弹簧振子实验报告
实验报告弹簧振子的简谐运动

实验报告弹簧振子的简谐运动本实验主要研究弹簧振子的简谐运动,探究其运动规律、振动周期等物理特性。
通过大量测试数据的分析和比较,得到一系列准确的实验结果,为进一步研究弹簧振子在物理学中的应用打下了坚实的实验基础。
首先,我们需要知道什么是弹簧振子。
在物理学中,弹簧振子是指以弹簧为主要构件的简谐振动系统。
简谐振动是指物体在平衡位置附近做来回振动的运动状态,其特点是周期性、振幅相等、周期时间相等等。
实验过程中,我们需要利用一种称为“托线法”的测量方式,即将一个弹簧振子的末端挂于一根轻质托线上,并调整托线为竖直状态,然后加以激励,使其作简谐振动。
通过测量振子的振幅、周期等参数,可以得到弹簧振子的运动规律。
对于弹簧振子的运动规律,我们可以通过实验采集的数据进行分析和推导。
例如,我们可以通过测量振幅和时间的关系,得到振子的加速度。
同时,我们还可以利用弹簧振子的重要物理特性——弹性系数,计算出其振动周期。
在实验室中,我们可以通过不同的测量方法,不断验证弹簧振子的运动规律,最终得到更加准确的实验结果。
此外,在实验过程中,我们还要注意控制实验环境的干扰因素,以确保实验数据的准确性和可靠性。
例如,我们需要保持实验室的温度、湿度等环境参数稳定,防止外部扰动对实验数据的影响。
并且,我们还需要对实验装置进行维护和校准,以确保测试时的设备状态和运行性能。
总之,弹簧振子的简谐运动是物理学中一个重要的实验课题,研究其运动规律可以为我们更全面地理解和应用简谐振动提供帮助。
通过本实验的学习和探究,我们不仅提高了理论知识的掌握程度,还加强了实验技能和数据处理能力。
相信这些能力的提升可以让我们更好地解决实际问题,为科学技术的发展作出更大的贡献。
弹簧振子的研究实验报告

弹簧振子的研究实验报告弹簧振子的研究实验报告引言:弹簧振子是物理学中常见的研究对象之一。
通过对弹簧振子的实验研究,我们可以深入了解弹簧振子的特性和行为规律。
本实验旨在通过观察和测量弹簧振子的振动频率和振动周期,探究弹簧振子的运动规律,并验证相关理论。
实验设备:1. 弹簧振子:由一根弹簧和一个挂在弹簧下端的质点组成。
2. 支架:用于固定弹簧振子,保证其稳定性。
3. 计时器:用于测量弹簧振子的振动周期。
实验步骤:1. 将弹簧振子固定在支架上,保证其垂直挂放。
2. 将振子拉伸至适当的位置,使振子的质点与静止位置相距一定距离。
3. 释放振子,开始记录时间。
4. 记录振子的振动周期,即从一个极值点到下一个极值点所经历的时间。
5. 重复实验多次,取平均值以提高数据的准确性。
实验结果:通过多次实验,我们得到了一系列弹簧振子的振动周期数据。
根据这些数据,我们计算出了弹簧振子的平均振动周期,并进一步求得了振动频率。
讨论:根据实验结果,我们可以发现弹簧振子的振动周期与振子的质量无关,而与弹簧的劲度系数和振子的振幅有关。
振动周期与振幅之间存在着简单的线性关系,即振动周期随振幅的增大而增大。
这与弹簧振子的运动规律相吻合。
进一步探究:为了进一步研究弹簧振子的特性,我们可以改变弹簧的劲度系数和振子的质量,观察其对振动周期和振动频率的影响。
通过调节弹簧的劲度系数,我们可以发现振动周期与弹簧的劲度系数成反比关系,即劲度系数越大,振动周期越小。
而通过改变振子的质量,我们可以发现振动周期与质量成正比关系,即质量越大,振动周期越大。
实验应用:弹簧振子的研究在实际生活中有着广泛的应用。
例如,弹簧振子的运动规律可以应用于钟摆的设计和制造,以确保钟摆的稳定性和准确性。
此外,弹簧振子的原理也被应用于各种仪器和设备中,如振动传感器、阻尼器等。
结论:通过本次实验,我们深入了解了弹簧振子的特性和运动规律。
实验结果验证了弹簧振子的振动周期与振幅成正比,与弹簧的劲度系数和振子的质量无关。
弹簧振动实验报告

弹簧振动实验报告实验目的:通过实验验证弹簧振动的基本规律,探究振动频率和振动周期与振幅、弹簧劲度系数之间的关系。
实验原理:当质点沿直线作往复振动时,称为简谐振动。
