上海民办尚德实验学校数学圆 几何综合检测题(Word版 含答案)
上海民办尚德实验学校数学平面图形的认识(一)检测题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=________°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.【答案】(1)40(2)解:∵∴∴(3)解:存在.理由如下:∵设∴∵∴∴∴∴【解析】【解答】⑴∴∵OF平分∠AOE,∴∴∴故答案为:40。
上海市浦东新区民办尚德实验学校2020-2021学年六年级下学期期末数学试题含详解

【分析】根据有理数的乘方运算计算结果判断即可.
【详解】 选项: ,原式计算错误;
选项: ,原式计算正确;
选项: ,原式计算错误;
选项: ,原式计算错误.
故选B.
【点睛】本题考查有理数的乘方运算.解题的关键是计算过程中正确处理符号.
2.若 ,则下列各式中错误的是()
A. B. C. D.
【2题答案】
(1)将横式长方体补充完整(遮住部分用虚线表示).
(2)求制作一个竖式无盖纸盒和一个横式无盖纸盒的成本分别是多少?
(3)如果需要制作这两种无盖纸盒共80个,且总成本不超过1100元,竖式无盖纸盒最多可以制作多少个?
浦东新区上海尚德实验学校
一、填空题
1.下列运算正确的是()
A. B. C. D.
【1题答案】
24.求不等式组 的整数解.
25.解方程组: .
26.解方程组: .
四、解答题
27.作图题(用直尺和圆规作图),如图,已知线段AB和∠PAB.
(1)延长线段AB到点C,使得BC=AB.
(2)作∠PAB角平分线AM.
(3)在∠PAB内部作∠DBC,使得∠DBC=∠PAB,射线BD与AM相交于点D.
(4)联结CD,用量角器测得∠ADC的度数是______度.
11.关于x的方程3x-2kx=3的解是-1,则k=______.
12.不等式组 的解集是______.
13.已知二元一次方程5x+2y=7,用含x的式子表示y=______.
14.如果 ,则它的余角为______.
15.如图,OB为∠AOD的角平分线, ,∠BOC=20°,则∠AOB=______.
(3)在一个长方体中,与一条棱异面的棱有4条,所以本选项说法正确,
七年级上册上海民办尚德实验学校数学期末试卷检测题(Word版 含答案)

七年级上册上海民办尚德实验学校数学期末试卷检测题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知直线AB∥CD,直线EF与AB,CD分别相交于点E,F.(1)如图1,若∠1=60°,求∠2,∠3的度数.(2)若点P是平面内的一个动点,连结PE,PF,探索∠EPF,∠PEB,∠PFD三个角之间的关系.①当点P在图(2)的位置时,可得∠EPF=∠PEB+∠PFD请阅读下面的解答过程并填空(理由或数学式)解:如图2,过点P作MN∥AB则∠EPM=∠PEB(________)∵AB∥CD(已知)MN∥AB(作图)∴MN∥CD(________)∴∠MPF=∠PFD (________)∴________=∠PEB+∠PFD(等式的性质)即:∠EPF=∠PEB+∠PFD②拓展应用,当点P在图3的位置时,此时∠EPF=80°,∠PEB=156°,则∠PFD=________度.③当点P在图4的位置时,请直接写出∠EPF,∠PEB,∠PFD三个角之间关系________.【答案】(1)解:∵∠2=∠1,∠1=60°∴∠2=60°,∵AB∥CD∴∠3=∠1=60°(2)两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;124;∠EPF+∠PFD=∠PEB【解析】【解答】(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等)∵AB∥CD(已知),MN∥AB,∴MN∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠MPF=∠PFD(两直线平行,内错角相等)∴∠EPM+∠MPF=∠PEB+∠PFD(等式的性质)即∠EPF=∠PEB+∠PFD;故答案为:两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;②过点P作PM∥AB,如图3所示:则∠PEB+∠EPM=180°,∠MPF+∠PFD=180°,∴∠PEB+∠EPM+∠MPF+∠PFD=180°+180°=360°,即∠EPF+∠PEB+∠PFD=360°,∴∠PFD=360°﹣80°﹣156°=124°;故答案为:124;③∠EPF+∠PFD=∠PEB.故答案为:∠EPF+∠PFD=∠PEB.【分析】(1)利用对顶角相等,可证∠1=∠2,可求出∠2的度数,再根据两直线平行,同位角相等,就可求出∠3的度数。
上海民办新和中学数学圆 几何综合检测题(Word版 含答案)

上海民办新和中学数学圆 几何综合检测题(Word 版 含答案)一、初三数学 圆易错题压轴题(难)1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得()()30103a =++,∴33a =. ∴()()313y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.2.如图,已知直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB , (1)求证:直线AB 是⊙O 的切线;(2)OA ,OB 分别交⊙O 于点D ,E ,AO 的延长线交⊙O 于点F ,若AB =4AD ,求sin ∠CFE 的值.【答案】(1)见解析;(25 【解析】 【分析】(1)根据等腰三角形性质得出OC ⊥AB ,根据切线的判定得出即可;(2)连接OC 、DC ,证△ADC ∽△ACF ,求出AF=4x ,CF=2DC ,根据勾股定理求出DC=355x ,DF=3x ,解直角三角形求出sin ∠AFC ,即可求出答案. 【详解】(1)证明:连接OC ,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴122 AC AD DC xAF AC CF x====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF=4x﹣x=3x,在Rt△DCF中,(3x)2=DC2+(2DC)2,解得:DC 35x,∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC=,∴∠CFE=∠AFC,∴sin∠CFE=sin∠AFC=DCDF=355535xx=.【点睛】本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.3.如图1,四边形ABCD 中,、为它的对角线,E 为AB边上一动点(点E 不与点A、B重合),EF∥AC 交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”,此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.【答案】“值”为10;(1)是;(2)最多有5个.【解析】试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可;(1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断.矩形ABCD中,若AB=4,BC=3,则它的“值”为10;(1)等腰梯形是“四边形”;(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有5个.考点:动点问题的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.4.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ=34,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=13CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值. 【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可. 试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.5.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC 和△ABD 中,AB=AB ,AC=AD ,∠B=∠B ,则△ABC 和△ABD 是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为32,AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)33+3;(3)ADCD=622+或6.【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵2,AB=6,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3,∴AE=22AB BE -=33,∵CE=BE=3, ∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°, ∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB 时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32, ∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°, ∴33 ∴2DF=36 ∴AD 36CD =6 综上所述:AD CD 62+6【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.6.如图.在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,DE 是ABC 的中位线,连结BD ,点F 是边BC 上的一个动点,连结AF 交BD 于H ,交DE 于G .(1)当点F 是BC 的中点时,求DHBH的值及GH 的长 (2) 当四边形DCFH 与四边形BEGH 的面积相等时,求CF 的长: (3)如图2.