江苏省—高一数学苏教必修四单元测试:三角函数1

合集下载

苏教版2018-2019学年高一数学必修4学业分层测评:第一章 三角函数1.2.1

苏教版2018-2019学年高一数学必修4学业分层测评:第一章 三角函数1.2.1

学业分层测评(三)任意角的三角函数(建议用时:45分钟)学业达标]一、填空题1.已知sin α=35,cos α=-45,则角α终边在第________象限.【解析】由sin α=35>0得,角α的终边在第一或第二象限;由cos α=-45<0得,角α的终边在第二或第三象限,故角α的终边在第二象限.【答案】二2.若角α的终边落在y=-x上,则tan α的值为________.【解析】设P(a,-a)是角α上任意一点,若a>0,P点在第四象限,tan α=-aa=-1,若a<0,P点在第二象限,tan α=-aa=-1.【答案】-13.有三个结论:①π6与5π6的正弦线相等;②π3与4π3的正切线相等;③π4与5π4的余弦线相等.其中正确的是________.【解析】在单位圆中画出相应角的正弦线、正切线,余弦线,分析可知①正确,②正确,③错误.【答案】①②4.在△ABC中,若sin A·cos B·tan C<0,则△ABC是________三角形.【解析】∵A,B,C是△ABC的内角,∴sin A>0.∵sin A·cos B·tan C<0,∴cos B·tan C<0,∴cos B和tan C中必有一个小于0,即B ,C 中必有一个钝角,故△ABC 是钝角三角形.【答案】 钝角5.(2016·扬州高一检测)如果α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于________.【解析】 ∵P (1,-3),∴r =12+(-3)2=2,∴sin α=-32. 【答案】 -326.(2016·南通高一检测)在(0,2π)内,使sin α>cos α成立的α的取值范围是________.【解析】 如图所示,当α∈⎝ ⎛⎭⎪⎫π4,5π4时,恒有MP >OM ,而当α∈⎝ ⎛⎭⎪⎫0,π4∪⎝ ⎛⎭⎪⎫5π4,2π时,则是MP <OM . 【答案】 ⎝ ⎛⎭⎪⎫π4,5π4 7.若α为第二象限角,则|sin α|sin α-cos α|cos α|=________.【解析】 由已知sin α>0,cos α<0,∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α(-cos α)=1+1=2. 【答案】 28.(2016·无锡高一检测)已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则α的取值范围是________.【解析】 因为cos α≤0,sin α>0,所以角α的终边在第二象限或y 轴非负半轴上.因为α的终边过点(3a -9,a +2),所以⎩⎪⎨⎪⎧3a -9≤0,a +2>0,所以-2<a ≤3. 【答案】 (-2,3]二、解答题9.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin (cos θ)cos (sin θ)(θ为第二象限角). 【导学号:06460008】 【解】 (1)∵340°是第四象限角,265°是第三象限角,∴sin 340°<0,cos 265°<0,∴sin 340°cos 265°>0.(2)∵θ为第二象限角,∴0<sin θ<1<π2,-π2<-1<cos θ<0,∴sin(cos θ)<0,cos(sin θ)>0,∴sin (cos θ)cos (sin θ)<0. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.【解】 (1)由1|sin α|=-1sin α可知sin α<0,∴α是第三或第四象限角或终边在y 轴的负半轴上的角.由lg cos α有意义可知cos α>0,∴α是第一或第四象限角或终边在x 轴的正半轴上的角.综上可知角α是第四象限的角.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1, 解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知sin α=y r =m |OM |=-451=-45.能力提升]1.(2016·南京高一检测)若α为第四象限角,则下列函数值一定是负值的是________.(填序号)①sin α2;②cos α2;③tan α2;④cos 2α.【解析】 由α为第四象限角,得2k π+3π2<α<2k π+2π(k ∈Z ),故k π+3π4<α2<k π+π(k ∈Z ).当k =2n (n ∈Z )时,α2∈⎝ ⎛⎭⎪⎫2n π+3π4,2n π+π, 此时,α2是第二象限角;当k =2n +1(n ∈Z )时,α2∈⎝ ⎛⎭⎪⎫2n π+7π4,2n π+2π,此时,α2是第四象限角. 故无论α2落在第二还是第四象限,tan α2<0恒成立.又4k π+3π<2α<4k π+4π,(k ∈Z ).故cos 2α有可能为正也有可能为负.【答案】 ③2.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n 等于________.【解析】 由题意得⎩⎪⎨⎪⎧ n =3m <0,m 2+n 2=10,∴⎩⎪⎨⎪⎧ m =-1,n =-3,∴m -n =2. 【答案】 23.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动23π弧长到达点Q ,则点Q 的坐标为________.【解析】 设Q (cos α,sin α),由2π3=α·1可知α=2π3,所以Q ⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,即Q ⎝ ⎛⎭⎪⎫-12,32. 【答案】 ⎝ ⎛⎭⎪⎫-12,32 4.已知:cos α<0,tan α<0.(1)求角α的集合; (2)试判断角α2是第几象限角;(3)试判断sin α2,cos α2,tan α2的符号.【解】 (1)因为cos α<0,所以角α的终边位于第二或第三象限或x 轴负半轴上.因为tan α<0,所以角α的终边位于第二或第四象限,所以角α的终边只能位于第二象限.故角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ π2+2k π<α<π+2k π,k ∈Z . (2)因为π2+2k π<α<π+2k π(k ∈Z ),所以π4+k π<α2<π2+k π(k ∈Z ).当k =2n (n ∈Z )时, π4+2n π<α2<π2+2n π(n ∈Z ).所以α2是第一象限角; 当k =2n +1(n ∈Z ), 5π4+2n π<α2<3π2+2n π(n ∈Z ),所以α2是第三象限角. (3)当α2为第一象限角时, sin α2>0,cos α2>0,tan α2>0. 当α2为第三象限角时,sin α2<0,cos α2<0,tan α2>0.。