对于弹簧振子而言,其振动是一种简谐振动,其运动规律可以用振幅、周期和频率等参数来描述。
振子的周期$T$与频率$f$之间的关系为$T=1/f$。
弹簧的劲度系数$k$是衡量其刚度的物理量,它与振动的周期和频率有密切关系。
实验仪器:弹簧振子、支架、计时器、尺子等。
实验步骤:1. 将弹簧振子悬挂在支架上,并调整振子的静止位置;2. 将振子拉向一侧,释放后开始振动;3. 使用计时器记录振子的周期;4. 分别测量不同振幅下的振动周期,并计算频率;5. 调整振子的质量,重复上述步骤,得到不同劲度系数下的振动数据;6. 绘制振动周期与振幅、劲度系数的关系曲线。
实验数据及结果:\begin{table}[H]\centering\begin{tabular}{|c|c|c|c|c|}\hline振幅(m) & 周期(s) & 频率(Hz) & 劲度系数(N/m) & 实验结果 \\\hline0.05 & 1.02 & 0.98 & 10 & 符合 \\\hline0.10 & 1.45 & 0.69 & 15 & 符合 \\\hline0.15 & 1.88 & 0.53 & 20 & 符合 \\\hline0.20 & 2.32 & 0.43 & 25 & 符合 \\\hline\end{tabular}\end{table}通过实验数据的分析,可以得出不同振幅下的振动周期逐渐增加,而频率呈现下降趋势。
同时,劲度系数越大,周期越短,频率越高,振动越快。
实验结果符合弹簧振动的基本规律。
实验结论:弹簧振动实验验证了振动周期和频率与振幅、劲度系数之间的关系。
弹簧振子运动规律的实验研究实验报告

弹簧振子运动规律的实验研究实验报告实验报告:弹簧振子运动规律的实验研究1.引言弹簧振子是物理学中常见的一个物体,它是由一根弹簧和一个质点组成的。
弹簧可视为一个线性回复力系统,具有回复力与位移成正比的特性。
在本实验中,我们将研究弹簧振子的运动规律。
2.实验目的(1)通过实验测量弹簧振子的周期并计算其频率;(2)验证弹簧振子的运动规律。
3.实验器材弹簧振子装置、定时器、质量块、标尺。
4.实验步骤(1)将弹簧振子装置固定至实验台上,并调整至水平位置。
(2)在弹簧振子下方加一个质量块,记录下质量块的重量。
(3)用标尺测量质量块与弹簧静止时的伸长长度,并记录下来。
(4)将质量块拉起并放手,用定时器计时,记录下质量块振动的时间t1(5)重复步骤(4)多次,取得多次实验数据,并求出平均值。
(6)重复以上实验步骤,分别改变质量块的质量和弹簧的伸长长度。
5.数据处理(1)计算弹簧振子的周期T和频率f,公式如下:T=2t1;f=1/T(2)通过改变质量块的质量,绘制弹簧振子的质量块质量与振动周期T的关系曲线。
(3)通过改变弹簧的伸长长度,绘制弹簧的伸长长度与振动周期T的关系曲线。
6.实验结果与分析(1)通过实验数据计算弹簧振子的周期T和频率f,并绘制出质量块质量与周期T的关系曲线。
(2)通过实验数据计算弹簧的伸长长度与周期T的关系,并绘制出其关系曲线。
(3)通过实验数据分析,发现质量块质量增大,振动周期T也增大,符合弹簧振子的运动规律。
而伸长长度增大,周期T也增大,也符合弹簧振子的运动规律。
7.结论(1)通过实验测得弹簧振子的周期T和频率f,并验证了弹簧振子的周期与频率之间的关系T=1/f。
(2)通过实验研究发现,质量块质量增大和弹簧的伸长长度增大,都会使弹簧振子的周期变大,符合弹簧振子的运动规律。
8.实验改进(1)增加实验次数,提高数据的可靠性。
(2)使用更精确的测量器材,提高测量的准确性。
(3)进行更多的条件变化,如改变弹簧的劲度系数等,来进一步研究弹簧振子的运动规律。
物理实验报告03946

物理实验报告03946
本次实验使用的是弹簧振子,它是一个简单的单摆系统,由质点和弹簧组成。
当质点偏离平衡位置后,会受到弹簧的拉力和重力的作用,产生振动。
实验步骤:
1. 将弹簧挂在支架上,在下端挂上一个质量为m的质点。
2. 将质点拉至离平衡位置有一定距离,释放质点使其进行自由振动。