以CF 为直径作O .①当O 正好经过点H 时,求证:BD 是O 的切线:②当DHBH的值满足什么条件时,O 与线段DE 有且只有一个交点.【答案】(1)12DH BH =,13GH =;(2)83CF =;(3)①见解析;②当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【解析】 【分析】(1)根据题意得H 为ABC 的重心,即可得DHBH的值,由重心和中位线的性质求得16=GH AF ,由勾股定理求得AF 的长,即可得GH 的长; (2)根据图中面积的关系得S 四边形DCFG =DEBS ,列出关系式求解即可得CF 的长;(3)根据O 与线段DE 有且只有一个交点,可分两类情况讨论:当O 与DE 相切时,求得DHBH的值;当O 过点E ,此时是O 与线段DE 有两个交点的临界点,即可得出O 与线段DE 有且只有一个交点时DHBH满足的条件. 【详解】解:(1)∵DE 是ABC 的中位线, ∴,D E 分别是,AC AB 的中点,//DE BC , 又∵点F 是BC 的中点,∴BD 与AF 的交点H 是ABC 的重心,:1:2DH BH ∴=,即12DH BH =;:1:2=HF AH ,∴13=HF AF , 在ACF 中,D 为AC 中点,//DE BC ,则//DG CF ,∴DG 为ACF 的中位线,G 为AF 的中点,12∴=GF AF , 111236∴=-=-=GH GF HF AF AF AF , 在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,8BC ∴===,则142==CF BC ,AF ∴=16∴=⨯=GH ; (2)∵四边形DCFH 与四边形BEGH 的面积相等, ∴S 四边形DCFH +DGH S =S 四边形BEGH +DGHS,即S 梯形DCFG =DEBS,∵6AC =,8BC =,DE 是ABC 的中位线, ∴3CD =,4DE =,∵1143622=⋅⋅=⨯⨯=DEBSDE CD , 设2CF a =,∵DG 为ACF 的中位线,∴12==DG CF a , 则S 梯形DCFG ()3(2)622+⋅==+=DG CF CD a a ,解得:43a =, 823∴==CF a ;(3)①证明:如图2,连结、CH OH ,CF 为O 的直径,O 经过点H ,90∴∠=︒FHC ,∴90∠=∠=︒AHC FHC ,AHC 为直角三角形, D 为AC 的中点,12∴==DH AC CD ,∠∠∴=DCH DHC . 又OC OH =,∴∠=∠OCH OHC ,∴∠+=∠+OCH DCH OHC DHC ,即90∠=∠=︒DHO ACB , ∴BH BD ⊥,即BD 是O 的切线;②如图3-1,当O 与DE 相切时,O 与线段DE 有且只有一个交点,设O 的半径为r ,圆心O 到DE 的距离为d ,∴当r=d 时,O 与DE 相切,∵//DE CF ,90ACB ∠=︒,3CD =, ∴两平行线、DE CF 之间的距离为3CD =, ∴3r =,则6CF =,1862,32=-=-===BF BC CF DG CF , 由//DE CF 得:DGH BFH ,32DH DG BH BF ∴==; 如图3-2,当O 经过点E 时,连接OE 、OG ,设O 的半径为r ,即==OE OC r ,∵G 为AF 的中点,O 为CF 的中点,∴//OG CD ,∴四边形COGD 为平行四边形,又∵90ACB ∠=︒,∴四边形COGD 为矩形,∴90∠=︒DGO ,则90∠=︒OGE ,OGE 为直角三角形,∴=3=OG CD ,==DG OC r ,则4=-=-GE DE DG r ,由勾股定理得:222+=OG GE OE ,即2223(4)+-=r r , 解得:258r =,则258==OE OC ,2524==CF r 257258,448∴=-=-===BF BC CF DG OC ,由//DE BC 得:DGH BFH ,252514874∴===DH DG BH BF , 则当2514DH BH >时,O 与线段DE 有且只有一个交点;综上所述,当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【点睛】 本题属于圆综合题,考查了切线的性质与判定、中位线的性质等知识,解题的关键是灵活添加常用的辅助线,属于中考压轴题.7.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN∴AFN DFM ∆~∆ ∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM =O的半径长为25 8【点睛】本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.8.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)43PB=3656r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=122216r2-22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴33PH =,∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤, ∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6,656r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.9.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 322)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y 3=x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD ===则点D 到⊙O 1-,即直线:l y b =+上的点到⊙O 的最小值为1-要使直线:3l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则1418≥≤,解得:1m ≤≤或1m ≤≤- 故当1m 时,m的取值范围为31m ≤≤④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O的最小值为11则418m -≥⎧⎪≤,解得:4m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O11;点T 到⊙O11则1418≥≤,解得:1m ≤≤--1m ≤≤(舍去) 故当2m <-时,m的取值范围为4m ≤≤-综上,m的取值范围为31m ≤≤或4m ≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.10.在O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD(1)如图1,求证:CD AB ⊥;(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点K ,若165,55FK DB BE ==,求AB .【答案】(1)证明见解析;(2)证明见解析;(3)1855AB =. 【解析】【分析】 (1)连接,OC OD ,根据AC AD = 得出COA DOA ∠=再根据OC OD =得出OCD ODC ∠=∠,从而得证;(2)连接,BC BD ,根据AC AD =得出,BC BD BA CD =⊥,CBA ABD ∠=∠,再根据CE CD =,得出CBE CBD ∠=∠,从而得出结论;(3)作,CM DB CN BE ⊥⊥,过点P 作,PT BE PS BD ⊥⊥,,5BE BP a DB a ===先证CDM CEN ∆≅∆,DM EN =,再证,CMB CNB BM BN ∆≅∆=,设DM b =,得出2ba =,再算出,CM CD 得出CPD ∆为等腰三角形,再根据BP 是角平分线利用角平分线定理得出BCP EBP S DP BD S PE BE∆==,从而算出,PE DE ,再根据三角函数值算出BG ,,,,AB r OG OH ,再根据//FH DE 得出HO OF GO OK=,从而计算AB . 【详解】(1)连接OC ,CD因为AC AD =,所以COA DOA ∠=∠ OC OD =,,OA CD CD AB ∴⊥∴⊥;(2)连接BC ,,BC BD BA CD =⊥所以AB 平分CBD ∠,设ABD ABC α∠=∠=2CBD α∴∠=CD CE ∴=2CBE CBD α∴∠=∠=,3EBA α∴∠=3EBA ABD ∴∠=∠.(3) 2,90EBC BPE PEB αα︒∠=∠=∠=-设,5BE BP a DB a ===作,CM DB CN BE ⊥⊥,可证:CDM CEN ∆≅∆,DM EN =,再证:,CMB CNB BM BN ∆≅∆=设,5,2DM EN b a b a b b a ==+=-∴=在CBM ∆中勾股4CM a =在CDM ∆中勾股25CD a = 得CPD ∆为等腰三角形25DP DC a ==因为BP 为角平分线,过点P 作,PT BE PS BD ⊥⊥可证:5BCP EBP S DP BD S PE BE∆=== 2525,PE a DE a ∴== 14tan ,tan 223αα== 2555,BG a AB a ∴== 557535,,4124r a OG a OH a === //FH DE97HO OF GO OK ∴== 995185,16OF KF AB ===【点睛】本题是一道圆的综合题目,难度较大,考查了圆相关的性质以及与三角形综合,掌握相关的线段与角度转化是解题关键.。
上海民办尚德实验学校数学一元一次方程检测题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
上海民办师大实验中学数学圆 几何综合单元培优测试卷

