生物统计学答案 第三章 几种常见的概率分布律
《生物统计学》习题集总参考答案

《生物统计学》习题集总参考答案第一章绪论一、名词解释1、总体:根据研究目的确定的研究对象的全体称为总体。
2、个体:总体中的一个研究单位称为个体。
3、样本:总体的一部分称为样本。
4、样本含量:样本中所包含的个体数目称为样本含量(容量)或大小。
5、随机样本:从总体中随机抽取的样本称为随机样本,而随机抽取是指总体中的每一个个体都有同等的机会被抽取组成样本。
6、参数:由总体计算的特征数叫参数。
7、统计量:由样本计算的特征数叫统计量。
8、随机误差:也叫抽样误差,是由于许多无法控制的内在和外在的偶然因素所造成,带有偶然性质,影响试验的精确性。
9、系统误差:也叫片面误差,是由于一些能控制但未加控制的因素造成的,其影响试验的准确性。
10、准确性:也叫准确度,指在调查或试验中某一试验指标或性状的观测值与真值接近的程度。
11、精确性:也叫精确度,指调查或试验研究中同一试验指标或性状的重复观测值彼此接近的程度。
二、简答题1、什么是生物统计?它在畜牧、水产科学研究中有何作用?答:(1)生物统计是数理统计的原理和方法在生物科学研究中的应用,是一门应用数学。
(2)生物统计在畜牧、水产科学研究中的作用主要体现在两个方面:一是提供试验或调查设计的方法,二是提供整理、分析资料的方法。
2、统计分析的两个特点是什么?答:统计分析的两个特点是:①通过样本来推断总体。
②有很大的可靠性但也有一定的错误率。
3、如何提高试验的准确性与精确性?答:在调查或试验中应严格按照调查或试验计划进行,准确地进行观察记载,力求避免认为差错,特别要注意试验条件的一致性,即除所研究的各个处理外,供试畜禽的初始条件如品种、性别、年龄、健康状况、饲养条件、管理措施等尽量控制一致,并通过合理的调查或试验设计,努力提高试验的准确性和精确性。
4、如何控制、降低随机误差,避免系统误差?答:随机误差是由于一些无法控制的偶然因素造成的,难以消除,只能尽量控制和降低;主要是试验动物的初始条件、饲养条件、管理措施等在试验中要力求一致,尽量降低差异。
生物统计学第三章 概率和概率分布(2)

的第x 1项,所以有“二项分布”这个名称。
0 0 1 1 x x n n [ (1 )]n Cn (1 )n Cn (1 )n1 Cn (1 )nx Cn (1 )0
x x (2) P(x) Cn (1 )nx [ (1 )]n 1n 1 x 0 x 0
2. 二项分布的常用符号
n :贝努利试验的次数(或 样本含量)
x : 在n次试验中事件A出现的次数,即二项分布变量X 的取值
: 事件A发生的概率 (每次试验都是恒定的 )
1 - : 事件A发生的概率
p(x) : X的概率函数即P(X x)
F( x) P(X x) p(xi )
2014-4-21
二项分布的程序计算方法
二项分布函数Binomdist(k,n,p,false/true) 某数阶乘的计算函数Fact 从给定元素数目m的集合中抽取若干n元素的排 列组合数C n m 计算函数Combin(m,n)
2014-4-21
二、 泊松分布 (Poisson Distribution)
2014-4-21
二项分布
(实例)
【例】已知 100 件产品中有 5 件次品,现从中任取一件,有 放回地抽取3次。求在所抽取的3件产品中恰好有2件次品的 概率 解:设 X 为所抽取的3件产品中的次品数,则根据二项分 布公式有
P X 2 C32 (0.05)2 (0.95)32 0.007125
二项分布变量的一些例子:
(1)连续抛硬币100次,统计总共出现正面的次数。次数X服从二项分布。 (2)调查250名新生婴儿的性别,记男婴的总数为X,则X服从二项分布。 (3)调查n枚种蛋的出雏数,出雏数X服从二项分布。 (4)n头病畜治疗后的治愈数X,X服从二项分布。
生物统计第三章 习题及答案

第三章 习题及答案(来源:《生物统计学学习指导》李春喜等,科学出版社,2008:p14-15)一、 填空1. 反映变量集中性的特征数是 ,反映变量离散性的特征数是 。
二、 判断1. 离均差平方和为最小。
( )2.将资料内所有观测值从小到大依次排列,位于中间的那个观测值,称为中位数。
( )3. 当所获得的数据资料呈偏态分布时,中位数的代表性优于算术平均数。