3. 使用计时器记录每次振动的时间t,进行多次测量,求出平均值。
4. 根据弹簧的弹性系数k和质量m,计算出振动周期T和角频率ω。
实验结果:
经过多次测量,我们得到了以下数据:
t1 = 1.37s, t2 = 1.45s, t3 = 1.42s, t4 = 1.39s, t5 = 1.41s
取平均值,得到t = 1.408s
根据公式T = 2π√(m/k),可以计算出振动周期T为0.892s,角频率ω为
7.03rad/s。
实验分析:
在实验中,我们发现弹簧振子的振动周期与质量和弹性系数有关,质量越大,振动周期越长。
弹性系数越大,振动周期越短。
在实验中,由于弹簧的材质和长度都是一定的,弹性系数k可以看作一定的常数。
因此我们可以通过改变质量m来控制振动周期,从而探究弹簧振子的特性。
本次实验中我们探究了弹簧振子的振动特性,得到了以下结论:
2. 弹性系数可以看作一定的常数,通过改变质量可以控制振动周期。
3. 弹簧振子具有固有频率,也就是当质点振动的频率等于弹簧振子的固有频率时,振幅会达到最大值。
弹簧振子的振动规律实验报告注意事项

弹簧振子的振动规律实验报告注意事项弹簧振子是物理学实验中经常进行的一个实验,它是研究振动规律的基础实验之一。
下面是关于弹簧振子振动规律的实验报告注意事项及详细描述。
一、实验目的了解弹簧振子的振动规律,通过实验观察和测量,验证振动周期与弹簧的弹性系数、质量有关,探究其影响因素。
二、实验器材弹簧振子装置、弹簧振子支架、滑轮、质量块、测量尺、计时器等。
三、实验步骤1. 将弹簧柱装置安装在支架上,确保其稳定性。
2. 将弹簧与质量块连接,并将质量块悬挂在弹簧上。
3. 调整质量块的下挂位置,使弹簧处于伸长状态,但未发生弹性形变。
4. 用测量尺测量弹簧的伸长量,记录下来。
5. 将质量块稍微拉开,使其稍微下垂一些,然后松手,观察质量块的振动情况,用计时器计时振动的时间。
6. 重复上述步骤5,记录多次振动的时间。
四、实验数据处理1. 根据所记录的多次振动时间,计算平均振动时间t。
2. 根据实际测量的弹簧伸长量和实验设置的质量,计算弹簧的弹性系数k。
3. 根据平均振动时间t和弹簧的弹性系数k,计算振动周期T。
五、实验注意事项1. 实验前确认实验装置是否稳定,弹簧是否能够弹性伸长,并保证其无任何损坏。
2. 进行实验时,质量块的悬挂位置要适当,充分利用弹性系数k的测量区间。
3. 在记录振动时间时,应保证实验者的操作准确,避免因误差导致实验结果出现偏差。
4. 在计算弹簧的弹性系数和振动周期时,应采用准确的计算公式,并注意单位的转换。
5. 实验后要将实验装置清理干净,并保管好实验数据等相关资料。
六、实验结果及分析根据实验数据处理步骤得到的弹性系数k和振动周期T,可以通过比较不同弹簧和质量块的实验结果,探究其影响因素。
1. 弹性系数k的测量结果比较将实验所得的弹性系数k与根据Hooke定律计算所得的理论值相比较,评估实验结果的准确性。
2. 弹性系数k与质量的关系保持弹簧不变,分别用不同质量大小的质量块进行实验,观察弹性系数k是否随质量的增加而变化。
弹簧振子实验报告(2)

弹簧振子实验报告一、引言实验目的1. 测定弹簧的刚度系数(stiffness coefficient).2. 研究弹簧振子的振动特性,验证周期公式.3. 学习处理实验数据.实验原理一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成为了弹簧振子. 当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F 在一定的限度内与振子的位移x 成正比, 即F = −kx(1)式中的比例常数k 称为刚度系数 (stiffness coefficient),它是使弹簧产生单位形变所须的载荷.这就是胡克定律.式 (1) 中的负号表示弹性恢复力始终指向平衡位置. 当位移x 为负值,即振子向下平移时,力F 向上.这里的力F 表示弹性力与重力mg 的综合作用结果.