用zemax模拟单模光纤

合集下载

【ZEMAX光学设计软件操作说明详解】2-上

【ZEMAX光学设计软件操作说明详解】2-上

第十三章表面类型§1 简介ZEMAX 模拟了许多种类型的光学元件。

包括常规的球面玻璃表面,正非球面,环带,柱面等。

ZEMAX 还可以模拟诸如衍射光栅、“薄”透镜、二元光学、菲涅耳透镜、全息元件之类的元件。

因为ZEMAX 支持大量的表面类型,用常用的电子表格形式安排用户界面就比较困难。

例如,对于一个没有发生衍射的表面,开辟“衍射阶数”一列就没什么必要。

为了使用户界面尽可能不显得乱,ZEMAX 使用了不同的类型界面以便指出定义某一种类型的表面时,需要哪一些数据。

§2 参数数据一个标准的表面可以是一个紧随着一均匀介质(如空气,反射镜或玻璃)的平面、球面或圆锥非球面。

所要求的参数仅仅是半径(半径也可以是无穷大,使之成为一个平面),厚度,圆锥系数(缺省值为0,表示是球面),和玻璃类型的名字。

其他的表面类型除使用一些其他值外,同样使用这些基本数据。

例如,“偶次非球面”表面就是使用所有的“标准”列数据再加上八个附加值,这些附加值是用来描述多项式的系数的。

这八个附加值被称为参数,且被称为参数1,参数2,等等。

要理解的参数值的最重要特性是它们的意思会随着所选择的表面类型的不同而改变意思。

例如,“偶次非球面”表面类型用参数1 来指定非球面近轴抛物线项的系数,而“近轴”面则用参数1 来指定表面焦距。

两个表面同样使用参数1,但用途却不同,因为这两个表面类型永远不会同时在同一个面上使用。

数据存储的共享性简化了ZEMAX 界面,也减少了运行程序时所要求的总内存。

但由于你必须去记每一个参数的作用,是否这样的共享反而会使ZEMAX 用起来变得麻烦呢?回答是否定的,因为ZEMAX始终掌握着你所定义的每一面上的每一个参数代表什么的记录。

当你将一个表面从“标准的”改成其他的表面类型后,ZEMAX 会自动改变参数列的列头以使你知道你对表面上的每一个参数作了什么改动。

所有需要你做的只是在正确的格子中键入适当的数据。

当你将光标从一个格子移动到另一个时,列头会一直显示该格是用来作什么的。

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解_光学设计.txt9母爱是一滴甘露,亲吻干涸的泥土,它用细雨的温情,用钻石的坚毅,期待着闪着碎光的泥土的肥沃;母爱不是人生中的一个凝固点,而是一条流动的河,这条河造就了我们生命中美丽的情感之景。

ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。

ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。

活动结构活动结构是指当前在镜头数据编辑器中显示的结构。

详见“多重结构”这一章。

角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。

切迹切迹指系统入瞳处照明的均匀性。

默认情况下,入瞳处是照明均匀的。

然而,有时入瞳需要不均匀的照明。

为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。

有三种类型的切迹:均匀分布,高斯型分布和切线分布。

对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。

在“系统菜单”这一章中有关于切迹类型和因子的讨论。

ZEMAX也支持用户定义切迹类型。

这可以用于任意表面。

表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。

对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。

后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。

如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。

基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。

基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。

除焦平面外,所有的基面都对应一对共轭面。

比如,像空间主面与物空间主面相共轭,等等。

如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。

ZEMAX操作步骤

ZEMAX操作步骤

ZEMAX操作步骤1.打开ZEMAX软件:双击ZEMAX桌面图标或从开始菜单中找到ZEMAX 图标并单击打开。

2. 创建新的工程文件:点击“File”菜单,选择“New”,然后选择工程文件类型,如“Sequential”或“Non-Sequential”等。

3. 设置工作环境:在“Settings”菜单中可以设置工作环境,如单位制和光线追迹方式等。

点击“Units”可以设置长度和角度单位,点击“Ray Aiming”可以设置光线追迹参数。

4. 在“System Explorer”中创建光学系统:点击“Object”菜单,选择“New System”,在弹出的对话框中输入系统名称。

然后,在“System Explorer”中可以看到创建的光学系统。

5.在系统中添加光学元件:双击光学系统名称,在弹出的对话框中可以选择添加光学元件,如透镜、镜面等。

选择元件后可以在对话框中设置元件的属性,如曲率、厚度和物质等。

6. 设置光源:点击“Source”菜单,选择合适的光源类型,如点光源、平行光源等。

在弹出的对话框中可以设置光源的参数,如波长、功率等。

7. 设定探测器:点击“Analysis”菜单,选择“New Detector”,在弹出的对话框中可以设置探测器的位置和尺寸。

探测器用于测量系统中的光强分布和光束参数。

8. 进行光学仿真:点击“Run”按钮,ZEMAX将按照设定的参数进行光线追迹和光学分析。

在仿真结束后,可以查看系统中的光学效果和性能参数,如光强、光斑直径和MTF曲线等。

9. 优化光学系统:通过修改系统中光学元件的参数,可以优化系统的性能指标。

点击“Tools”菜单,选择“System Explorer”打开系统的属性对话框,在对话框中可以调整元件的参数。

10. 分析结果并导出数据:通过点击“Analysis”菜单中的各种分析功能,可以查看系统的性能曲线和参数。

可以选择将分析结果保存为图像或数据文件,如TXT或EXCEL格式。

光学设计软件ZEMAX实验讲义

光学设计软件ZEMAX实验讲义

光学设计软件ZEMAX实验讲义光学设计软件ZEMAX是一款广泛应用于光学设计和仿真的工具。

它通过建立光学系统模型、进行光学分析和优化,来实现光学元件的设计和性能评估。

本实验讲义将介绍使用ZEMAX进行光学系统设计的基本流程和方法,以帮助读者快速上手使用该软件进行实验。

实验目的:1.掌握ZEMAX软件的基本操作方法;2.学习使用ZEMAX进行光学系统的建模和分析;3.能够使用ZEMAX进行光学系统的优化和性能评估。

实验仪器和材料:1.计算机(安装有ZEMAX软件);2.光学元件(例如透镜、棱镜等);3.光源(例如激光器、光纤等);4.探测器(例如光电二极管、CCD等)。

实验步骤:1.启动ZEMAX软件,并加载需要的光学元件模型。

可以通过导入现有的元件文件,也可以自己创建新的模型。

2.在光学系统中定义光源和探测器。

选择合适的光源类型,并设置光源的参数,例如波长、光强等。

同样,选择合适的探测器类型,并设置其参数。

3.在光学系统中添加光学元件。

选择需要的元件类型,例如透镜、棱镜等,并设置其参数,例如焦距、角度等。

4.运行光学分析。

可以选择进行光线追迹分析,用于确定光线在系统中的传播路径和光学性能。

还可以进行波前分析,用于评估系统的像差情况。

5.进行光学系统优化。

根据实际需求,调整光学系统中的参数,例如透镜的位置、曲率等,以优化系统的性能。

可以使用自动优化功能,也可以手动调整参数进行优化。

6.进行光学系统性能评估。

通过分析光线传播路径、像差情况等,评估光学系统的性能。

可以使用图像质量指标,例如MTF(传递函数)和PSF(点扩散函数),来评估系统的成像能力。

7.导出结果。

根据需要,将优化后的光学系统结果导出为文件。

可以导出光学系统的参数、光线路径图、波前图等。

实验注意事项:1.在进行光学系统设计前,需要确保熟悉光学基础知识,并了解所使用的光学元件的特性和性能。

2.在使用ZEMAX软件时,需要注意模型的准确性和合理性。

用zemax模拟单模光纤资料

用zemax模拟单模光纤资料

设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度0.9mm内部透过率>0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant)0数值孔径0.17附件中的文件single mode coupler.zmx是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。

它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到 1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。

zemax光纤耦合

zemax光纤耦合

设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径 0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度 0.9mm内部透过率 >0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant) 0数值孔径 0.17附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。

它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。

zemax边缘光纤高度解

zemax边缘光纤高度解

zemax边缘光纤高度解摘要:一、Zemax 边缘光纤高度解的背景与意义1.光纤通信技术的发展2.边缘光纤在通信网络中的重要性3.Zemax 在光纤研究领域的应用二、Zemax 边缘光纤高度解的原理与方法1.Zemax 软件的介绍2.边缘光纤高度解的数学模型3.Zemax 边缘光纤高度解的具体实现步骤三、Zemax 边缘光纤高度解的实验与应用1.实验设备与条件2.实验结果与分析3.Zemax 边缘光纤高度解在实际应用中的优势四、Zemax 边缘光纤高度解的发展前景与挑战1.技术发展的趋势2.当前研究的局限性3.未来研究的方向与展望正文:一、Zemax 边缘光纤高度解的背景与意义随着互联网技术的飞速发展,光纤通信技术在我国已得到广泛应用。