上海民办师大实验中学数学圆几何综合单元培优测试卷一、初三数学圆易错题压轴题(难)1.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.2.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q 以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10﹣433时,⊙O 与△ABC 的边相切.②点F 的运动路径的长为1136+572. 【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大,易知此时53553102AC BC EP AB ⨯⨯===,3tan30(2)EP AP m =⋅=+⋅, 533(2)23m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin603OB ON ==, 4310AO ∴=-, 43123AP ∴=-, 432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。
上海民办金盟学校数学圆 几何综合单元试卷(word版含答案)

上海民办金盟学校数学圆几何综合单元试卷(word版含答案)一、初三数学圆易错题压轴题(难)1.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D ,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.(1)如图1,当点D是弧AB的中点时,求CD的长;(2)如图2,设AC=x,ACOOBDSS=y,求y关于x的函数解析式并写出定义域;(3)若四边形AOBD是梯形,求AD的长.【答案】(1)2;(2)2825x x x-+(0<x<8);(3)AD=145或6.【解析】【分析】(1)根据垂径定理和勾股定理可求出OC的长.(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.(3)分OB∥AD和OA∥BD两种情况讨论.【详解】解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,∴OD⊥AB,AC=12AB=4,在Rt△AOC中,∵∠ACO=90°,AO=5,∴22AO AC-,∴OD=5,∴CD=OD﹣OC=2;(2)如图2,过点O作OH⊥AB,垂足为点H,则由(1)可得AH=4,OH=3,∵AC=x,∴CH=|x﹣4|,在Rt△HOC中,∵∠CHO=90°,AO=5,∴22HO HC+223|x4|+-2825x x-+∴CD=OD ﹣OC=5过点DG ⊥AB 于G ,∵OH ⊥AB ,∴DG ∥OH ,∴△OCH ∽△DCG , ∴OH OC DG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x ) ∴y=ACO OBD S S=()323582x x -(0<x <8) (3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF=AE ,∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°, ∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)y=()2825x x x -+(0<x <8);(3)AD=145或6. 【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.2.在直角坐标系中,A (0,4),B (4,0).点C 从点B 出发沿BA 方向以每秒2个单位的速度向点A 匀速运动,同时点D 从点A 出发沿AO 方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C 、D 运动的时间是t 秒(t>0).过点C 作CE ⊥BO 于点E ,连结CD 、DE .⑴ 当t 为何值时,线段CD 的长为4;⑵ 当线段DE 与以点O 为圆心,半径为的⊙O 有两个公共交点时,求t 的取值范围; ⑶ 当t 为何值时,以C 为圆心、CB 为半径的⊙C 与⑵中的⊙O 相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】 试题分析:(1)过点C 作CF ⊥AD 于点F ,则CF ,DF 即可利用t 表示出来,在Rt △CFD 中利用勾股定理即可得到一个关于t 的方程,从而求得t 的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,∴四边形CFOE是矩形,∴OF=CE=t,OE=CF=4-t,在Rt△CFD中,DF2+CF2=CD2,∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,解得:t=,t=4,∵0<t<4,∴当t=时,线段CD的长是4;(2)过点O作OG⊥DE于点G(如图2),∵AD∥CE,AD=CE=t∴四边形ADEC是平行四边形,∴DE∥AB∴∠GEO=30°,∴OG=OE=(4-t)当线段DE与⊙O相切时,则OG=,∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;(3)当⊙C与⊙O外切时,t=;当⊙C与⊙O内切时,t=;∴当t=或秒时,两圆相切.考点:圆的综合题.3.如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴.∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH-DH+DB=12,DB=t,∴-+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.4.如图①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,点D是AC边上一点(不与C 重合),以AD为直径作⊙O,过C作CE切⊙O于E,交AB于F.(1)若⊙O半径为2,求线段CE的长;(2)若AF=BF,求⊙O的半径;(3)如图②,若CE=CB,点B关于AC的对称点为点G,试求G、E两点之间的距离.【答案】(1)CE=2;(2)⊙O的半径为3;(3)G、E两点之间的距离为9.6【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC,然后通过证得△OEC∽△BCA,得到OE OCBC BA=,即8610r r-=解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE 切⊙O 于E ,∴∠OEC =90°,∵AC =8,⊙O 的半径为2,∴OC =6,OE =2, ∴CE =2242OC OE -= ;(2)设⊙O 的半径为r ,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,∴BC 22AB A C -=6,∵AF =BF ,∴AF =CF =BF ,∴∠ACF =∠CAF ,∵CE 切⊙O 于E ,∴∠OEC =90°,∴∠OEC =∠ACB ,∴△OEC ∽△BCA ,∴OE OC BC BA =,即8610r r -= 解得r =3,∴⊙O 的半径为3;(3)如图②,连接BG ,OE ,设EG 交AC 于点M ,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关5.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的O过点E.(1)求证:四边形ABCD 是菱形.(2)若CD 的延长线与圆相切于点F ,已知直径AB =4.求阴影部分的面积.【答案】(1)证明见解析;(2)513π-【解析】试题分析:(1)先由AE=EC 、BE=ED 可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于Q ,分别求出扇形BOE 、△AOE、半圆O 的面积,即可得出答案.试题解析:(1)AE =EC ,BE =ED∴ABCD 四边形为平行四边形∵90AB AEB ∠∴=︒是直径∴ABCD 平行四边形是菱形(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于QCF 切O 于点F∴90OFC ∠=︒∵ABCD 四边形是菱形,∴,90CD AB BOF OFD DPO ∠∠∠∴===︒∴FOPD DP OF ∴=四边形是矩形ABCD 四边形是菱形,AB AD ∴=∵11,3022OF AB DP AD DAB ∠=∴=∴=︒ ∴ABCD 四边形是菱形∴1152CAB DAB ∠=∠=︒ ∴180215150AOE ∠=︒-⨯︒=︒∴3090EOB EQO ∠∠=︒=︒ ∴112EQ OE == 21502360S 阴影π⨯∴=-1521123π⨯⨯=- 点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.6.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =13,BC =8. (1)求证:CF 是⊙O 的切线;(2)求⊙O 的半径OC ;(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.【答案】(1)见解析;(2)32332232【解析】【分析】 (1)由DF=2OD ,得到OF=3OD=3OC ,求得13OE OC OC OF ==,推出△COE ∽△FOE ,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF 是⊙O 的切线;(2)利用三角函数值,设OE=x ,OC=3x ,得到CE=3,根据勾股定理即可得到答案; (3)连接BD ,根据圆周角定理得到角相等,然后证明△AOF ∽△BDM ,由相似三角形的性质,得到FM 为中位线,即可求出FM 的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1) ∵DF =2OD ,∴OF =3OD =3OC ,∴13OE OC OC OF ==,∵∠COE =∠FOC ,∴△COE ∽△FOE ,∴∠OCF =∠DEC =90°,∴CF 是⊙O 的切线;(2)∵∠COD =∠BAC ,∴cos ∠BAC =cos ∠COE =13OE OC =, ∴设OE =x ,OC =3x ,∵BC =8,∴CE =4,∵CE ⊥AD ,∴OE 2+CE 2=OC 2,∴x 2+42=9x 2,∴x =2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32;(3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,∵BC ⊥AD ,∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO :OF=BD :DM=2,又∵BD=DC ,∴DM=CM ,∴FM 为中位线,∴322,∴S △AOF : S △BDM =(32:26)2 34=; ∵111118(322)4222222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯-=; ∴S △AOF =3424⨯=32; 【点睛】 本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.7.