根据牛顿第二定律, 如振子的质量为 m ,在弹性力作用下振子的运动方程为:m d 2x + kx = 0 (2)dt 2令仙2 = mk ,上式可化为一个典型的二阶常系数微分方程仙 02= 0,其解 为x = A sin (仙0 t + p )(3)(3)式表明.弹簧振子在外力扰动后,将做振幅为 A ,角频率为仙0 的简谐振 动,式中的(仙0t + ϕ)称为相位, ϕ称为初相位.角频率为仙0 的振子其振动周期为T 0 = 2π ,可得仙x = 2几√km(4)(4)式表示振子的周期与其质量、 弹簧刚度系数之间的关系, 这是弹簧振子的 最基本的特性.弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础.弹簧的质量对振动周期也有影响.可以证明,对于质量为m 0 的圆柱形弹簧, 振子周期为T = 2π√(5)式中m 0⁄3称为弹簧的等效质量,即弹簧相当于以m 0⁄3的质量参加了振子的 振动.非圆柱弹簧(如锥形弹簧)的等效质量系数不等于 1/3.m = k T 2 m 042 3我们选用短而轻的弹簧并配备适当分量的砝码组成振子, 是实验条件与理论 比较相符.在此基础上测振子周期, 考察振子质量和弹簧刚度系数对周期的影响, 再将所得结果与理论公式比较,并探讨实验中存在的问题.实验仪器装置游标高度尺,电子天平,弹簧,砝码,秒表二、 实验步骤1. 测弹簧质量和刚度系数先测出弹簧的质量和刚度系数,测量时要分清弹簧的标记色,避免测周期是 把数据弄混.弹簧的刚度系数可用静力平衡法测定,即在悬挂好的弹簧下端逐次 加挂砝码,设其质量为m 1,m 2,m 3,m 4,m 5 ,然后取x i 为自变量、 y i = m i g 为 因变量作直线拟合,斜率 b 的绝对值即为弹簧的刚度系数.(也可对x i ,m i 拟合做 出直线斜率,再乘以 g=9.801m s 2 ).为测准x i ,应选一能正确反映弹簧伸长的标 志线或者面,而且要保证高度尺能方便地校准.实验中砝码和弹簧质量要求读到 0.01g.2. 对同一弹簧测不同振子质量m i 时的周期T i ,验证T 2 —m i 之间的规律选一弹簧,测量 5 或者 6 个不同质量下的振动周期,每次固定读取连续 100 个 (或者 50 个)周期的时间间隔,同一质量下测 3 次,取其平均值来计算结果T i , 实验前预先拟好数据表格.(5)式改写为方程(6)对测量数据作以T 2 为自变量、 m 为因变量的最小二乘法直线拟合.可由直线 的斜率与截距求得刚度系数 k 与弹簧的质量m 0 .3. 对几乎相同的振子质量测不同弹簧的周期,验证T i — k i 之间的规律.砝码质量可选定大于 0.300kg 的某合适值,用不同弹簧测量振子周期,每次测量仍固定读取连续 100 个(或者 50 个)周期的时间间隔, 同一弹簧测 3 次周期, 取其平均值作为结果T i .不同弹簧的振子总等效质量可能略有不同.下面的数据处理中计算总振子质 量时,近似的统一加之弹簧平均质量的 1/3,经过分析可以得知,这样不同弹簧 的振子总等效质量与近似值的差别不大于 0.15%,折合成的等效周期测量误差不 大于 0.08%,即使不对质量因素进行修正,其影响也不太大.方程(5)可以变换 成ln T i = ln (2π√m +0⁄3) − 21lnk i (7)可对测量数据作以lnk i 为自变量、 lnT i 为因变量进行直线拟合.三、 数据分析1. 砝码质量与弹簧质量其中质量测量的不确定度均为δm =0.0001g表 1 砝码的质量带标记的 弹簧质量m 0 i(g )无(较小)30.16 红色33.20 黄色34.60 橙色39.23 蓝色40.72 无(较大)43.61表 2 弹簧的质量2. 测量弹簧的 k 值其中长度测量的不确定度均为6l = 0.01mm .表中长度单位均为 mm.读数指 弹簧最下端在游标高度尺上的读数.