苏教版高中数学必修4三角函数的图象和性质单元练习题

苏教版高中数学必修4三角函数的图象和性质单元练习题

高中数学学习材料 (灿若寒星 精心整理制作)三角函数的图象和性质单元练习题一、选择题(5×12=60分) 1.函数y =tan 35x 是A.周期为π的偶函数B.周期为53π的奇函数C.周期为53 π的偶函数 D.周期为π的奇函数2.已知f (x )=sin(x +π2 ),g(x )=cos(x -π2),则f (x )的图象A.与g(x )的图象相同B.与g(x )的图象关于y 轴对称C.向左平移π2个单位,得到g(x )的图象D.向右平移π2 个单位,得到g(x )的图象3.若x ∈(0,2π),函数y =sin x +-tan x 的定义域是A.( π2 ,π]B.( π2 ,π)C.(0,π)D.( 3π2 ,2π)4.函数y =sin(2x +5π2 )的图象的一条对称轴方程为A.x =5π4B.x =-π2C.x =π8D.x =π45.函数y =log cos1cos x 的值域是 A.[-1,1]B.(-∞,+∞)C.]0,(D.[0,+∞)6.如果|x |≤π4 ,那么函数f (x )=cos 2x +sin x 的最小值是A.2-12B.1-22C.-2+12D.-17.函数f (x )=sin x +5π2 ,g (x )=cos x +5π2,则A.f (x )与g (x )皆为奇函数B.f (x )与g (x )皆为偶函数C.f (x )是奇函数,g (x )是偶函数D.f (x )是偶函数,g (x )是奇函数 8.下列函数中,图象关于原点对称的是 A.y =-|sin x | B.y =-x ·sin |x | C.y =sin(-|x |) D.y =sin |x |9.要得到函数y =sin(2x -π4 )的图象,只要将y =sin2x 的图象A.向左平移π4B.向右平移π4C.向左平移π8D.向右平移π810.下图是函数y =2sin(ωx +ϕ)(|ϕ|<π2 )的图象,那么A .ω=1011 ,ϕ=π6B.ω=1011 ,ϕ=-π6C .ω=2,ϕ=π6D.ω=2,ϕ=-π611.在[0,2π]上满足sin x ≥12 的x 的取值范围是A.[0,π6]B.[π6 ,5π6 ]C.[π6 ,2π3]D.[5π6,π]12.函数y =5+sin 22x 的最小正周期为 A.2πB.πC. π2D. π4二、填空题(4×6=24分)13.若函数y =A cos(ωx -3)的周期为2,则ω= ;若最大值是5,则A = . 14.由y =sin ωx 变为y =A sin(ωx +ϕ),若“先平移,后伸缩”,则应平移 个单位;若“先伸缩,后平移”,则应平移 个单位即得y =sin(ωx +ϕ);再把纵坐标扩大到原来的A 倍,就是y =A sin(ωx +ϕ)(其中A >0). 15.不等式sin x >cos x 的解集为 . 16.函数y =sin(-2x +π3)的递增区间是 .17.已知f (x )=ax +b sin 3x +1(a ,b 为常数),且f (5)=7,则f (-5)= . 18.使函数y =2tan x 与y =cos x 同时为单调递增的区间是 .第Ⅱ卷一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13 14 15 16 17 18 三、解答题19.