如图.在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,DE 是ABC 的中位线,连结BD ,点F 是边BC 上的一个动点,连结AF 交BD 于H ,交DE 于G .(1)当点F 是BC 的中点时,求DH BH的值及GH 的长 (2) 当四边形DCFH 与四边形BEGH 的面积相等时,求CF 的长:(3)如图2.以CF 为直径作O . ①当O 正好经过点H 时,求证:BD 是O 的切线: ②当DH BH的值满足什么条件时,O 与线段DE 有且只有一个交点.【答案】(1)12DH BH =,13GH =;(2)83CF =;(3)①见解析;②当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【解析】【分析】(1)根据题意得H 为ABC 的重心,即可得DH BH的值,由重心和中位线的性质求得16=GH AF ,由勾股定理求得AF 的长,即可得GH 的长;(2)根据图中面积的关系得S 四边形DCFG =DEB S,列出关系式求解即可得CF 的长; (3)根据O 与线段DE 有且只有一个交点,可分两类情况讨论:当O 与DE 相切时,求得DH BH 的值;当O 过点E ,此时是O 与线段DE 有两个交点的临界点,即可得出O 与线段DE 有且只有一个交点时DH BH 满足的条件. 【详解】解:(1)∵DE 是ABC 的中位线,∴,D E 分别是,AC AB 的中点,//DE BC ,又∵点F 是BC 的中点,∴BD 与AF 的交点H 是ABC 的重心,:1:2DH BH ∴=,即12DH BH =;:1:2=HF AH , ∴13=HF AF , 在ACF 中,D 为AC 中点,//DE BC ,则//DG CF ,∴DG 为ACF 的中位线,G 为AF 的中点,12∴=GF AF , 111236∴=-=-=GH GF HF AF AF AF , 在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,8BC ∴===, 则142==CF BC ,AF ∴=16∴=⨯=GH ; (2)∵四边形DCFH 与四边形BEGH 的面积相等,∴S 四边形DCFH +DGH S=S 四边形BEGH +DGH S , 即S 梯形DCFG =DEB S ,∵6AC =,8BC =,DE 是ABC 的中位线,∴3CD =,4DE =, ∵1143622=⋅⋅=⨯⨯=DEB S DE CD , 设2CF a =,∵DG 为ACF 的中位线,∴12==DG CF a , 则S 梯形DCFG ()3(2)622+⋅==+=DG CF CD a a , 解得:43a =, 823∴==CF a ; (3)①证明:如图2,连结、CH OH ,CF 为O 的直径,O 经过点H ,90∴∠=︒FHC ,∴90∠=∠=︒AHC FHC ,AHC 为直角三角形,D 为AC 的中点,12∴==DH AC CD , ∠∠∴=DCH DHC .又OC OH =,∴∠=∠OCH OHC ,∴∠+=∠+OCH DCH OHC DHC ,即90∠=∠=︒DHO ACB ,∴BH BD ⊥,即BD 是O 的切线;②如图3-1,当O 与DE 相切时,O 与线段DE 有且只有一个交点,设O 的半径为r ,圆心O 到DE 的距离为d ,∴当r=d 时,O 与DE 相切, ∵//DE CF ,90ACB ∠=︒,3CD =,∴两平行线、DE CF 之间的距离为3CD =,∴3r =,则6CF =,1862,32=-=-===BF BC CF DG CF , 由//DE CF 得:DGH BFH ,32DH DG BH BF ∴==; 如图3-2,当O 经过点E 时,连接OE 、OG , 设O 的半径为r ,即==OE OC r ,∵G 为AF 的中点,O 为CF 的中点,∴//OG CD ,∴四边形COGD 为平行四边形,又∵90ACB ∠=︒,∴四边形COGD 为矩形,∴90∠=︒DGO ,则90∠=︒OGE ,OGE 为直角三角形,∴=3=OG CD ,==DG OC r ,则4=-=-GE DE DG r ,由勾股定理得:222+=OG GE OE ,即2223(4)+-=r r , 解得:258r =,则258==OE OC ,2524==CF r 257258,448∴=-=-===BF BC CF DG OC ,由//DE BC 得:DGH BFH,252514874∴===DH DG BH BF, 则当2514DH BH >时,O 与线段DE 有且只有一个交点; 综上所述,当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【点睛】本题属于圆综合题,考查了切线的性质与判定、中位线的性质等知识,解题的关键是灵活添加常用的辅助线,属于中考压轴题.8.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ 长最短是1.2;(3)四边形ADCF 面积最大值是813132+,最小值是813132-. 【解析】【分析】(1)连接线段OP 交⊙C 于A ,点A 即为所求;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF 的面积有最大和最小值,取AB 的中点G ,连接FG ,DE ,证明△FAG ~△EAD ,进而证明点F 在以G 为圆心1为半径的圆上运动,过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小,分别求出△ACD 的面积和△ACF 的面积的最小值即可得出四边形ADCF 的面积的最小值;②当F 在F 2时,四边形ADCF 的面积有最大值,在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF 的面积的最大值.【详解】解:(1)连接线段OP 交⊙C 于A ,点A 即为所求,如图1所示;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短.理由:分别在线段AB ,⊙C 上任取点P ',点Q ',连接P ',Q ',CQ ',如图2,由于CP ⊥AB ,根据垂线段最短,CP ≤CQ '+P 'Q ',∴CO +PQ ≤CQ '+P 'Q ',又∵CQ =CQ ',∴PQ <P 'Q ',即PQ 最短.在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴68 4.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP -=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2.(3)△ACF 的面积有最大和最小值. 如图3,取AB 的中点G ,连接FG ,DE .∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB ,∴AC =GB =3, 又∵AD =9,∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD ,∴13FG AF DE AE ==, ∵DE =3,∴FG =1,∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值, 在Rt △ABC 中,222269313AC AB BC =+=+=∴313sin 313BC BAC AC ∠=== 在Rt △ACH 中,313913sin 31313GH AG BAC =•∠=⨯=,∴11113F H GH GF =-=-,∴△ACF 面积有最小值是:1111)22AC F H •=⨯-=;∴四边形ADCF 面积最小值是:27+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN ,又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM ,∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值,∵221F H GH GF =+=+,∴△ACF 面积有最大值是21127(1)22132AC F H +•=⨯+=;∴四边形ADCF 面积最大值是27+=综上所述,四边形ADCF 【点睛】本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)3(3)51+和22 【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O 作OP ⊥AB ,垂足为点P ;OQ ⊥BC ,垂足为点Q ,∵BO 平分∠ABC ,∴OP=OQ ,∵OP ,OQ 分别是弦AB 、BC 的弦心距,∴AB= BC ;(2)∵OA=OB ,∵CD=CB ,∴∠CDB =∠CBD ,∴∠A+∠AOD =∠CBO +∠OBD ,∴∠AOD =∠CBO ,∵OC=OB ,∴∠C =∠CBO ,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD ,∵AO ⊥OB ,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D 作DH ⊥AO ,垂足为点H ,∴∠AHD=∠DHO=90°,∴tan ∠AOD =HD OH ∵∠AHD=∠AOB=90°,∴HD ‖OB , ∴D AOB H AH O = , ∵OA=OB ,∴HD=AH ,∵HD ‖OB ,∴3AH HD OH O AH DB H ===; (3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO=, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠OEB =∠C+∠COE =2∠C =2∠CBO且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos∠CBO=22 EBOB=,∵OB=2,∴EB =2,∵OE过圆心,OE⊥BC,∴BC =2EB =22.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.10.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)43PB=3656r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=12AB=2216r 2-,利用OE=22162r r -≤,即可求出取值范围.【详解】 解:(1)连接OB ,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴233PH =, ∴432PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤,∴55r ≥ 又∵圆O 与直线AC 相离,∴r <6,即565r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。
