
下列属于第三类压力容器的是:()
A.中压搪玻璃压力容器.
B.中压容器
C.球形储罐
D.低温液体储存容器(容积大于5m3)
E.移动式压力容器.
F.低压容器(仅限毒性程度为极度和高度危害介质)
1.11安全附件
下列哪些是压力容器的安全附件:()
A.爆破片装置
B.压力表
C.人孔
D.测温仪
1.12压力容器分类
按承载方式分类,压力容器可分为:()
A. 内压容器
B. 外压容器
C. 反应压力容器
D. 真空容器
1.13压力容器分类
下列压力容器分类正确的是:()
A. 蒸压釜属于反应压力容器
B. 蒸发器属于分离压力容器
C. 干燥塔属于分离压力容器
D. 冷凝器属于换热压力容器
第2章压力容器应力分析
2.1局部应力
为降低局部应力,下列结构设计合理的是:()
A. 减少两联接件的刚度差
B. 尽量采纳圆弧过度
C. 局部区域补强
D. 选择合理的开孔方位
2.2椭球壳应力
承受内压的薄椭球壳应力的大小与哪些因素有关:()
A.内压的大小
B.球壳的壁厚
C.长短轴之比
D.球壳的材料
2.3应力分析
下列哪些是较常用的实验应力分析方法:()
A.电测法
B.差分法
C.光弹性法
D.破坏实验。