求y =2cos x -1lg (tan x +1)的定义域.20.已知:cos (-α)tan (π+α)cos (―π―α)sin (2π-α)=3,求:2cos 2(π2+α)+3sin (π+α)cos (π+α)cos (2π+α)+sin (-α)cos (―π2 ―α)的值.21.若f (x )=A sin(x -π3 )+B ,且f (π3 )+f (π2 )=7,f (π)-f (0)=23 ,求f (x ).22.若⎩⎨⎧=+=θθθθcos sin cos sin y x ,试求y =f (x )的解析式.23.设A 、B 、C 是三角形的三内角,且lgsin A =0,又sin B 、sin C 是关于x 的方程4x 2-2( 3 +1)x +k =0的两个根,求实数k 的值.三角函数的图象和性质单元复习题答案一、选择题 题号123456789101112答案 B D A B D B D B D C B C二、填空题13 π 5 14 |ϕ| |ωϕ| 15 x ∈(2k π+π4 ,2k π+5π4 )(k ∈Z)16 k π+5π12 ≤x ≤k π+11π12 (k ∈Z ) 17 -5 18 (kπ-π2 ,kπ)k ∈Z三、解答题19.求y =2cos x -1lg (tan x +1)的定义域.解:由题意得⎪⎩⎪⎨⎧≠+>+≥-11tan 01tan 01cos 2x x x ⇒⎪⎪⎩⎪⎪⎨⎧≠->≥0tan 1tan 21cos x x x ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≠+<<-+≤≤-πππππππππk x k x k k x k 432423232(k ∈Z )⇒2kπ-π4 <x <2kπ或2k π<x ≤2k π+π3 (k ∈Z )20.21.若f (x )=A sin(x -π3 )+B ,且f (π3 )+f (π2)=7,f (π)-f (0)=2 3 ,求f (x ).解:由已知得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=++-=32)0()(7)2()3()3sin()(f f f f B x A x f ππππ⇒⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-++=++⇒32322323721B A B A B A B A B f (x )=2sin(x -π3 )+322.若⎩⎨⎧=+=θθθθcos sin cos sin y x ,试求y =f (x )的解析式.解:由x =sin θ+cos θ⇒x 2=1+2sin θcos θ⇒sin θcos θ=x 2-12∴y =f (x )=sin θcos θ=x 2-1223.设A 、B 、C 是三角形的三内角,且lgsin A =0,又sin B 、sin C 是关于x 的方程4x 2-2( 3 +1)x +k =0的两个根,求实数k 的值. 解:已知得sin A =1,又0<A <π ∴A =π2 ,∴B +C =π2则sin B =sin(π2-C )=cos C∴⎪⎪⎩⎪⎪⎨⎧=⋅+=+4cos sin 213cos sin k C C C C ∴1+2sin C ·cos C =2+32∴2sin C cos C =23∴k =4sin C cos C = 3。

