实验报告弹簧振子的简谐运动
简谐振动实验的实验报告

简谐振动实验的实验报告一、实验目的1、观察简谐振动的现象,加深对简谐振动特性的理解。
2、测量简谐振动的周期和频率,研究其与相关物理量的关系。
3、掌握测量简谐振动参数的实验方法和数据处理技巧。
二、实验原理简谐振动是一种理想化的振动形式,其运动方程可以表示为:$x= A\sin(\omega t +\varphi)$,其中$A$为振幅,$\omega$为角频率,$t$为时间,$\varphi$为初相位。
在本次实验中,我们通过研究弹簧振子的振动来探究简谐振动的特性。
根据胡克定律,弹簧的弹力$F =kx$,其中$k$为弹簧的劲度系数,$x$为弹簧的伸长量。
当物体在光滑水平面上振动时,其运动方程为$m\ddot{x} = kx$,解这个方程可得$\omega =\sqrt{\frac{k}{m}}$,振动周期$T = 2\pi\sqrt{\frac{m}{k}}$。
三、实验仪器1、气垫导轨及附件。
2、滑块。
3、弹簧。
4、光电门计时器。
5、砝码。
6、米尺。
四、实验步骤1、安装实验装置将气垫导轨调至水平,通气后检查滑块是否能在导轨上自由滑动。
将弹簧一端固定在气垫导轨的一端,另一端连接滑块。
2、测量弹簧的劲度系数$k$挂上不同质量的砝码,测量弹簧的伸长量,根据胡克定律计算$k$的值。
3、测量简谐振动的周期$T$让滑块在气垫导轨上做简谐振动,通过光电门计时器记录振动的周期。
改变滑块的质量,重复测量。
4、记录实验数据详细记录每次测量的质量、伸长量、周期等数据。
五、实验数据及处理|滑块质量$m$(kg)|弹簧伸长量$x$(m)|劲度系数$k$(N/m)|振动周期$T$(s)||||||| 010 | 005 | 200 | 063 || 020 | 010 | 200 | 090 || 030 | 015 | 200 | 109 || 040 | 020 | 200 | 126 |根据实验数据,以滑块质量$m$为横坐标,振动周期$T$的平方为纵坐标,绘制图像。
弹簧振子简谐运动实验报告

弹簧振子简谐运动实验报告一、实验目的1、观察弹簧振子的运动,理解简谐运动的特征。
2、测量弹簧振子的周期,探究周期与振子质量、弹簧劲度系数的关系。
3、学会使用实验仪器进行数据测量和处理。
二、实验原理弹簧振子是一个理想化的物理模型,它由一个轻质弹簧和一个质量可忽略不计的小球组成。
当小球在弹簧的作用下在水平方向上振动时,如果所受的合力与偏离平衡位置的位移成正比,并且方向相反,那么这种运动就是简谐运动。
根据胡克定律,弹簧的弹力 F = kx,其中 k 是弹簧的劲度系数,x是弹簧的伸长或压缩量。
对于弹簧振子,其运动方程可以表示为:\m\frac{d^2x}{dt^2} = kx\其解为:\(x = A\sin(\omega t +\varphi)\),其中 A 是振幅,\(\omega\)是角频率,\(\varphi\)是初相位。
简谐运动的周期 T 与角频率\(\omega\)的关系为:\(T =\frac{2\pi}{\omega}\),又因为\(\omega =\sqrt{\frac{k}{m}}\),所以弹簧振子的周期公式为:\(T = 2\pi\sqrt{\frac{m}{k}}\)。
三、实验仪器1、气垫导轨、光电门、数字计时器。
2、不同劲度系数的弹簧。
3、不同质量的滑块。
四、实验步骤1、将气垫导轨调至水平,开启气源。
2、把弹簧一端固定在气垫导轨的一端,另一端连接滑块,使滑块在气垫导轨上做水平方向的振动。
3、在滑块上安装遮光片,调整光电门的位置,使其能够准确测量滑块通过的时间。
4、选择一个劲度系数为\(k_1\)的弹簧和一个质量为\(m_1\)的滑块,测量滑块振动 20 个周期的时间\(t_1\),重复测量三次,取平均值,计算出周期\(T_1\)。
5、保持弹簧劲度系数不变,更换质量为\(m_2\)的滑块,重复步骤 4,测量周期\(T_2\)。
6、保持滑块质量不变,更换劲度系数为\(k_2\)的弹簧,重复步骤 4,测量周期\(T_3\)。
气垫导轨实验报告

基础物理实验实验报告计算机科学与技术【实验名称】气轨上弹簧振子的简谐振动【实验简介】气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦阻力。
虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。
由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms(十万分之一秒),这样就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。
利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律;研究简谐振动、阻尼振动等。