上海民办协和双语尚音学校九年级数学上册第四单元《圆》检测题(有答案解析)

一、选择题1.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°2.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π3.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .6+2B .8+2C . 6+22D .8+22 4.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .2B .2C .3D .425.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134πC .132πD .136π 6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 7.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .8.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°9.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( )A .8.5B .17C .3D .610.如图,⊙O 的半径为1,点 O 到直线 a 的距离为2,点 P 是直线a 上的一个动点,PA 切⊙O 于点 A ,则 PA 的最小值是( )A .1B .3C .2D .511.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60° 12.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( )A .18cm 2B .218cm πC .27cm 2D .227cm π 二、填空题13.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.14.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.15.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.16.已知O的面积为π,则其内接正六边形的边长为______.OA=,AB是O的切线,点B是切点,弦17.如图,A是半径为1的O外一点,2BC OA,连接AC,则图中阴影部分的面积为________.//18.已知一个圆锥形纸帽的底面半径为5cm,母线长为10cm,则该圆锥的侧面积为_____cm2(结果保留π)19.如图,把边长为12的正三角形ABC纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK,则剪去的小正三角形的边长为__________________.20.如图,△ABC内接于O,∠BAC=45°,AD⊥BC于D, BD=6,DC=4,则AD的长是_____.三、解答题21.如图,已知点A、B的坐标分别是(0,0) ,(4,0),将ABC绕A点按逆时针方向旋'''.转90°后得到A B C'''(不要求写出作法);(1)画出A B C(2)写出点C'的坐标;(3)求旋转过程中点B所经过的路径长.22.如图,已知AB 是O 的一条弦,DE 是O 的直径且DE AB ⊥于点C . (1)若3,5OC OA ==,求AB 的长;(2)求证:EAO BAD ∠=∠.23.如图,AB 是⊙O 的直径,弦CD AB ⊥于点H ,30A ∠=︒,43CD =,求⊙O 的半径的长.24.如图,在Rt △ABC 中,∠C =90°,以BC 为直径的圆O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =8,DE =5,求BC 的长.25.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点.(1)如图,求ACB ∠的大小;(2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.26.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D ,E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC ,AC .(1)求证:AC 平分∠DAO ;(2)若∠DAO =105°,∠E =30°,①求∠OCE 的度数;②若⊙O 的半径为2EF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键.2.B解析:B【分析】设AC=a ,BC=b ,由勾股定理可求得a 2+b 2=102,由三角形的面积公式和圆的面积公式分别求出空白部分图形面积和阴影部分图形面积,利用阴影部分图形面积之和是空白部分图形面积之和的3倍可求得ab ,进而可求得△ABC 的面积.【详解】解:设AC=a ,BC=b ,由题意,AB=10,∴a 2+b 2=102, 由图可知,空白部分面积为(25122ab π-), 阴影部分面积= 22111251()()2222222a b ab ab πππ⨯+⨯⨯+-+ = 22()2582a b ab ππ+-+ =1002582ab ππ-+ = ab , ∵阴影部分图形面积之和是空白部分图形面积之和的3倍,∴ab =3(25122ab π-), 解得:15ab π=,∴△ABC=12ab =7.5π, 故选:B .【点睛】 本题考查了圆的面积公式、三角形的面积公式、勾股定理、解方程等知识,熟记面积公式,利用割补法和整体思想解决问题是解答的关键.3.D解析:D【分析】连接OE ,交AC 于点F ,由勾股定理结合垂径定理求出AF 的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =,222x =∴2(2)822AC x =+=+822-∵6AC > ∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 4.A解析:A【分析】根据垂径定理可知,AE=CE ,AD=BD ,易证四边形ODAE 是正方形,即可求得.【详解】如图,连接OA∵⊥OD AB ,OE AC ⊥,AB ⊥AC∴四边形ODAE 是矩形,AE=CE ,AD=BD又∵4AB AC ==,∴AE=AD=2∴四边形ODAE 是正方形,且边长为2∴O 的半径OA=22故选A【点睛】本题考查垂径定理,掌握垂径定理的条件和结论是解题的关键.5.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得22223213AC BC+=+=由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=229013n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.6.C解析:C【分析】利用圆周角定理求出∠BOC即可解决问题.【详解】解:∵∠BOC=2∠BDC,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.7.C解析:C【分析】因为⊙O 的直径为6,所以圆的半径是3,圆心O 到直线l 的距离为3即d=3,所以d=r ,所以直线l 与⊙O 的位置关系是相切.【详解】解:∵⊙O 的直径为6,∴r=3,∵圆心O 到直线l 的距离为3即d=3,∴d=r∴直线l 与⊙O 的位置关系是相切.故选:C .【点睛】本题考查直线与圆的位置关系,若圆的半径为r ,圆心到直线的距离为d ,d >r 时,圆和直线相离;d=r 时,圆和直线相切;d <r 时,圆和直线相交.8.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.9.D解析:D【分析】先根据勾股定理求出斜边长,再根据直角三角形内切圆半径公式求出半径,从而得到直径.【详解】解:根据勾股定理,斜边是2281517+=,直角三角形的内切圆半径8151732+-==,∴直径是6.故选:D.【点睛】本题考查三角形的内切圆,解题的关键是掌握直角三角形内切圆半径的求解方法.10.B解析:B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA 最小.根据垂线段最短,知OP=2时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=2.根据题意,在Rt△OPA中,AP=22OP OA-=2221=3-故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.11.B解析:B【分析】由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得=BC BD,然后由圆周角定理,即可求得答案.