苏教版高中数学必修4三角函数测试.doc

苏教版高中数学必修4三角函数测试.doc

三角函数测试选择(5分×7=35分):1、若6α=-,则角α的终边在 【 】A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、已知角α的终边过点P(-4,3) ,则2sin cos αα+ 的值是 【 】A 、-1B 、1C 、52- D 、 25 3、函数44cos sin y x x =-的最小正周期是 【 】A 、2πB 、πC 、2πD 、4π 4、sin163sin 223sin 253sin313+等于 【 】A 、12-B 、12C 、32-D 、32 5、函数sin 22y x π⎛⎫=+ ⎪⎝⎭图象的一条对称轴是 【 】 A 、4x π=- B 、2x π=- C 、8x π= D 、54x π= 6、若32,1sin 1sin 2πθπθθ<<++-则式子可化简为 【 】 (A )2sin 2θ (B )2sin 2θ- (C )2cos 2θ (D )2cos 2θ- 7、设sin13cos13a =+,222cos 142b =-,62c =,则a,b,c 之间的大小关系是 【 】A 、b>c>aB 、c>a>bC 、a>c>bD 、c>b>a二.填充(5分×4=20分): 8、若的值是则)4tan(,21)4tan(,32)tan(παπββα+=-=+_ _______9、设函数lg(tan 1)y x =-,则该函数的定义域为10、函数x x y cos 2sin 2-=的值域为11、(1tan1)(1tan 2)(1tan 43)(1tan 44)(1tan 45)+++++=三.解答:12、证明:2212sin cos 1tan cos sin 1tan x x x x x x --=-+ (10分)13、已知tan 3,θ=求下列各式的值: (10分)(1)θθθθcos 3sin cos 2sin 3+- (2)1cos sin 2sin 2+-θθθ14、已知(0,)2πα∈,(,)2πβπ∈,35cos ,sin()513βαβ=-+=, 求sin α的值. (10分)15、已知函数22()53cos 3sin 4sin cos 33f x x x x x =++-⑴求()f x 的周期和最大值、最小值以及此时的x ; ⑵求()f x 的单调增区间; ⑶该函数的图象可由)(sin R x x y ∈=的图象经过怎样的变换得到? (15分)答案:一.选择:ADBBB DA二.填充:(8)81 (9)},24|{Z k k x k x ∈+<<+ππππ (10)[-2,2] (11)223三.解答:(12)(略) (13) (1)67 ; (2)1013 (14) 6533 (15) (1)f(x)=)32sin(4π+x , T=π 当Z k k x ∈+=,12ππ时,f(x)max=4; 当Z k k x ∈-=,125ππ时,f(x)min=-4. (2)[12,125ππππ+-k k ],Z k ∈. (3)f(x)的图象可以由y=sinx 的图象先向左平移3π个单位,然后将所得图象上的点的横坐标变为原来的21(纵坐标不变),再将得到图象上的点的纵坐标变为原来的4倍(横坐标不变)而得到.。

苏教版高中数学必修四:第1章-三角函数1.2.2课时作业(含答案)

苏教版高中数学必修四:第1章-三角函数1.2.2课时作业(含答案)