( )4. 中位数的计算结果因资料是否分组而有所不同。
( )5. 资料中出现次数最多的那个观测值或次数最多一组的组中值,称为众数。
( )6. 变异系数是样本变量的绝对变异量。
( )7.三、 选择题(《生物统计学题解及练习》杜荣赛 高等教育出版社。
2003.p164)1. 如果对各观测值加上一个常数α,其标准差( )。
A. 扩大α倍 B. 扩大α倍 C. 扩大2α倍 D. 不变2. 比较大学生和幼儿园孩子身高的变异度,应采用的指标是( )。
A. 标准差 B. 方差 C. 变异系数 D. 平均数3. 样本数据总和除以样本含量,称为( )。
A. 中位数B. 加权平均数C. 众数D. 算术平均数 【例3.1】 某种公牛站测得10头成年公牛的体重分别为500、520、535、560、585、600、480、510、505、490(kg ),求其平均体重。
由于Σx =500+520+535+560+585+600+480+510+505+490=5285,n =10代入(3—1)式得:.5(kg)528105285∑===n x x 即10头种公牛平均体重为528.5 kg 。
【例3.2】 将100头长白母猪的仔猪一月窝重(单位:kg )资料整理成次数分布表如下,求其加权数平均数。
表3—1 100头长白母猪仔猪一月窝重次数分布表组别 组中值(x )次数(f )f x 10— 15 3 4520— 25 6 150 30— 35 26 910 40— 45 30 1350 50— 55 24 1320 60— 65 8 520 70— 75 3 225 合计100 4520利用(3—2)式得:)(2.451004520kg f fx x ===∑∑ 即这100头长白母猪仔猪一月龄平均窝重为45.2kg 。
生物统计学 几种常见的概率分布律

非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9
生物统计学:第三章随机变量与概率分布

例:用复合饲料饲养动物,每天增重的kg数及 其相应的概率如下:
每天增重xi /kg 0.5
概率 0.10
1.0
0.20
1.5
0.50
2.0
0.20
问每天增重的数学期望和方差是多少?
解: μ=E(X)=1.40
E(X2 ) =2.15
var=σ2 = E(X2 ) –μ2=2.15-1.42=0.19
15.167
(4)随机变量的方差(variance) - 总体方差
度量随机变量取值的变异程度的指标,其定义式:
Var( X ) 2 ( xi )2 E[( X )2 ]
N
E[( X )2 ] E( X 2 2 X 2 )]
E(X 2) 2E(X ) 2
对于例1:
件的集合)的概率有以下关系:P(A )=1-P(A)
2 )条件概率
➢ 已知事件B发生的条件下,事件A发生的概率 称为条件概率,记为P(A︱B) P(A∣B)=P(AB)/P(B) P(B∣A)=P(AB)/P(A)
例:一周的天气情况如下:
周日
日
一
二
三
四
五
六
预报
晴
阴
雨
雨
雨
晴
雨
实际
晴
雨
阴
雨
雨
晴
晴
设A表示预报有雨的事件,B表示实际下雨的事件
些值的概率p(x1),p(x2),…,p(xn),…,排列起来,构 成了离散型随机变量的概率分布。常用概率分布表或概 率分布图表示(如,p28表与p29图3-1)。
例3.1 掷一次骰子所得点数的概率函数
f (x) 1 , x 1, 2, 3, 4, 5, 6 6
生物统计学课后习题解答

第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
第二章试验资料的整理与特征数的计算习题2.1 某地 100 例 30 ~ 40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。
【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种 10 个果穗长度 (cm) 的标准差和变异系数,并解释所得结果。
24 号: 19 , 21 , 20 , 20 , 18 , 19 , 22 , 21 , 21 , 19 ;金皇后: 16 , 21 , 24 , 15 , 26 , 18 , 20 , 19 , 22 , 19 。