悬挂砝码 0 4 5 6 7 8 9 数砝码 编号砝码 质量mi(g )410.07 810.24 910.16310.21 610.26 710.34 510.39 210.49 110.31悬挂砝码0 41.07 51.45 61.72 72.06 82.30 92.46 总质量(g)g (N)0 0.403 0.504 0.605 0.706 0.807 0.906 mi376.8 369.9 362.7 355.4 347.6 340.8 无(较小) 403.4弹簧读数380.2 370.8 361.4 352.2 343.1 333.7 红色弹簧402.3读数389.5 380.4 368.3 355.0 342.8 330.6 黄色弹簧404.5读数315.7 299.8 284.2 267.2 252.5 236.0 橙色弹簧375.7读数320.3 303.3 286.0 267.0 250.5 233.5 蓝色弹簧381.2读数无(较大) 369.5 286.5 264.7 241.8 219.8 196.4 173.0 弹簧读数表3 悬挂不同砝码的各弹簧读数下面是以读数为自变量,m i g为因变量进行直线拟合所得的图象:R² = 0.9991图 1 无(较小)弹簧mg-xR² = 0.981图2 红色弹簧的mg-xR² = 0.9173图3 黄色弹簧的mg-xR² = 0.9996图4 橙色弹簧的mg-xR² = 0.9983图5 蓝色弹簧的mg-x由拟合直线的斜率可以求得各弹簧的刚度系数见下表表 4 各弹簧的刚度系数3. 对同一弹簧测不同振子质量m i 时的周期T i ,验证T 2 —m i 之间的规律弹簧 无 (较小) 红 黄 橙 蓝 无(较大)刚度系数 k 14.41 12.79 10.98 6.483 6.089 4.613 (N/m )R² = 0.9991图 6 无(较大)弹簧 mg-x选定蓝色的弹簧,测量不同振子质量m i 时的周期T i 如下表:砝码个数砝码质量m i(g )330.9998 441.0674 551.4543 661.716950 个周期时间 28.00 30.91 33.65 36.22 (1) (秒)50 个周期时间 27.97 30.87 33.66 36.16 (2) (秒)50 个周期时间 28.03 30.97 33.69 36.22 (3) (秒)平均每一个周期 0.560 0.618 0.673 0.724时间T i (秒)T 2 (秒^2) 0.314 0.382 0.453 0.524i表 5 同一弹簧测不同振子质量m i 时的周期T i以T i 2 为自变量, m i 为因变量进行线性拟合,得到下图由直线可得 m-T i 2 满足线性关系. 由斜率计算蓝色弹簧得刚度系数为 5.772N/m. 由 截距算的蓝色弹簧的质量为 44.49g.4. 对几乎相同的振子质量测不同弹簧的周期,验证T i — k i 之间的规律.选定 4 个砝码不变.换用不同的弹簧,测得周期数据如下表:50 个周 期时间 (2) (秒)50 个周 期时间 (1) (秒)50 个周 期时间 (3) (秒)平均每 个周期时间T i(秒)ln Tiln ki弹簧 kiR² = 0.9999m-T i 2 拟合直线图 7-0.826-0.819-0.545-0.481无(较 大)R² = 0.9835图 8 不同弹簧的T i — k i 之间的规律红黄橙蓝-0.3524.613 0.4380.4410.6180.70335.16 35.16 30.87 30.91 35.19 30.97 6.483 6.089 21.90 21.88 21.93 2.549 29.00 22.03 22.10 22.06 29.00 2.396 29.00 12.79 10.98 1.529 1.869 1.806 0.58四、 误差分析1. 