1.2.2 同角三角函数关系 课时目标1.理解同角三角函数的基本关系式.2.会运用平方关系和商的关系进行化简、求值和证明.1.同角三角函数的基本关系式(1)平方关系:________________.(2)商数关系:________________(α≠k π+π2,k ∈Z ) 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=________;cos 2α=________;(sin α+cos α)2=________________;(sin α-cos α)2=________________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=__________.(2)tan α=sin αcos α的变形公式: sin α=____________;cos α=____________.一、填空题1.化简sin 2α+cos 4α+sin 2αcos 2α的结果是________.2.已知α是第四象限角,tan α=-512,则sin α=______. 3.若sin α+sin 2α=1,,则cos 2α+cos 4α=________.4.若sin α=45,且α是第二象限角,则tan α的值等于________. 5.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值为________. 6.已知sin α-cos α=-52,则tan α+1tan α的值为________. 7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=______.8.已知sin αcos α=18且π4<α<π2,则cos α-sin α=________. 9.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________. 10.若cos α+2sin α=-5,则tan α=____.二、解答题11.化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.12.求证:1-2sin 2x cos 2x cos 2 2x -sin 2 2x =1-tan 2x 1+tan 2x.能力提升13.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).14.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系变形的出发点.1.2.2 同角三角函数关系知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22 cos αtan α sin αtan α作业设计1.1 2.-513 3.1 4.-435.-13解析 1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)(sin α+cos α)(sin α+cos α)(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13. 6.-8解析 tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8. 7.45解析 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ =tan 2θ+tan θ-2tan 2θ+1, 又tan θ=2,故原式=4+2-24+1=45. 8.-32解析 (cos α-sin α)2=1-2sin αcos α=34, ∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32. 9.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1, ∴k 2+6k -7=0,∴k 1=1或k 2=-7.当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34. 10.2解析 方法一 由⎩⎨⎧cos α+2sin α=-5cos 2α+sin 2α=1联立消去cos α后得(-5-2sin α)2+sin 2α=1. 化简得5sin 2α+45sin α+4=0∴(5sin α+2)2=0,∴sin α=-255. ∴cos α=-5-2sin α=-55. ∴tan α=sin αcos α=2. 方法二 ∵cos α+2sin α=-5,∴cos 2α+4sin αcos α+4sin 2α=5,∴cos 2α+4sin αcos α+4sin 2αcos 2α+sin 2α=5, ∴1+4tan α+4tan 2α1+tan 2α=5, ∴tan 2α-4tan α+4=0,∴(tan α-2)2=0,∴tan α=2.11.解 原式=(1-cos 4α)-sin 4α(1-cos 6α)-sin 6α=(1-cos 2α)(1+cos 2α)-sin 4α(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α)-sin 4αsin 2α(1+cos 2α+cos 4α)-sin 6α=1+cos 2α-sin 2α1+cos 2α+cos 4α-sin 4α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 12.证明 左边=cos 2 2x +sin 2 2x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x =1-tan 2x 1+tan 2x=右边. ∴原等式成立.13.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1 =sin 2 αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin2α-cos2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan2α-2cos2α-sin2α=2+2tan2α+2sin2α-sin2α=2+2tan2α+sin2α,右边=(1+2tan2α)(1+cos2α)=1+2tan2α+cos2α+2sin2α=2+2tan2α+sin2α∴左边=右边,∴原式成立.14.解(1)由韦达定理知:sin θ+cos θ=a,sin θ·cos θ=a. ∵(sin θ+cos θ)2=1+2sin θcos θ,∴a2=1+2a.解得:a=1-2或a=1+ 2∵sin θ≤1,cos θ≤1,∴sin θcos θ≤1,即a≤1,∴a=1+2舍去.∴sin3θ+cos3θ=(sin θ+cos θ)(sin2θ-sin θcos θ+cos2θ)=(sin θ+cos θ)(1-sin θcos θ)=a(1-a)=2-2.(2)tan θ+1tan θ=sin θcos θ+cos θsin θ=sin2θ+cos2θsin θcos θ=1sin θcos θ=1a=11-2=-1- 2.。

苏教版高中数学必修4三角函数单元测试

苏教版高中数学必修4三角函数单元测试

南京师范大学附属扬子中学三角函数(苏教版必修4)单元测试一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于:A.52B.-52C.51D.-51 2.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于:A.-23B.23C.21D.±23 3.已知sin α>sin β,那么下列命题成立的是:A.若α,β是第一象限角,则cos α>cos βB.若α,β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β4.若sin x +cos x =1,那么sin n x +cos nx 的值是:A .1B .0C .-1D .不能确定 5.函数y=-x ·cos x 的部分图象是:6.函数x x y sin cos 2-=的值域是: A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,17.已知:函数sin()y A x ωϕ=+,在同一周期内,当12x π=时取最大值4y =;当712x π=时,取最小值4y =-,那么函数的解析式为: A .4sin(2)3y x π=+ B.4sin(2)3y x π=-+C 4sin(4)3=+y x π.D.4sin(4)3y x π=-+8.在函数y =|tan x |,y =|sin(x +2π)|,y =|sin2x |,y =sin(2x -2π)四个函数中,既是以π为周期的偶函数,又是区间(0,2π)上的增函数个数是:A .1B .2C .3D .49.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为: A.21-B.23C.23-D 2110.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是:A.)32sin(π-=x y B.)62sin(π-=x y C .)62sin(π+=x yD .)62sin(π+=x y11.函数f(x)=cos(3x +φ)的图象关于原点中心对称,则:A .φ=π2B .φ=k π+π2C .φ=k πD .φ=2k π-π2(k ∈Z)12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于:A .1B .2524-C .257D .725-二.填空题:本大题共4小题,每小题4分,共16分。