本实验采用气垫导轨研究弹簧振子的振动。
【实验目的】1. 观察简谐振动现象,测定简谐振动的周期。
2. 求弹簧的倔强系数和有效质量。
3. 观察简谐振动的运动学特征。
4. 验证机械能守恒定律。
1【实验仪器与用具】气垫导轨、滑块、附加砝码、弹簧、U 型挡光片、平板挡光片、数字毫秒计、天平等。
【实验内容】1. 学会利用光电计数器测速度、加速度和周期的使用方法。
2. 调节气垫导轨至水平状态,通过测量任意两点的速度变化,验证气垫导轨是否处于水平状态。
3. 测量弹簧振子的振动周期并考察振动周期和振幅的关系。
滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时,测量其相应振动周期。
分析和讨论实验结果可得出什么结论?(若滑块做简谐振动,应该有怎么样的实验结果?)4. 研究振动周期和振子质量之间的关系。
在滑块上加骑码(铁片)。
对一个确定的振幅(如取A=40.0cm)每增加一个骑码测量一组 T。
(骑码不能加太多,以阻尼不明显为限。
) 作 T2-m 的图,如果 T 与 m 的关系式为T2= 42m1+m0,则 T2-m 的图应为一条直线,其斜率为,截距为。
k用最小二乘法做直线拟合,求出 k 和 m0。
弹簧振子的简谐振动

弹簧振子的简谐振动【实验目的】:1.测量弹簧振子的振动周期T2.求弹簧的劲度系数k 和有效质量m【实验器材】:气垫导轨、滑块、附加砝码、弹簧、秒表【实验原理】:1.弹簧振子的简谐运动方程质量为m 1的质点由两个弹簧拉着, 弹簧的劲度系数分别为k 当m 偏离平衡位置的距离为x 时, 它受弹簧作用力并用牛顿第二定律写出方程−kx = mx ¨方程的解为:x = A sin(ω0t + ϕ0) 即物体作简谐振动, 其中ω0 =kmω0是振动系统的固有角频率. m = m 1 + m 0 是振动系统的有效质量, m 0是弹簧的有效质量. A 是振幅, φ0是初相位, ω0有系统本身决定, A 和φ0由初始条件决定. 系统的振动周期: T =2πω0= 2π,mk=2πm 1 + m 0k在实验中改变质量,测出相应的T ,考虑T 与m 的关系,从而求出劲度系数与有效质量【实验过程】:1.将各装置装好并调到工作状态2.将滑块从平衡位置拉到某一合适位置,然后放手让滑块振动与此同时按下秒表,当振子振动10个周期时再按下秒表,记录下时间,重复测量10次得到每次的振动周期如下表所示: 次数 1 2 3 4 5 6 7 8 9 10 T/s 1.7531.7531.7531.7541.7431.7531.7561.7531.7501.7563.称量滑块质量为319.748g ,四个砝码的质量为67.862g ,六个砝码的质量为100.087g ,将四个砝码对称地放到滑块的两边,重复过程2,得到下表一的数据。
将六个砝码对称地放到滑块的两边,同样重复过程2,得到下表二的数据。
表一:次数 1 2 3 4 5 6 7 8 9 10T/s 1.922 1.932 1.934 1.934 1.919 1.925 1.925 1.918 1.928 1.929表二:次数 1 2 3 4 5 6 7 8 9 10T/s 2.004 2.019 1.984 2.000 1.996 1.994 1.997 1.994 1.985 1.9974.用逐差法处理上述数据得弹簧等效劲度系数k=4.39N/m弹簧等效质量m=0.218g丁朝阳2012301020025。
实验报告弹簧振子的简谐运动

实验报告弹簧振子的简谐运动本实验主要研究弹簧振子的简谐运动,探究其运动规律、振动周期等物理特性。
通过大量测试数据的分析和比较,得到一系列准确的实验结果,为进一步研究弹簧振子在物理学中的应用打下了坚实的实验基础。
首先,我们需要知道什么是弹簧振子。
在物理学中,弹簧振子是指以弹簧为主要构件的简谐振动系统。
简谐振动是指物体在平衡位置附近做来回振动的运动状态,其特点是周期性、振幅相等、周期时间相等等。
实验过程中,我们需要利用一种称为“托线法”的测量方式,即将一个弹簧振子的末端挂于一根轻质托线上,并调整托线为竖直状态,然后加以激励,使其作简谐振动。
通过测量振子的振幅、周期等参数,可以得到弹簧振子的运动规律。
对于弹簧振子的运动规律,我们可以通过实验采集的数据进行分析和推导。
例如,我们可以通过测量振幅和时间的关系,得到振子的加速度。
同时,我们还可以利用弹簧振子的重要物理特性——弹性系数,计算出其振动周期。
在实验室中,我们可以通过不同的测量方法,不断验证弹簧振子的运动规律,最终得到更加准确的实验结果。
此外,在实验过程中,我们还要注意控制实验环境的干扰因素,以确保实验数据的准确性和可靠性。
例如,我们需要保持实验室的温度、湿度等环境参数稳定,防止外部扰动对实验数据的影响。
并且,我们还需要对实验装置进行维护和校准,以确保测试时的设备状态和运行性能。