【详解】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=BC BD,∵∠CAB=20°,∴∠BOD=2∠CAB=2×20°=40°.故选:B.【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.12.B解析:B【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【详解】解:底面周长是2×3π=6π,则圆锥的侧面积是:12×6π×6=18π(cm2).故选:B.【点睛】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.二、填空题13.【分析】过O作OD⊥BC于DOE⊥AB于EOF⊥AC于F连接OAOBOC根据三角形的内心和角平分线的性质得出OE=OD=OF再根据三角形的面积公式求出即可【详解】如图过O作OD⊥BC于DOE⊥AB于解析:4 3【分析】过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,∵O是△ABC内角平分线的交点,∴OE=OF=OD,∵△ABC的面积是20,∴S△AOB+S△BOC+S△AOC=20,∴111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,∴(AB+BC+AC)×OD=40,∵△ABC的周长为30,∴AB+BC+AC=30,∴OD=404303=,∴即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.14.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.15.26【分析】先利用圆周角定理得到∠BOC=2∠A=128°然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数【详解】解:∵∠A=64°∴∠BOC=2∠A=128°∵OB=OC∴∠OBC=∠解析:26【分析】先利用圆周角定理得到∠BOC=2∠A=128°,然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数.【详解】解:∵∠A=64°,∴∠BOC=2∠A=128°,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC=1(180°-128°)=26°.2故答案为26.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.1【分析】首先根据圆的面积求出圆的半径再证明△AOB是等边三角形即可得到结论【详解】解:如图的面积为设半径为r∴解得∵OA=OB为等边三角形故故答案为:1【点睛】本题考查的是正多边形和圆熟知正六边形解析:1【分析】首先根据圆的面积求出圆的半径,再证明△AOB 是等边三角形即可得到结论.【详解】解:如图,O 的面积为π,设半径为r ,2S r ππ∴==,∴21r =,解得,1r =, ∵360606AOB ︒∠==︒,OA=OB AOB ∴为等边三角形,故1AB OA ==.故答案为:1【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键. 17.【分析】连接OCOB 易证△OAB 为等边三角形由BC ∥OA 得S △OCB =S △ACB 把阴影部分的面积转化为扇形OBC 的面积【详解】连接OCOB ∵是的切线∴OB ⊥AB 在Rt △OBA 中∵OB=1OA=2∴∠ 解析:6π【分析】连接OC ,OB ,易证△OAB 为等边三角形,由BC ∥OA ,得S △OCB =S △ACB ,把阴影部分的面积转化为扇形OBC 的面积.【详解】连接OC ,OB∵AB 是O 的切线∴OB ⊥AB在Rt △OBA 中∵OB=1,OA=2∴∠AOB=60°又∵//BC OA∴∠OBC=60°∵OB=OC∴△OAB 为等边三角形又∵BC ∥OA∴S △OCB =S △ACB∴S 阴=S 扇形OBC =2601360π⨯⨯ =6π故答案为:6π 【点睛】 本题考查扇形面积的求解,将不规则图形转化成规则的扇形是解题的关键.18.50π【分析】首先求得圆锥的底面周长然后利用扇形的面积公式即可求解【详解】解:圆锥的底面周长是:2×5π=10π则圆锥的侧面积是:×10π×10=50π(cm2)故答案是:50π【点睛】本题主要考查解析:50π【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面周长是:2×5π=10π,则圆锥的侧面积是:12×10π×10=50π(cm 2). 故答案是:50π.【点睛】本题主要考查了圆锥侧面积的求法,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 19.4【分析】由题意可知剪去的三个三角形是全等的等边三角形可知得到剪去的小正三角的边长为4【详解】解:∵剪去三个三角形∴AD=AE=DEBK=BH=HKCG=CF=GF ∵六边形DEFGHK 是正六边形∴D解析:4【分析】由题意可知剪去的三个三角形是全等的等边三角形,可知得到剪去的小正三角的边长为4.【详解】解:∵剪去三个三角形∴AD=AE=DE ,BK=BH=HK ,CG=CF=GF ,∵六边形DEFGHK 是正六边形,∴DE=DK=HK=GH=GF=EF ,∴剪去的三个三角形是全等的等边三角形;∴AD=DK=BK=123=4,∴剪去的小正三角形的边长4.故答案为:4.【点睛】本题考查了等边三角形以及正六边形的定义,熟练掌握定义是解题的关键.20.12【分析】连接OAOBOC过点O作OE⊥AD于EOF⊥BC于F根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB再由DF=BD-BF得出DF然后等腰直角三角形的性质求出OF根解析:12【分析】连接OA、OB、OC过点O作OE⊥AD于E,OF⊥BC于F,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB,再由DF=BD-BF得出DF,然后等腰直角三角形的性质求出OF,根据勾股定理求出AE,再根据AD=AE+OF得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°,∴252==OB BC连接OA、OB、OC过点O作OE⊥AD于E,OF⊥BC于F,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=12BC=5,∵AD⊥BC,OE⊥AD,OF⊥BC,∴四边形OFDE为矩形,∴OE=DF=1,DE=OF=5,在Rt△AOE中,227,=-=AE OA OE∴AD=AE+DE=12.【点睛】本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.三、解答题21.(1)见解析;(2)(﹣2,5);(3)2π【分析】(1)根据旋转的性质得到B'、C',顺次连线即可;(2)根据(1)直接得到答案;(3)利用弧长公式计算即可.【详解】解:(1)如图所示,△A′B′C′即为△ABC绕A点按逆时针方向旋转90°后的图形;(2)点C′(﹣2,5);(3)点B所经过的路径长=9042 180ππ⨯=.【点睛】此题考查旋转的性质,确定直角坐标系中点的坐标,弧长的计算公式,正确画出旋转图形是解题的关键.22.(1)8AB=;(2)见解析【分析】(1)由DE⊥AB,得∠OCA=90°,OC=3,OA=5,通过勾股定理即可求出AC;由DE是⊙O的直径,所以DE平分AB,得到AB=2AC,即可得到AB;(2)由OA=OE,得∠EAO=∠E,而直径DE⊥AB,则AD BD=,所以∠E=∠BAD,由此得到∠EAO=∠BAD.【详解】(1)∵DE⊥AB∴∠OCA=90°,则OC2+AC2=OA2又∵OC =3,OA =5,∴AC=4,∵DE 是⊙O 的直径,且DE ⊥AB ,∴AB =2AC=8(2)证明∵ EO=AO ,∴∠E=∠EAO又∵DE 是⊙O 的直径,且DE ⊥AB ,∴AD BD =,∴∠E=∠BAD∴∠EAO =∠BAD .【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了垂径定理以及勾股定理.23.4【分析】连接OC, 根据垂径定理可得∠CHO=90°,CD=2CH ,求出CH 的长,根据30°的直角三角形的特征以及勾股定理求出OC=2OH 即可.【详解】连接OC ,则OA =OC .∴∠A =∠ACO =30°.∴∠COH =60°.∵AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∴∠CHO=90°,CD=2CH∴∠OCH=30°,∴2OC OH =,∵CD 3∴CH =23∴在Rt OCH 中,222OH HC OC +=∴OH =2.∴OC =4.【点睛】本题考查了垂径定理及30度的直角三角形的性质以及勾股定理得应用,解题的关键是掌握垂径定理及30度的直角三角形的性质.24.(1)证明见解析;(2)152. 【分析】(1)只要证明90A B ∠+∠=︒,90ADE B ∠+∠=︒,即可解决问题;(2)首先证明210AC DE ==,在Rt △ADC 中,6DC =,设BD x =,在Rt △BDC 中,2226BC x =+,在Rt △ABC 中,()222810BC x =+-,可得()22226810x x +=+-,解方程即可解决问题;【详解】(1)证明:连接OD ,∵DE 是切线,∴90ODE ∠=︒,∴90ADE BDO ∠+∠=︒,∵90ACB ∠=︒,∴90A B ∠+∠=︒,∵OD=OB ,∴B BDO ∠=∠,∴ADE A ∠=∠;(2)连接CD ,∵ADE A ∠=∠,∴AE=DE ,∵BC 为圆O 的直径,90ACB ∠=︒,∴EC 是O 的切线,∴ED=EC ,∴AE=EC ,∵5DE =,∴210AC DE ==,在Rt △ADC 中,6DC =,设BD x =,在Rt △BDC 中,222=6BC x +,在Rt △ABC 中,()222810BC x =+-,∴()22226810x x +=+-, 解得:92x =,∴152BC ==.【点睛】本题主要考查了圆的基本性质,切线的性质,准确分析计算是解题的关键.25.