苏教版高中数学必修四:第1章-三角函数1.3.2(1)课时作业(含答案)

苏教版高中数学必修四:第1章-三角函数1.3.2(1)课时作业(含答案)

1.3.2 三角函数的图象与性质(一)课时目标1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是________________;画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.一、填空题1.函数y =sin x 的图象的对称中心的坐标为________.2.函数f (x )=cos x +1的图象的对称中心的坐标是________.3.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.4.函数y =2cos x +1的定义域是________________. 5.函数y =|sin x |的图象的对称轴方程是________. 6.方程x 2-cos x =0的实数解的个数是________.7.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 8.在(0,2π)内使sin x >|cos x |的x 的取值范围是________. 9.方程sin x =lg x 的解的个数是________.10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是______. 二、解答题11.分别作出下列函数的图象. (1)y =|sin x |,x ∈R ; (2)y =sin|x |,x ∈R .12.作出下列函数的图象,并根据图象判断函数的周期性:(1)y =12(cos x +|cos x |);(2)y =|sin x +12|.能力提升13.求函数f (x )=lg sin x +16-x 2的定义域.14.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.1.3.2 三角函数的图象与性质(一)知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.(k π,0),k ∈Z 2.(k π+π2,1),k ∈Z3.y =-cos x解析∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x , ∴y =-cos x . 4.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 5.x =k π2,k ∈Z解析函数y =|sin x |的图象如右图所示,图中虚线与y 轴均为对称轴. 6.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.7.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].8.⎝⎛⎭⎫π4,3π4 解析∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π. 9.3解析 用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.10.4π 解析作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵OA =2,OC =2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.11.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,12.解 (1)y =12(cos x +|cos x |)=⎩⎪⎨⎪⎧cos x ,cos x ≥0,0, cos x <0.作出图象如图1,由图知周期为2π.图1(2)y =|sin x +12|=⎩⎨⎧sin x +12,sin x ≥-12,-sin x -12,sin x <-12.作出图象如图2,由图知周期为2π.图213.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据上图可得k的取值范围是(1,3).。

苏教版高中数学必修四学同步训练三角函数一Word含答案(2)

苏教版高中数学必修四学同步训练三角函数一Word含答案(2)

1.3.2 三角函数的图象与性质(一)一、填空题1.函数y =2cos x +1的定义域是______________. 2.在(0,π)内使sin x >|cos x |的x 的取值范围是________.3.方程sin x =x10的根的个数是________.4.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________.5.方程cos (52π+x )=(12)x 在区间(0,100π)内解的个数是________.6.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是________. 7.方程sin x =1-a 2在x ∈[π3,π]上有两个实数解,则a 的取值范围是________.8.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围为________. 二、解答题9.利用“五点法”画出函数y =2-sin x ,x ∈[0,2π]的简图. 10.已知0≤x ≤2π,试探索sin x 与cos x 的大小关系. 11.分别作出下列函数的图象. (1)y =|sin x |,x ∈R ; (2)y =sin|x |,x ∈R .三、探究与拓展 12.试问方程x100=cos x 是否有实数解?若有,请求出实数解的个数;若没有,请说明理由.答案1.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z2.⎝⎛⎭⎫π4,3π4 3.7 4.⎣⎡⎦⎤π4,5π4 5.100 6.4π 7.-1<a ≤1- 3 8.1<k <39.解 (1)(2)描点连线,图象如图所示:10.解 用“五点法”作出y =sin x ,y =cos x (0≤x ≤2π)的简图.由图象可知①当x =π4或x =5π4时,sin x =cos x ;②当π4<x <5π4时,sin x >cos x ;③当0≤x <π4或5π4<x ≤2π时,sin x <cos x .11.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,12.解 可借助函数y =x100和y =cos x 的图象,通过判断图象是否有交点来判定方程是否有实数解.如有交点,可通过讨论交点个数来获得实数解的个数.如图所示,y=x100的图象关于原点O对称,y=cos x的图象关于y轴对称,所以y轴两侧的交点是成对出现的.可以先在(0,+∞)上研究y=x100和y=cos x图象交点的情况.因为cos 100≈0.86<1,且当x>100时,y=x100是增函数,所以当x≥100时,y=x100≥1.又31π<100<32π,从图象中可得知直线y=x100与曲线y=cos x在(0,30π]中从0开始每相隔2π会有两个交点,所以,在(0,30π]上共有30个交点,在(30π,31π]上有一个交点.总之,当x>0时有31个交点.所以,函数y=x100和y=cos x的图象总共有2×31=62个交点,即方程x100=cos x的解一共有62个.。