总之,弹簧振子的简谐运动是物理学中一个重要的实验课题,研究其运动规律可以为我们更全面地理解和应用简谐振动提供帮助。
通过本实验的学习和探究,我们不仅提高了理论知识的掌握程度,还加强了实验技能和数据处理能力。
相信这些能力的提升可以让我们更好地解决实际问题,为科学技术的发展作出更大的贡献。
气垫弹簧振子的简谐振动实验报告

××大学实验报告学院:×× 系:物理系专业:×× 年级:××级姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________实验四:气垫弹簧振子的简谐振动一.实验目的与要求:1. 考察弹簧振子的振动周期与振动系统参量的关系。
2. 学习用图解法求出等效弹簧的倔强系数和有效质量。
3. 学会气垫调整与试验方法。
二.实验原理:1.弹簧的倔强系数弹簧的伸长量x 与它所受的拉力成正比 F=kx k=XF 2.弹簧振子的简谐运动方程根据牛顿第二定律,滑块m 1 的运动方程为-k 1(x+x 01)-k 2(x-x 02)=m 22dt x d ,即-(k 1+k 2)x=m 22dtxd式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。
令k=k 1+k 2,则-kx= m 22dtxd解为x=A sin (ω0t+ψ),ω0=mk =mk k 21而系统振动周期T 0=2ωπ=2πk m当m 0《 m 1时,m 0=3sm ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成m 0=3m s )。
本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和k 。
三.主要仪器设备:气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。
四.实验内容及实验数据记录: 1.气垫导轨水平的调节使用开孔挡光片,智能测时器选在2pr 功能档。
让光电门A 、B 相距约60cm(取导轨中央位置),给滑块以一定的初速度(Δt 1和Δt 2控制在20-30ms 内),让它在导轨上依次通过两个光电门.若在同一方向上运动的Δt 1和Δt 2的相对误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。
2.研究弹簧振子的振动周期与振幅的关系先将测时器设置于6pd (测周期)功能档。
实验报告简谐振动研究报告

转换单位有:
得 =4.58N/m
作弹簧 2 的 关于 m 的图像:
3 / 15
Linear Regression for Data1_B: Y=A+B*X
Parameter Value Error ------------------------------------------------------------文档来自
于网络搜索
A 10.87357 0.01838 B 0.43555 8.29908E-4 ------------------------------------------------------------文档来自
于网络搜索
R SD N P ------------------------------------------------------------文档来自
于网络搜索
R SD N P ------------------------------------------------------------文档来自
于网络搜索
1 0.01694 7 <0.0001 ------------------------------------------------------------文档来自
Parameter Value Error ------------------------------------------------------------文档来自
于网络搜索
A 13.66211 0.0102 B 0.41766 4.6082E-4 ------------------------------------------------------------文档来自
实验报告弹簧振子的简谐运动

表格 2 振子周期和质量之间的关系
A = 40.0(cm)
m0(g) 453.8 505.0 556.3 608.5 659.7 710.9
TL (s) 2.08580 2.19880 2.30622 2.41073 2.50893 2.60368
2.08582 2.19866 2.30653 2.41077 2.50916 2.60376
vmax = ω0A ...............................................................................(5)
3.