(1)52︒;(2)19︒【分析】(1)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,可以求出AOB ∠的度数,再根据圆周角定理得到ACB ∠的度数;(2)连接CE ,根据(1)的结论,先求出BCE ∠的度数,再由圆周角定理得到BAE BCE ∠=∠,再等腰三角形ABD 中求出底角ADB ∠的度数,再由外角和定理就可以求出EAC ∠的度数.【详解】解:(1)如图,连接OA 、OB ,∵PA 、PB 是O 的切线,∴90OAP OBP ∠=∠=︒,∴360909076104AOB ∠=︒-︒-︒-︒=︒, 根据圆周角定理,1522ACB AOB ∠=∠=︒;(2)如图,连接CE ,∵AE 是O 的直径, ∴90ACE ∠=︒,∵52ACB ∠=︒,∴905238BCE ∠=︒-︒=︒,∴38BAE BCE ∠=∠=︒,∵AB AD =,∴71ABD ADB ∠=∠=︒,∴19EAC ADB ACB ∠=∠-∠=︒.【点睛】本题考查圆周角定理和切线的性质,解题的关键是掌握这些性质定理进行求解.26.(1)见解析;(2)①45°,②232.【分析】(1)由切线性质知OC⊥CD,结合AD⊥CD得AD∥OC,即可知∠DAC=∠OCA=∠OAC,从而得证;(2)①由AD∥OC知∠EOC=∠DAO=105°,结合∠E=30°可得结果;②作OG⊥CE,根据垂径定理及等腰直角三角形性质知CG=FG=OG,由OC=22得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得GE=23,由此计算即可.【详解】(1)证明:∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC.∴∠DAC=∠OCA.∵OC=OA,∴∠OCA=∠OAC.∴∠OAC=∠DAC.∴AC平分∠DAO.(2)①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=180°-∠EOC-∠E =45°.②作OG⊥CE于点G,∵OC=2∠OCE=45°,∴CG=OG=2.∴FG=2.在Rt△OGE中,∠E=30°,∴GE=∴EF=GE−FG=2 .【点睛】本题考查了圆的切线的性质、平行线的判定与性质、垂径定理等知识,熟练掌握切线的性质、平行线的判定与性质、垂径定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海民办尚德实验学校数学圆几何综合检测题(Word版含答案)一、初三数学圆易错题压轴题(难)1.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.⑴当t为何值时,线段CD的长为4;⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,∴四边形CFOE是矩形,∴OF=CE=t,OE=CF=4-t,在Rt△CFD中,DF2+CF2=CD2,∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,解得:t=,t=4,∵0<t<4,∴当t=时,线段CD的长是4;(2)过点O作OG⊥DE于点G(如图2),∵AD∥CE,AD=CE=t∴四边形ADEC是平行四边形,∴DE∥AB∴∠GEO=30°,∴OG=OE=(4-t)当线段DE与⊙O相切时,则OG=,∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;(3)当⊙C与⊙O外切时,t=;当⊙C与⊙O内切时,t=;∴当t=或秒时,两圆相切.考点:圆的综合题.2.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R << 【解析】【分析】 ()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】 ()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =,B PEB ∠∠∴=,DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC ,,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF , 2AD =,6BC DC ==,2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BH AF AB BF ∴==6242x BH ==, 223PH x ∴=,13BH x =, 163CH x ∴=-, 在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=,又PDC B ∠∠=,B DCB ∠=∠,DCB EMC PBE PEB ∠∠∠∠∴===.PBE∴∽ECM,PB BEEC MC∴=,即232663xxxx=--,解得:185x=,即125BE=,1218655PD EC∴==-=,当两圆外切时,PD r R=+,即0(R=舍去);当两圆内切时,-PD r R=,即10(R=舍去),2365R=;即两圆相交时,365R<<.【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO 于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)2【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA 2+CF 2=EF 2;(3)如图3,延长GE ,HF 交于K ,由(2)知EA 2+CF 2=EF 2,∴12EA 2+12CF 2=12EF 2, ∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH ,∴12S △ABC =12S 矩形BGKH , ∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =2,∴CF 2(k+3),EF 2(8k ﹣3),∵EA 2+CF 2=EF 2,∴222(32)2(3)]2(83)]k k ++=-,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣17(舍去),k 2=1. ∴AB =12,∴AO 2AB =2, ∴⊙O 的半径为2.【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.4.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC = ∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.5.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)33(351和22【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,∵BO平分∠ABC,∴OP=OQ,∵OP,OQ分别是弦AB、BC 的弦心距,∴AB= BC;(2)∵OA=OB,∴∠A=∠OBD,∵CD=CB,∴∠CDB =∠CBD,∴∠A+∠AOD =∠CBO +∠OBD,∴∠AOD =∠CBO,∵OC=OB,∴∠C =∠CBO,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,∵AO⊥OB,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D作DH⊥AO,垂足为点H,∴∠AHD=∠DHO=90°,∴tan∠AOD =HDOH3∵∠AHD=∠AOB=90°,∴HD‖OB,∴DA OBH AHO=,∵OA=OB,∴HD=AH,∵HD‖OB,∴3AH HDOH OAHDB H===;(3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO =, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=EB OB =, ∵OB=2,∴ ,∵OE 过圆心,OE ⊥BC ,∴.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.6.如图①②,在平面直角坐标系中,边长为2的等边CDE ∆恰好与坐标系中的OAB ∆重合,现将CDE ∆绕边AB 的中点(G G 点也是DE 的中点),按顺时针方向旋转180︒到△1C DE 的位置.(1)求1C 点的坐标;(2)求经过三点O 、A 、1C 的抛物线的解析式;(3)如图③,G 是以AB 为直径的圆,过B 点作G 的切线与x 轴相交于点F ,求切线BF 的解析式;(4)抛物线上是否存在一点M ,使得:16:3AMF OAB S S ∆∆=.若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)13)C ;(2)2323y x x =;(3)323y x =;(4)128383,M M ⎛⎛- ⎝⎭⎝⎭.【解析】【分析】(1)利用中心对称图形的性质和等边三角形的性质,可以求出.(2)运用待定系数法,代入二次函数解析式,即可求出.(3)借助切线的性质定理,直角三角形的性质,求出F ,B 的坐标即可求出解析式. (4)当M 在x 轴上方或下方,分两种情况讨论.【详解】解:(1)将等边CDE ∆绕边AB 的中点G 按顺时针方向旋转180︒到△1C DE , 则有,四边形'OAC B 是菱形,所以1C 的横坐标为3,根据等边CDE ∆的边长是2, 利用等边三角形的性质可得13)C ;(2)抛物线过原点(0,0)O ,设抛物线解析式为2y ax bx =+,把(2,0)A ,3)C '代入,得420933a b a b +=⎧⎪⎨+=⎪⎩ 解得33a =,23b = ∴抛物线解析式为2323y x x =-;(3)90ABF ∠=︒,60BAF ∠=︒,30AFB ∴∠=︒,又2AB =,4AF ∴=,2OF ∴=, (2,0)F ∴-,设直线BF 的解析式为y kx b =+,把B ,(2,0)F -代入,得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得3k =3b =,∴直线BF 的解析式为y x =+;(4)①当M 在x 轴上方时,存在2()M x ,211:[4)]:[216:322AMF OAB S S ∆∆=⨯⨯⨯=, 得2280x x --=,解得14x =,22x =-,当14x =时,244y ,当12x =-时,2(2)(2)y =--=1M ∴,2(M -;②当M 在x 轴下方时,不存在,设点2()M x x ,211:[4)]:[216:322AMF OAB S S ∆∆=-⨯⨯⨯=, 得2280x x -+=,240b ac -<无解,综上所述,存在点的坐标为1M ,2(M -. 