苏教版高中数学必修四:第1章-三角函数1.3.2(2)课时作业(含答案)

苏教版高中数学必修四:第1章-三角函数1.3.2(2)课时作业(含答案)

1.3.2 三角函数的图象与性质(二)课时目标1.能准确迅速绘出正弦曲线和余弦曲线,并会利用图象研究函数的有关性质.2.掌握y =sin x 与y =cos x 的周期、最值、单调性、奇偶性等性质,并能解决相关问题.______时,y min =-1时,一、填空题1.函数y =sin x 和y =cos x 都递增的区间是________. 2.函数y =sin x -|sin x |的值域为________.3.函数f (x )=|sin x |的单调递增区间是__________. 4.函数y =sin 2x +sin x -1的值域是________.5.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________. 6.函数y =2cos 2x +5sin x -1的值域是________.7.sin ⎝⎛⎭⎫sin 38π与sin ⎝⎛⎭⎫cos 38π的大小关系是______. 8.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则α+β与π的大小关系是________. 9.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,则ω的最小值是________.10.已知奇函数f (x )在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角,则下列结论正确的序号是________.①f (cos α)>f (cos β); ②f (sin α)>f (sin β); ③f (sin α)>f (cos β); ④f (sin α)<f (cos β). 二、解答题11.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性.12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于________.14.设0<a ≤2,且函数f (x )=cos 2x -a sin x +b 的最大值为0,最小值为-4,求a ,b 的值.1.判断函数的奇偶性应坚持“定义域优先”原则,即先求定义域,看它是否关于原点对称.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断. 3.求三角函数值域或最值的常用求法将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.1.3.2 三角函数的图象与性质(二)知识梳理R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z )作业设计1.[2k π-π2,2k π],k ∈Z2.[-2,0]解析 y =sin x -|sin x |=⎩⎪⎨⎪⎧0, sin x ≥0,2sin x , sin<0.∴y ∈[-2,0].3.⎣⎡⎦⎤k π,k π+π2,k ∈Z 解析 f (x )=|sin x |的周期T =π,且f (x )在区间[0,π2]上单调递增,∴f (x )的单调增区间为[k π,k π+π2],k ∈Z .4.⎣⎡⎦⎤-54,1 解析 y =sin 2x +sin x -1=(sin x +12)2-54,当sin x =-12时,y min =-54;当sin x =1时,y max =1. 5.sin 3<sin 1<sin 2解析 ∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2), 即sin 3<sin 1<sin 2. 6.[0,2]解析 ∵2cos 2x +5sin x -1 =-2sin 2x +5sin x +1=-2(sin x -54)2+338.∵-1≤sin x ≤1,∴2cos 2x +5sin x -1∈[-6,4]. ∵2cos 2x +5sin x -1≥0,∴y ∈[0,2].7.sin ⎝⎛⎭⎫sin 38π>sin ⎝⎛⎭⎫cos 38π 解析 ∵cos 38π=sin π8,∴0<cos 38π<sin 38π<1.而y =sin x 在[0,1]上单调递增.∴sin ⎝⎛⎭⎫sin 38π>sin ⎝⎛⎭⎫cos 38π. 8.α+β>π解析 ∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增, ∴sin α>sin β⇔sin α>sin(π-β) ⇔α>π-β⇔α+β>π. 9.1992π 解析 要使y 在闭区间[0,1]上至少出现50个最小值,则y 在[0,1]上至少含49 34个周期,即⎩⎨⎧49 34T ≤1T =2πω,解得ω≥1992π.10.④解析 ∵α+β>π2,∴π2>α>π2-β>0,∴sin α>sin ⎝⎛⎭⎫π2-β,即sin α>cos β. ∴-1<-sin α<-cos β<0, ∵f (x )在[-1,0]上单调递减, ∴f (-sin α)>f (-cos β),∴-f (sin α)>-f (cos β),∴f (sin α)<f (cos β). 11.解 ∵sin x +1+sin 2x ≥sin x +1≥0,若两处等号同时取到,则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0. ∵f (-x )=ln(-sin x +1+sin 2x ) =ln(1+sin 2x -sin x )=ln(1+sin 2x +sin x )-1=-ln(sin x +1+sin 2 x )=-f (x ), ∴f (x )为奇函数.12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π,∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1, f (x )min =-3a +b =-5. 由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1, f (x )min =2a +b =-5.由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 13.32解析 要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6.∴ω的最小值为32.14.解 f (x )=-sin 2x -a sin x +b +1=-(sin x +a 2)2+b +1+a 24,∵0<a ≤2,∴-1≤-a2<0.当sin x =-a 2,f (x )max =b +1+a 24,当sin x =1时,f (x )min =b -a .故由题意知,⎩⎪⎨⎪⎧b +1+a 24=0,b -a =-4,∴⎩⎪⎨⎪⎧a =2,b =-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一单元检测—三角函数(1)
一、填空题
1、与︒880终边相同的角的集合为________________,最小正角是_____,最大负角是____。