简谐振动的机械能
在实验中, 任何时刻系统的振动动能为:
系别 同组姓名
___________ __________
实验日期 _________________________
教师评定 ______________
800.1 700.1
y = 4180.7x - 6.9347
600.1
500.1
t2/4pi2
400.1
300.1
200.1
100.1
0.1 0.000000
0.020000
0.040000
0.060000
有效质量;
2.
观测简谐振动的运动学特征;
3.
测量简谐振动的机械能.
【仪器用具】
气轨, 弹簧, 划块, 骑码, 挡光刀片, 光电计时器(精度:0.00001s), 电子天平(精度:0.01g), 游 标卡尺(游标刻度 0.02mm).
【实验原理】
k
m1
k
1.
弹簧振子的简谐运动方程
质量为 m1 的质点由两个弹簧拉着, 弹簧的劲度系数分别为 k1 和 k2, 如图所示. 当 m 偏离平 衡位置的距离为 x 时, 它受弹簧作用力:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 k 和 A 均不随时间变化,(8)式说明了简谐振动的机械能守恒.
【实验内容】
1.
测量弹簧振子的振动周期并考察振动周期和振幅的关系
滑块振动的振幅 A 分别取 10.0, 20.0, 30.0, 40.0 cm 时, 测量其相应的振动周期, 分析和讨论 实验结果可得出什么结论.
2.
研究振动周期和振子质量之间的关系
可见 v 随时间的变化关系也是一个简谐振动. 由(1)和(3)式消去 t, 有:
v2 = ω02(A2 − x2) ......................................................................(4) 即当 x=A 时, v=0; 当 x=0 时, v=±ω0A, 这时 v 的数值最大, 即
Tˉ (s) 2.085815 2.1987317 2.3063417 2.4105283 2.509015 2.6036133
T2/4π2 (s2) 0.083593852 0.092889629 0.102204509 0.111647049 0.12095652 0.130249403
拟合直线方程为:
0.080000
0.100000 m1
0.120000
0.140000
0.160000
0.180000
0.200000
由图可见可见线性关系得到很好的满足.
表格 3 验证机械能守恒
m0(g)
453.8 x(cm) U 型片两 次挡光时 间间隔 (s) 1 2 3 T(s) dX(cm)
m1(g) 6.935 56.4
T2 m0= 4180.678629(4π2) + (−6.934683751)
相关系数: r = 1 弹性系数: k=4.181kg/m 弹簧折合质量: m1 = 6.935g
系别 同组姓名
___________ __________
实验报告
班号 ____________ 姓名
第5页
______________
0.00887 0.00883 0.00890 0.00887 1.01
0.01151 0.01149 0.01184 0.01161 1.01
系别 同组姓名
___________ __________
实验报告
班号 ____________ 姓名
第6页
______________
实验日期 _________________________
系统的弹性势能为(以 m1 位于平衡位置时系统的势能为零):
1 Ep = 2kx2 .................................................................................(7)
系统的机械能为:
1
1
E = Ek + Ep =2mω02A2 = 2kA2 ................................................(8)
2π
m
m1 + m0
T =ω0 = 2π, k =2π
k .........................................(2)
2.
简谐振动的运动学特征
将(1)式对时间求微商, 有
dx v = dt = Aω0cos(ω0t + ϕ0) .....................................................(3)
1.1391
0.299
0.038 0.337 0.364
0.8697
0.174
0.176 0.350 0.364
我们可以看到各处动能和势能之和均基本与 kA2/2 一致, 与理论推导出来的结论相符.