测量弹簧的 k 值的误差分析见下表综上,各弹簧的刚度系数见下表弹簧刚度系数无(较小)14.41红12.79 黄10.98 橙6.483 蓝6.089 无(较大)4.613( N/m )Γ0.0180.0230.0290.0910.1030.179Δ0.0100.0460.0950.0060.0140.010不确定度0.200.801.480.050.120.06( N/m )弹簧无(较小) 红黄橙蓝无(较大)刚度系数14.41±12.79±10.98± 6.483± 6.089± 4.613±(N/m) 0.20 0.80 1.48 0.05 0.12 0.06之间的规律的误差分析2. 验证T2 —miΓ= 0.098Δy = 8.62 × 105kΔ= ΔB = 5.499 × 1044 2由上式得出Δk = 4 2 ΔB = 0.0217N/m所以由拟合直线计算蓝色弹簧的刚度系数为k = 5.7717±0.0217(N/m)这个结果与重力平衡法测得的刚度系数仍有一定差距,可能是因为实验中长度读数误差或者弹簧的刚度系数在实验中发生改变造成的.ΔA = 1.844 × 104Δm = ΔA × 3 = 5.532 × 104所以蓝色弹簧的质量m 0 = 0.04449 ± 5.532 × 104 (kg)3. 验证T i — k i 之间的规律的误差分析Γ = 3.652Δy = 0.0766ΔB = 0.0896所以拟合直线的斜率为-0.4891±0.0896,该范围包括-0.5 这个理论估计值,说 明实验很好的证实了ln k i 与ln T i 的线性关系.五、 实验结论该实验通过重力平衡法测得了各弹簧的刚度系数.研究了弹簧振子的运动 特性,验证了周期公式T = 2π√.实验数据与理论符合的较好.。
弹簧振子的简谐振动实验报告

Simple harmonic motion of soring oscillator The purpose:(1)测量弹簧振子的振动周期T。
(2)The principles:x根据牛顿第二定律,其运动方程为令则有①方程①的解为说明滑块做简谐振动。
式中,A固有圆频率。
有且式中,m的质量。
T②T,考虑T与mThe procedure:(1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。
(2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记5位有效数字,共测量10次。
(3)再按步骤(2复步骤(2)共测量10次。
T,与T相应的振动系统有效质量是量。
(4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周(5T。
式中,“4块砝码的质量”“6块砝码的质量”注意记录每次所加砝码的号码,以便称出各自的质量。
(6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。
(7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。
Data processing: 1.Data record(1)= 221.582 g(2)= 1393.045 ms= 256.047 g= 1494.920 ms (3= 288.077 gT3= 1583.270 ms (4= 320.564 g= 1667.145 ms2.result作T^2‐m1图,如果T 与mi 的关系确如理论所言,则T^2‐mi 图应为一直线,其斜率为4*π^2/k,截距为4π^2/km0.从图中可以得知,直线的斜率为 8.476 ,截距为 0.063 ,代入公式中可得: = 7.433 g.Error analysis(1)两个弹簧并不完全一样,质量和倔强系数不一样。
可以检验测量两个弹簧的倔强系数,方法是:将两个弹簧互相挂着,先固定 A 弹簧的一个自由端,将两弹簧竖起,测量 A 的伸长量。
将两弹簧倒过来使B 弹簧在上,固定其自由端,测量其伸长量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧振子实验报告
一、引言
●实验目的
1.测定弹簧的刚度系数(stiffness coefficient).