光纤具有传输速度快、抗干扰性强等优点,已经成为现代通信网络的核心技术。

在光纤通信系统中,边缘光纤的性能直接影响着整个网络的传输质量和稳定性。

因此,深入研究边缘光纤的特性,提高边缘光纤的性能,对于我国光纤通信技术的发展具有重要意义。

Zemax 是一款功能强大的光学设计软件,广泛应用于光学系统的设计、分析和优化。

近年来,Zemax 在光纤研究领域的应用逐渐得到重视。

本文将介绍Zemax 边缘光纤高度解的相关内容,探讨其在光纤通信技术中的重要作用。

二、Zemax 边缘光纤高度解的原理与方法Zemax 软件通过建立光学系统的数学模型,可以对系统的性能进行精确的分析和优化。

在边缘光纤高度解的问题中,Zemax 首先根据光纤的物理特性,建立边缘光纤的传输矩阵,然后通过数值计算和仿真,求解边缘光纤的高度解析问题。

具体来说,Zemax 边缘光纤高度解的过程可以分为以下几个步骤:1.建立边缘光纤的传输矩阵。

这一步需要根据光纤的物理特性,如折射率、传播速度等,计算出光纤的传输矩阵。

2.设定光学系统参数。

根据实际应用需求,设定光学系统的参数,如光源、光探测器、光纤等。

3.定义边界条件。

[整理]zemax光纤耦合.

[整理]zemax光纤耦合.

设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径 0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度 0.9mm内部透过率 >0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant) 0数值孔径 0.17附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。

它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计前的准备
Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本
本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:
供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e
数值孔径0.14
纤芯直径8.3μm
模场直径@1.31μm 9.2±0.4μm
微透镜阵列,SUSS MicroOptics SMO39920
基片材料熔融石英
基片厚度0.9mm
内部透过率>0.99
透镜直径240μm
透镜节距250μm
Coupling 0.994
1 System
Efficiency 0.998
2 Receiver
Efficiency 0.996
10 Pilot Beam
Waist 4.57μm
23 Effective Beam
Width 4.84μm
26 M2
1.082
位相是你需要关注的最有用的信息,因为Irradiance Profile几乎是理想的高斯形(M2为1.082)。

接收端的模式实际上在每个地方都几乎为零,因此位相也直接告诉我们模式失配的程度。

要显示位相信息,打开POP设置窗口的显示(Display)那一栏,按照下图所示的方式设置:
注意位相图的抛物线和四次曲线的形状,这等价于聚焦和球差。

另外也要注意透镜边缘对位相曲线产生的影响。

根据系统的效率(System efficiency),我们知道由于透镜外相尺寸的限制,系统约有小于1%的能量损耗。

这和用光线计算出来的结果是不一样的。

将2D外形图的Y方向放大,便可以得到如下图所示的光线分布
类似地,当光束在两个光纤之间传输的过程中,改变透镜的间隔也会改变光束的M2 因子。

Edited by Foxit Reader
Copyright(C) by Foxit Corporation,2005-2010 For Evaluation Only.
有了这层薄膜,我们可以发现耦合效率的增加:
总结和参考资料
Zemax拥有全面的光纤耦合模拟能力:
最简单的方法:旁轴高斯光束计算方法,用来获得系统的性能的初步了解,得到系统的初级参数(First-order);
基于光线光学的光纤耦合计算方法可以用来处理高斯形的光线模式,并且衍射效应可以忽略的情形;
物理光学传输的计算方法提供了光纤耦合建模的一个全面的解决方法,它允许具有任何复杂的模式的源光纤和接收光纤,同时也完全考虑到了衍射效应;
光学薄膜的特性和材料体吸收的效应也能够考虑进去;
简单易用的优化操作数FICL和POPD可以用来优化相关系统;
同样,用这些优化操作数也可以实现公差分析。

更多的参考资料
Corning Datasheep PI1446,April 2005
SUSS Micro-Optics FC-Q-250 Microlens array。

相关文档
最新文档