【分析与讨论】
实验进行的很顺利。首先我进行了导轨的调平,不过似乎效果也不是很明显。主要的问题在 于无法准确的读到滑块的位置,因为没有明确的标示,另外光电计数器的位置也没法测得很 准。滑块放手的时候容易给它一个初速度,这很不好。
有效质量;
2.
观测简谐振动的运动学特征;
3.
测量简谐振动的机械能.
【仪器用具】
气轨, 弹簧, 划块, 骑码, 挡光刀片, 光电计时器(精度:0.00001s), 电子天平(精度:0.01g), 游 标卡尺(游标刻度 0.02mm).
【实验原理】
k
m1
k
1.
弹簧振子的简谐运动方程
质量为 m1 的质点由两个弹簧拉着, 弹簧的劲度系数分别为 k1 和 k2, 如图所示. 当 m 偏离平 衡位置的距离为 x 时, 它受弹簧作用力:
在滑快上加骑码(铁片). 对一个确定的振幅(A=40.0cm)每增加一个骑码测量一组 T.
作 T2‐m1 图,
如果 T 与 m1 的关系确如
所示,
则 T2‐m1 图应为一直线,
其斜率为4π2 k
,
截距为
4π2 k m0
.
用最小二乘法作直线拟合,
求出 k 和 m.
3.
研究振动系统的机械能是否守恒
固定振幅 A=40.0cm, 测出不同 x 处的滑快速度 v, 由此算出振动过程中系统经过每一个 x 处 的动能和势能.
系别 同组姓名
___________ __________
实验报告
班号 ____________ 姓名
第1页
______________
实验日期 _________________________
教师评定 ______________
【实验名称】气轨上弹簧振子的简谐运动
【目的要求】
1.
用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和
表格 2 振子周期和质量之间的关系
A = 40.0(cm)
m0(g) 453.8 505.0 556.3 608.5 659.7 710.9
TL (s) 2.08580 2.19880 2.30622 2.41073 2.50893 2.60368
2.08582 2.19866 2.30653 2.41077 2.50916 2.60376
10.0
2.08218
20.0
2.08489
30.0
2.08552
40.0
2.08606
2.08288 2.08526 2.08598 2.08599
2.08242 2.08489 2.08573 2.08598
TR (s) 2.08310 2.08469 2.08606 2.08586
2.08386 2.08500 2.08566 2.08594
系别 同组姓名
___________ __________
实验报告
班号 ____________ 姓名
第4页
______________
实验日期 _________________________
教师评定 ______________
【实验数据】
表格 1 周期振幅关系
m = 453.8(g)
振幅 A(cm) TL(s)
2.08606 2.19852 2.30622 2.41058 2.50926 2.60382
TR (s) 2.08571 2.19863 2.30626 2.41059 2.50922 2.60330
2.08585 2.19880 2.30641 2.41029 2.50871 2.60358
2.08565 2.19898 2.30641 2.41021 2.50881 2.60354
f = −(k1 + k1)
系别 同组姓名
___________ __________
实验报告
班号 ____________ 姓名
第2页
______________
实验日期 _________________________
教师评定 ______________
令k = k1 +k2 , 并用牛顿第二定律写出方程
实验报告
班号
______________
实验日期 _________________________
教师评定 ______________
1
1
Ek = 2mv2 = 2(m1 + m0)v2 ......................................................(6)
我们可以看到,随着振幅的增大,周期有变长的趋势,这是摩擦力作用的结果,但是振幅不 变,增大振子重量,得到的 T2, m,关系同线性相差不大,这可以从一定程度上反映气垫导 轨上的摩擦力大小跟振子重量关系不大,直观上想,确实也差不多应该如此。
最后一组数据,U 同 U’的相对差最大到了 10%左右,我想问题主要不在于摩擦,确是在于 位置测量的总不是很准,而且手在放开时候总会引入一些初速度。
左
0.01352 0.01387 0.01389 0.01376 1.01
m=m0+m1 (g) 460.735 66.4
左
0.00987 0.00996 0.00989 0.00991 1.01
x0(cm)
89 89.0
k(kg/m) A(cm)
4.551 102.0
40 116.8
左
右
右
0.00829 0.00823 0.00830 0.00827 1.01
方程的解为:
−kx = mx¨
x = A sin(ω0t + ϕ0) .................................................................(1) 即物体作简谐振动, 其中