2、一个半径为R 的扇形,其周长为R 4,则此扇形的面积为__________。

3、若0sin <x ,0cos >x ,则角是第_____象限角。

4、若5
4cos -
=x ,x 是第三象限角,则=x sin __________,=x tan __________。

5、若2tan =α,则=-+α
αααcos sin cos sin __________,=-αα22sin cos __________。

6、若函数1sin )(++=x b ax x f ,7)5(=f ,则=-)5(f __________。

7、已知1312)4cos(=-x π,40π<<x ,则=+)4
cos(x π__________。

8、在ABC ∆中,若B A 2sin 2sin =,则该三角形是_________________三角形。

9、函数2cos x x y =是________函数,)25sin()(π+=x x f 是_______函数(研究奇偶性)。

10、函数1)3sin(2--=π
x y 的最小值和最大值分别是__________,__________。

11、把函数)63sin(π
-=x y 图象上每一个点的横坐标变为原来的2倍(纵坐标不变),所得图象的解析式是____________________。

12、要得到函数)32sin(π+
=x y 的图象,只需将函数x y 2sin =的图象_______________。

13、函数)32sin(π
-=x y 的对称中心是____________________。

14、函数)ln(sin x y =的定义域是____________________。

15、函数)3
2tan(x y π=的周期是__________。

16、函数)0(sin 2)(> =ωωx x f 在]4
,3[ππ-
上递增,则ω的取值范围是____________。

二、解答题 17、已知角α的终边经过点)4,3(m m P -)0(≠m ,求α的三个三角函数值。

18、(1)求值:︒︒-+︒︒-750sin )1020cos(1110cos )1380sin(
(2)求值:)4
tan(4cos 45sin
2πππ-+-
(3)化简:x x x x x x x sin 1
tan cos sin cos sin sin 22--+--
(4)已知33)6cos(
=-απ,求)3
4(cos )65cos(2απαπ+++的值。

19、求下列函数的单调区间和最值。

(1))32cos(π-
=x y (2))3sin(x y -=π
20、在匀强磁场中,匀速运动的线圈所产生的电流强度I 和时间t 有如下关系:)6
2sin(3π+=t I ,),0[+∞∈t 。

(1)求这个函数的振幅和周期;
(2)求这个函数的单调减区间;
(3)作出这个函数在一个周期内的图象。

21、(1)设函数)cos()sin()(βπαπ+++=x b x a x f (其中βα,,,b a 为非零实数)
,若5)2006(=f ,求)2007(f 的值。

(2)函数)4sin(πω-
=x y 的周期是T ,且42<<T 。

①、求正整数ω; ②、设1ω是正整数ω的最大值,用“五点法”作出)4sin(1πω-
=x y 在一个周期内的图象; ③、说明函数)4sin(1πω-
=x y 的图象可由正弦曲线怎样变化而得。

相关文档
最新文档