【点睛】此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.7.如图,在O 中,AB 为直径,过点A 的直线l 与O 相交于点C ,D 是弦CA 延长线上一点,BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F ,G 是BF 的中点,过点G 作MN AE ,与AF ,EB 的延长线分别交于点M ,N .(1)求证:MN 是O 的切线; (2)若24AE =,18AM =. ①求O 的半径;②连接MC ,求tan MCD ∠的值. 【答案】(1)见解析;(2)①13;②2741 【解析】【分析】(1)如图1,连接 GO 、GA ,先根据角平分线的定义证明∠MAE=12(∠BAC+∠BAD )=90°,由圆周角定理和同圆的半径相等得∠OGA=∠FAG ,则OG ∥AM ,所以∠MGO=180-∠M=90,从而得结论;(2)①延长GO 交AE 于点P ,证明四边形 MGPA 为矩形,得GP=MA=18,∠GPA=90°,设OA=OG=r ,则OP=18-r ,根据勾股定理列方程解出即可;②如图3,过M 作MH ⊥l ,连接BC ,延长NE 交l 于I ,连接GO 交延长交AE 于P ,tan ∠MAH=tan ∠ABE=tan ∠BIA=125,BI=2BE=20,根据三角函数计算MH ,AH ,CI 的长,最后计算MH 和HC 的长,代入tan ∠MCD=MH HC,可得结论. 【详解】(1)证明:如图1,连接GO ,GA ,∵BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F , ∴1()902MAE BAC BAD ∠=∠+∠=︒. ∵MN AE ,∴18090M MAE ∠=︒-∠=︒.∵G 是BF 的中点,∴FG BG =,∴FAG BAG ∠=∠.∵OA OG =,∴OGA BAG ∠=∠,∴OGA FAG ∠=∠,∴OG AM ∥,∴18090MGO M ∠=︒-∠=︒.∵OG 为O 半径, ∴MN 是O 的切线.(2)解:①如图2,连接GO 并延长交AE 于点P ,∵90MGO M MAE ∠=∠=∠=︒,∴四边形MGPA 为矩形,∴18GP MA ==,90GPA ∠=︒,即OP AE ⊥,∴1122AP AE ==. 设OA OG r ==,则18OP r =-,在Rt OAP △中,∵222OA OP AP =+,∴222(18)12r r =-+,解得:13r =,故O 的半径是13.②如图3,过M 作MH l ⊥,连接BC ,延长NE 交l 于I ,连接GO 并延长交AE 于P ,由①知:13OG =,18PG =,∴5OP =.∵AB 是O 的直径,∴90AEB AEI ∠=∠=︒.∵BAE EAC ∠=∠,∴ABE AIB ∠=∠,∵AM NI ∥,∴MAH BIA ABE ∠=∠=∠,∴12tan tan tan 5MAH ABE BIA ∠=∠=∠=,220BI BE ==. ∵12cos 13HM AMH AM ∠==,5sin 13AH AMH AM ∠==,5sin 13CI CBI BI ∠==, ∴181********MH ⨯==,185901313AH ⨯==,5100201313CI =⨯=, ∴100238261313AC AI CI =-=-=, ∴23890328131313HC AH AC =+=+=, ∴21627tan 32841MH MCD HC ∠===. 【点睛】本题考查了切线的判定,圆周角定理,解直角三角形,勾股定理,矩形的性质和判定,正确作出辅助线是解题的关键.8.已知点A 为⊙O 外一点,连接AO ,交⊙O 于点P ,AO=6.点B 为⊙O 上一点,连接BP ,过点A 作CA ⊥AO ,交BP 延长线于点C ,AC=AB .(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若PC=43,求 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)433PB=;(3)6565r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=12AB=2216r2-,利用OE=22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB,∴∠OPB=∠OBP=∠APC,∵AC=AB,∴∠C=∠ABP,∵AC ⊥AO , ∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴23PH =, ∴432PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=12AB=22162r -; 又∵圆O 与直线MN 有交点,∴OE=22162r r -≤, ∴2262r r -≤,∴22364r r -≤,∴655r ≥, 又∵圆O 与直线AC 相离,∴r <6,即6565r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.9.如图,平行四边形ABCD 中,AB=5,BC=8,cosB=45,点E 是BC 边上的动点,以C 为圆心,CE 长为半径作圆C ,交AC 于F ,连接AE ,EF .(1)求AC 的长;(2)当AE 与圆C 相切时,求弦EF 的长;(3)圆C 与线段AD 没有公共点时,确定半径CE 的取值范围.【答案】(1)AC=5;(2)410EF =;(3)03CE ≤<或58CE <≤. 【解析】【分析】(1)过A 作AG ⊥BC 于点G ,由cos 45B =,得到BG=4,AG=3,然后由勾股定理即可求出AC 的长度;(2)当点E 与点G 重合时,AE 与圆C 相切,过点F 作FH ⊥CE ,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF 的长度;(3)根据题意,可分情况进行讨论:①当圆C 与AD 相离时;②当CE>CA 时;分别求出CE的取值范围,即可得到答案.【详解】解:(1)过A作AG⊥BC于点G,如图:在Rt△ABG中,AB=5,4 cos5BGBAB==,∴BG=4,∴AG=3,∴844CG=-=,∴点G是BC的中点,在Rt△ACG中,22345AC=+=;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:∴CE=CF=4,∵AB=AC=5,∴∠B=∠ACB,∴4 cos cos5CHB ACBCF=∠==,∴CH=3.2,在Rt△CFH中,由勾股定理,得FH=2.4,∴EH=0.8,在Rt△EFH中,由勾股定理,得224100.8 2.4EF=+=(3)根据题意,圆C与线段AD没有公共点时,可分为以下两种情况:①当圆C与AD相离时,则CE<AE,∴半径CE 的取值范围是:03CE ≤<;②当CE>CA 时,点E 在线段BC 上,∴半径CE 的取值范围是:58CE <≤;综合上述,半径CE 的取值范围是:03CE ≤<或58CE <≤.【点睛】本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.10.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,90ANC BMA ∴∠=∠=︒,90ABM BAM ∴∠+∠=︒,AC AB ⊥,90CAN BAM ∴∠+∠=︒,ABM CAN ∴∠=∠,A 过点B ,C ,AC AB ∴=,()ACN BAM AAS ∴∆≅∆,2(3)1CN AM ∴==---=,3(5)2BM AN ==---=,(2,2)B ∴--,(5,1)C --,点B ,C 在抛物线上,∴54226525516b c b c ⎧-⨯-+=-⎪⎪⎨⎪-⨯-+=-⎪⎩, ∴37611b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为25371166y x x =---,(2)ADE ∆是等腰三角形,理由如下:如图1,BD AB ⊥,90ABD ∴∠=︒,90ABM DBM ∴∠+∠=︒,过点B 作BM x ⊥轴于M ,90BMD AMB ∴∠=∠=︒,90BDM DBM ∴∠+∠=︒,ABM BDM ∴∠=∠,ABM BDM ∴∆∆∽,∴AM BM BM DM =, ∴122DM=, 4DM ∴=,2()2D ∴,,5AD ∴=,(2,2)B --,∴直线BD 的解析式为112y x =-, 联立,21125371166y x y x x ⎧=-⎪⎪⎨⎪=---⎪⎩, ∴22x y =-⎧⎨=-⎩(舍)或61x y =-⎧⎨=-⎩, (6,4)E ∴--,5AE ∴==,AD AE ∴=,ADE ∴∆是等腰三角形;(3)如图2,点(2,2)B --在A 上,AB ∴ 记直线1y kx =+与y 轴相交于F ,令0x =,则1y =,(0,1)F ∴,1OF ∴=,Ⅰ、当直线1y kx =+与A 的切点在x 轴上方时,记切点为G ,则AG AB ==90AGF ∠=︒,连接AF ,在Rt AOF ∆中,3OA =,1OF =,AF ∴=,在Rt AGF ∆中,根据勾股定理得,FG AG ===,如图2,过点G 作GP y ⊥轴于P ,过点G 作GQ x ⊥轴于Q ,90AQG FPG POQ ∴∠=∠=︒=∠,∴四边形POQG 是矩形,90PGQ ∴∠=︒, FG 是A 的切线,AGQ FGP ∴∠=∠,()AQG FPG AAS ∴∆≅∆,AQ PF ∴=,GQ PG =,设点(,1)G m km +,3AQ m ∴=+,PF km =,PG m =-,1GQ km =+,3m km ∴+=①,1km m +=-②,联立①②解得,212m k =-⎧⎪⎨=-⎪⎩, Ⅱ、当切点在x 轴下方时,同Ⅰ的方法得,2k =,即:直线1y kx =+与圆A 相切,k 的值为12-或2. 【点睛】此题是二次函数综合题,主考查了待定系数法,三垂线判定两三角形全等,解方程组,判断出FG AG =是解本题的关键.。