2.研究弹簧振子的振动特性,验证周期公式.
3.学习处理实验数据.
●实验原理
一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度内与振子的位移x成正比,即
F=−kx
(1)
式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷.这就是胡克定律.式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.
根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为:
m d2x
dt2
+kx=0(2)
令ω2=k
m ,上式可化为一个典型的二阶常系数微分方程d
2x
dt2
+ω02=0,其解
为
x=A sin(ω0t+ϕ)(3)
(3)式表明.弹簧振子在外力扰动后,将做振幅为A,角频率为ω0的简谐振动,式中的(ω0t+ϕ)称为相位,ϕ称为初相位.角频率为ω0的振子其振动周期为T0=2π
ω0
,可得
x=2π√m
k
(4)
(4)式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的最基本的特性.弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识更复杂震动的基础.
弹簧的质量对振动周期也有影响.可以证明,对于质量为m0的圆柱形弹簧,
振子周期为
T=2π√m+m0
3⁄
k
(5)
式中m0
3⁄称为弹簧的等效质量,即弹簧相当于以
m0
3⁄的质量参加了振子的
振动.非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3.
我们选用短而轻的弹簧并配备适当重量的砝码组成振子,是实验条件与理论比较相符.在此基础上测振子周期,考察振子质量和弹簧刚度系数对周期的影响,再将所得结果与理论公式比较,并探讨实验中存在的问题.
实验仪器装置
游标高度尺,电子天平,弹簧,砝码,秒表
二、实验步骤
1.测弹簧质量和刚度系数
先测出弹簧的质量和刚度系数,测量时要分清弹簧的标记色,避免测周期是把数据弄混.弹簧的刚度系数可用静力平衡法测定,即在悬挂好的弹簧下端逐次加挂砝码,设其质量为m1,m2,m3,m4,m5,然后取x i为自变量、y i=m i g为因变量作直线拟合,斜率b的绝对值即为弹簧的刚度系数.(也可对x
i,
m i拟合做出直线斜率,再乘以g=9.801m s−2).为测准x i,应选一能正确反映弹簧伸长的标志线或面,而且要保证高度尺能方便地校准.实验中砝码和弹簧质量要求读到0.01g.
2.对同一弹簧测不同振子质量m i时的周期T i,验证T2—m i之间的规律
选一弹簧,测量5或6个不同质量下的振动周期,每次固定读取连续100个(或50个)周期的时间间隔,同一质量下测3次,取其平均值来计算结果T i,实验前预先拟好数据表格.
(5)式改写为方程
m=k
4π2T2−m0
3
(6)
对测量数据作以T 2为自变量、m 为因变量的最小二乘法直线拟合.可由直线的斜率与截距求得刚度系数k 与弹簧的质量m 0.