几种常见的概率分布率分解课件

均匀分布的定 义
均匀分布是一种概率分布,其特点是随机变量在一定区间内取值的可能性是等可 能的。
在数学表达上,如果一个随机变量X服从某个区间[a, b]上的均匀分布,则其概率 密度函数f(x)可以表示为f(x)=1b−a,当x∈[a,b]时,f(x)=0,当x∉[a,b]时。
均匀分布的特点
均匀分布的期望值E(X)和方差Var(X) 分别为(a+b)/2和(b-a)^2/12。
泊松分布在生活中的应用
02
01
03
在物理学中,泊松分布用于描述放射性衰变过程中粒 子发射的次数。
在统计学中,泊松分布常用于二项分布的近似,当试 验次数很大而事件发生的概率很小时。
在计算机科学中,泊松分布在处理网络流量和计算机 系统中的任务调度等问题时非常有用。
04
二项分布
二项分布的定义
总结词
二项分布是一种离散概率分布,描述了在n次独立重复的伯努利试 验中成功的次数。
指数分布的期望值和方差是有限的,分别为1/λ和1/λ^2,其中λ是概率密度函数的 参数。
指数分布在生活中的应用
指数分布在可靠性工程中广泛应 用,用于描述产品寿命、故障间
隔时间等。
在排队论中,指数分布用于描述 顾客到达和服务时间等随机变量。
在保险精算中,指数分布用于计 算保费和准备金。
06
均匀分布
几种常见的概率分布率分解课 件
CONTENCT
录
• 概率分布率概述 • 正态分布 • 泊松分布 • 二项分布 • 指数分布 • 均匀分布
01
概率分布率概述
概率分布率的定 义
概率分布率
表示随机变量取值的概率规律。
定义方式
对于离散随机变量,概率分布律为P(X=xi)=pi,i=1,2,3...;对于连续随机变量, 概率分布函数为P(a≤X≤b)=∫[a,b]f(x)dx,其中f(x)为概率密度函数。
生物统计学习题集参考答案

生物统计学习题集参考答案Document number【980KGB-6898YT-769T8CB-246UT-18GG08】生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为连续变量和非连续变量。
2 样本统计数是总体参数的估计量。
3 生物统计学是研究生命过程中以样本来推断总体的一门学科。
4 生物统计学的基本内容包括_试验设置、统计分析_两大部分。
5 统计学的发展过程经历了古典记录统计学、近代描述统计学现代推断统计学 3个阶段。
6 生物学研究中,一般将样本容量 n大于等于 30称为大样本。
7 试验误差可以分为__随机误差、系统误差两类。
二、判断(-)1 对于有限总体不必用统计推断方法。
(-)2 资料的精确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为___数量性状资料_变量和__变量性状资料_变量。
2 直方图适合于表示__计量、连续变量_资料的次数分布。
3 变量的分布具有两个明显基本特征,即_集中性_和__离散性_。
4 反映变量集中性的特征数是__平均数__,反映变量离散性的特征数是__变异数(标准差)_。
5 样本标准差的计算公式s= √∑(x-x横杆)平方/(n-1)。
二、判断( - ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。
()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为 0.21875。
3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+表型共有1+5+10+10+5+1 = 32种。
(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P 它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。
3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。
今用一种新药治疗染上该病的5名患者,这5人均治愈了,问该项新药是否显著地优于一般疗法?(提示:计算一般疗法5人均治愈的概率,习惯上当P (5人均治愈)> 0.05时,则认为差异不显著;当P (5人均治愈)< 0.05时,则认为差异显著)。