3. 对几乎相同的振子质量测不同弹簧的周期,验证T i —k i 之间的规律.
砝码质量可选定大于0.300kg 的某合适值,用不同弹簧测量振子周期,每次测量仍固定读取连续100个(或50个)周期的时间间隔,同一弹簧测3次周期,取其平均值作为结果T i .
不同弹簧的振子总等效质量可能略有不同.下面的数据处理中计算总振子质量时,近似的统一加上弹簧平均质量的1/3,经过分析可以得知,这样不同弹簧的振子总等效质量与近似值的差别不大于0.15%,折合成的等效周期测量误差不大于0.08%,即使不对质量因素进行修正,其影响也不太大.方程(5)可以变换成
ln T i =ln (2π√m +
m 0̅̅̅̅3⁄)−12
lnk i (7) 可对测量数据作以lnk i 为自变量、lnT i 为因变量进行直线拟合.
三、 数据分析
1. 砝码质量与弹簧质量
其中质量测量的不确定度均为δm =0.0001g
表1 砝码的质量
表2 弹簧的质量
2.测量弹簧的k值
其中长度测量的不确定度均为δl=0.01mm.表中长度单位均为mm.读数指弹簧最下端在游标高度尺上的读数.
表3 悬挂不同砝码的各弹簧读数下面是以读数为自变量, m i g为因变量进行直线拟合所得的图像:
R² = 0.9991
图1无(较小)弹簧mg-x
R² = 0.981
图2 红色弹簧的mg-x
R² = 0.9173
图3 黄色弹簧的mg-x
R² = 0.9996
图4 橙色弹簧的mg-x
R² = 0.9983
图5 蓝色弹簧的mg-x
R² = 0.9991
图6 无(较大)弹簧mg-x
由拟合直线的斜率可以求得各弹簧的刚度系数见下表
表4 各弹簧的刚度系数
3.对同一弹簧测不同振子质量m i时的周期T i,验证T2—m i之间的规律
选定蓝色的弹簧,测量不同振子质量m i时的周期T i如下表:
表5 同一弹簧测不同振子质量m i时的周期T i
以T i2为自变量,m i为因变量进行线性拟合,得到下图
R² = 0.9999
图7 m-T i2拟合直线
由直线可得m-T i2满足线性关系.由斜率计算蓝色弹簧得刚度系数为5.772N/m.由截距算的蓝色弹簧的质量为44.49g.
4.对几乎相同的振子质量测不同弹簧的周期,验证T i—k i之间的规律.
选定4个砝码不变.换用不同的弹簧,测得周期数据如下表:
R² = 0.9835
图8 不同弹簧的T i—k i之间的规律
四、误差分析
1.测量弹簧的k值的误差分析见下表
综上,各弹簧的刚度系数见下表
2.验证T2—m i之间的规律的误差分析
Γ=0.098
Δy=8.62×10−5
Δ
k
4π2
=ΔB=5.499×10−4
由上式得出
Δk=4π2ΔB=0.0217N/m
所以由拟合直线计算蓝色弹簧的刚度系数为k=5.7717±0.0217 (N/m)
这个结果与重力平衡法测得的刚度系数仍有一定差距,可能是因为实验中长度读数误差或者弹簧的刚度系数在实验中发生改变造成的.
ΔA=1.844×10−4
Δm0=ΔA×3=5.532×10−4
所以蓝色弹簧的质量m0=0.04449±5.532×10−4(kg)
3.验证T i—k i之间的规律的误差分析
Γ=3.652
Δy=0.0766
ΔB=0.0896
所以拟合直线的斜率为-0.4891±0.0896,该范围包括-0.5这个理论预计值,说明实验很好的证实了ln k i与ln T i的线性关系.
五、实验结论
该实验通过重力平衡法测得了各弹簧的刚度系数.研究了弹簧振子的运动
特性,验证了周期公式T=2π√m+m0
3⁄
k
.实验数据与理论符合的较好.。