答:设P (治愈)=φ= 0.60,则5人均治愈的概率为: P = p 5 = (0.60)5 = 0.077 76P >0.05所以该药物并不优于一般疗法。
3.5 给一组雌雄等量的实验动物服用一种药物,然后对存活的动物分成5只为一组,进行抽样试验。
试验结果表明,5只均为雄性的频率为1 / 243,问该药物对雌雄的致死作用是否一致?答:设p 为处理后雄性动物存活的概率,则3131243155===p p因此,对雄性动物的致死率高于对雌性动物的致死率。
3.6 把成年椿象放在−8.5℃下冷冻15分钟,然后在100个各含10只椿象的样本中计算死虫数,得到以下结果:死虫数 0 1 2 3 4 5 6 7 8 9 10 合计 样本数421282214821100计算理论频数,并与实际频数做一比较。
答:先计算死虫数C :C = 0×4+1×21+2×28+3×22+4×14+5×8+6×2+7×1 = 258 死虫率 φ= 258 / 1 000 = 0.258 活虫率 1 –φ= 0.742展开二项式(0.742 + 0.258)10 得到以下结果:0.050 59+0.175 90+0.275 22+0.255 19+0.155 28+0.064 79+0.018 774 +3.730 2×10-3+4.863 8×10-4+3.758 2×10-5+1.307×10-6将以上各频率乘以100得到理论频数,并将实际数与理论数列成下表。
死虫数 实际数 理论数 偏差 0 4 5.1 -1.1 1 21 17.2 3.8 2 28 27.5 0.5 3 22 25.5 -3.5 4 14 15.5 -1.5 5 8 6.5 1.5 6 2 1.9 0.1 7 1 0.4 0.6 8 0 0 0 9 0 0 0 103.7 人类染色体一半来自父亲,一半来自母亲。
在减数分裂时,46条染色体随机分配到两极,若不考虑染色体内重组,父亲的22条常染色体重新聚集在一极的概率是多少?12条父亲染色体和11条母亲染色体被分配到同一极的概率又是多少?常染色体的组合共有多少种?从上述的计算可以看出变异的广泛性,若再考虑染色体内重组,新组合染色体的数目就更惊人了。
答:(1)P (父亲22条常染色体重新聚集于同一极) = 7221038.221-⨯=⎪⎭⎫ ⎝⎛(2)P (12条父亲染色体和11条母亲染色体被分配到同一极)= 2161.0608388807835212121!12!11!231211==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛(3)共有222 = 4 194 304种。
3.8 生男生女的概率各为1/2,问在一个医院中,连续出生30名男孩及30名性别交错的新生儿的概率各为多少?答:P (连续出生30名男孩)=1030102313.98247410731121-⨯==⎪⎭⎫⎝⎛ P (30名性别交错不同者)=930106862.19128705361212-⨯==⎪⎭⎫⎝⎛3.9 在显性基因频率很低时,出现显性性状的个体一般为杂合子。
一名女子是蓬发者(显性性状),在她的全部六名孩子中,(1)其中第一名孩子,(2)其中第一和第二名孩子,(3)全部六名孩子,(4)任何一名曾孙(或曾孙女)中,发生蓬发的概率是多少?答: 设:P (子女蓬发)= φ= 1/2 P (子女非蓬发)= 1 – φ= 1/2则(1)P (其中第一名子女蓬发)=(1/2)(1/2)5 = 0.015 625 (2)P (只有第一和第二名孩子蓬发)= (1/2)2(1/2)4 = 0.015 625 (3)P (全部六名子女)= (1/2)6 = 0.015 625(4)P (任何一名曾孙蓬发)= P (任何一名儿子蓬发)P (任何一名孙子蓬发|蓬发的儿子)P (任何一名曾孙蓬发|蓬发的孙子)=(1/2×1/2) (1/2×1/2) (1/2×1/2) = 0.015 6253.10 在数量性状遗传中,F 1的性状介于双亲之间,F 2的性状向双亲方向分离。
这是一个二项分布问题,根据二项展开式,计算控制某性状的基因个数,假设出现亲本性状的频率为a 。
答:设:P (正效应基因频率)= p 则3.11 计算μ = 0.1,0.2,1,2,5时,泊松分布的γ1和γ2,绘制概率分布图并做比较。
pan a p n a p n lg lg lg lg ===答:泊松分布的概率函数:()μμE y y p y!=将μ = 0.1,0.2,1,2,5分别代入上式。
(1)μ =0.1时y p (y )0 0.904 8 1 0.090 48 2 0.004 524 3 0.000 150 8 40.000 003 77 101.0113162.31.01121======μγμγ(2)μ =0.2时y p (y )0 0.818 7 1 0.163 7 2 0.016 39 3 0.001 092 40.000 054 58 52.0111236.22.01121======μγμγ(3)μ = 1时y p (y ) 0 0.367 9 1 0.367 9 2 0.183 9 3 0.061 31 4 0.015 33 5 0.003 066 6 0.000 510 9 111111111121=======μγμγ(4)μ = 2时yp (y )y p (y ) 0 0.135 3 6 0.012 03 1 0.270 770.003 4372 0.270 7 8 0.000 8593 3 0.1804 9 0.000 190 9 4 0.090 22 10 0.000 038 19 50.036 09(5)μ = 5时y p (y )y p (y ) 0 0.006 738 9 0.036 27 1 0.033 69 10 0.018 13 2 0.084 22 11 0.008 424 3 0.140 4 12 0.003 434 4 0.175 5 13 0.001 321 5 0.175 5 14 0.000 471 7 6 0.146 2 15 0.000 157 2 7 0.104 4 16 0.000 049 14 80.065 28可见,随着μ的增大泊松分布越来越接近于“正态”的。
3.12 随机变量Y 服从正态分布N (5,42),求P (Y ≤0),P (Y ≤10),P (0≤Y ≤15),P (Y ≥5),P (Y ≥15)的值。
答:()()()()()()()()()()()21006.05.24515155.05.010********888.065105.079993.025.15.2450451515065105.025.1450035894.025.1451010=-=⎪⎭⎫⎝⎛--=≥=-=-=⎪⎭⎫⎝⎛--=≥=-=--=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=≤≤=-=⎪⎭⎫⎝⎛-=≤==⎪⎭⎫⎝⎛-=≤φφφφφφφφφφφφY P Y P Y P Y P Y P5.02111707.02414.1121121==μ=γ===μ=γ2.05117442.02361.2151121=======μγμγ或者使用SAS 程序计算,结果见下表:OBS MU SIGMA Y1 LOWERP Y2 UPPERP MIDP1 5 4 10 0.89435 . . .2 5 4 0 0.10565 . . .3 54 0 0.10565 15 0.00621 0.88814 4 5 4 . . 5 0.50000 . 5 5 4 . . 15 0.00621 .3.13 已知随机变量Y 服从正态分布N (0,52),求y 0 分别使得P (Y ≤y 0)=0.025, P (Y ≤y 0)=0.01, P (Y ≤y 0)=0.95及 P (Y ≥y 0)=0.90。
答:()()()()415.6283.15090.050190.0225.8645.15095.05095.063.11326.2501.05001.08.996.15025.050025.00000000000000000-=-=-=⎪⎭⎫⎝⎛--=≥==-=⎪⎭⎫⎝⎛-=≤-=-=-=⎪⎭⎫⎝⎛-=≤-=-=-=⎪⎭⎫⎝⎛-=≤y y y y Y P y y y y Y P y y y y Y P y y y y Y P φφφφ3.14 细菌突变率是指单位时间(细菌分裂次数)内,突变事件出现的频率。