经典逻辑推理

合集下载

第4章经典逻辑推理

第4章经典逻辑推理

• 正向推理:
• 正向推理是以已知事实作为出发点的一种推理,又 称数据驱动推理、前向链推理及前件推理等。根据 已知的实事,在知识库中查找当前可用的知识,构 成可适用的知识集KS,再安照冲突消解策略从KS中 选出一条知识进行推理,并将推出的新实事加入到 数据库中作为下一步推理的实事……再查找,再推 理,直到求得了所要求的解或者知识库中没有可用 的知识为止。
• 若yi {x1,x2,…, xn} 从上述集合中删除ui/yi
• 删除之后剩下的元素构成的集合称作与的乘积 ,记
为·。
2021/4/22
郑州大学振动工程研究所
24
• 例如设有如下代换:
• ={f(y)/x,z/y},={a/x,b/y,y/z} • 现在来求 ·
• 先做代换:
• {f(y) · /x, z·/y,a/x,b/y,y/z}={f(b)/x,y/y,a/x,b/y,y/z}
• 删除y/y,再删除a/x,b/y,得到 ·={f(b)/x,y/z}
满足条件1
满足条件2
2021/4/22
郑州大学振动工程研究所
对于Z,因为它不 属于xi,所以 y/z就不能删除
25
• 合一:
• 寻找项对变量的代换以使两表达式一致,就叫合一
• 设有公式集F={F1,F2,…,Fn},若存在一个代换使 得F1 = F2 =…= Fn ,则称为公式集F的一个合 一代换,且称F1,F2,…,Fn是可合一的。
• 非启发式推理——比如穷举式推理等。
2021/4/22
郑州大学振动工程研究所
8
• Ⅴ. 基于知识的推理、统计推理、直觉 推理(从方法论的角度划分)
• 基于知识的推理——根据已掌握的事实,通过 运用知识进行的推理。

50道经典逻辑推理题

50道经典逻辑推理题

都是些经典题目,记下来慢慢想~~~~智力题15个海盗抢得100枚金币后,讨论如何进展公正分配。

他们商定的分配原如此是:〔1〕抽签确定各人的分配顺序〔1,2,3,4,5〕;〔2〕由抽到1号签的海盗提出分配方案,然后5人进展表决,如果方案得到超过半数的人同意,就按照他的方案进展分配,否如此就将1号扔进大海喂鲨鱼;〔3〕如果1号被扔进大海,如此由2号提出分配方案,然后由剩余的4人进展表决,当且仅当超过半数的人同意时,才会按照他的提案进展分配,否如此也将被扔入大海;〔4〕依此类推。

这里假设每一个海盗都是绝顶聪明而理性,他们都能够进展严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。

同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢?智力题2(猜牌问题)- -猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16X扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。

约翰教授从这16X牌中挑出一X牌来,并把这X牌的点数告诉P先生,把这X牌的花色告诉Q先生。

这时,约翰教授问P先生和Q 先生:你们能从的点数或花色中推知这X牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这X牌。

Q先生:我知道你不知道这X牌。

P先生:现在我知道这X牌了。

Q先生:我也知道了。

听罢以上的对话,S先生想了一想之后,就正确地推出这X牌是什么牌。

请问:这X牌是什么牌?智力题3(燃绳问题)- -燃绳问题烧一根不均匀的绳,从头烧到尾总共需要1个小时。

现在有假如干条材质一样的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?智力题4(乒乓球问题)- -乒乓球问题假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。

条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?智力题5(喝汽水问题)- -喝汽水问题1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?智力题6(分割金条)- -分割金条你让工人为你工作7天,给工人的回报是一根金条。

15道经典逻辑推理问题及答案

15道经典逻辑推理问题及答案

15道经典逻辑推理问题1、已知某月,周二比周三天数多,周一比周日天数多,这个月5号是星期____。

2、某个月周一与周三都出现奇数次,则这个月的有_____天,这个月1号是星期_______。

3、20世纪著名数学家诺伯特.维纳,从小就智力超常,三岁时就能读写,十四岁时就大学毕业了。

几年后,他又通过了博士论文答辩,成为美国哈佛大学的科学博士。

在博士学位的授予仪式上,执行主席看到一脸稚气的维纳,颇为惊讶,于是就当面询问他的年龄。

维纳不愧为数学神童,他的回答十分巧妙:“我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,不重不漏。

这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。

”请问:维纳今年的年龄是_______岁?4、有3个孩子,他们摸了摸衣兜,把兜中的钱全部掏出来,共是320元,中100元的两张,50元的两张,10元的两张。

据了解每个孩子所带的纸币没有一个是相同的。

而且,没带100元纸币的孩子也没带10元的纸币,没带50元纸币的孩子也没带100元的纸币。

你能不能弄清楚,3个孩子原来各自带了多少和什么样的纸币?5、某一天有一个人进了一家小餐馆,点了一份简餐,吃着吃着就跟老板聊了起来。

老板说他有三个小孩,于是客人问他:“你的小孩几岁了?”老板:“让你猜好了!他们三个人的年龄乘起来等于72”客人想一想便说:“这样好像不够吧!”老板:“好吧!我再告诉你,你出去看一下我们这儿的门牌号码,就可以看到他们三个年龄的总和”客人出去看了一下,回来还是摇摇头回答:“还是不够啊!”老板微笑着说:“我最小的孩子喜欢吃那种巨蛋面包。

”请问三个小孩的年龄各是多少?6、一个经理有3个女儿,三个女儿年龄加起来是13,三个女儿的年龄乘积是经理自己的年龄,有一个下属已经知道经理的年龄但仍不知道三个女儿的年龄,这时经理说大女儿的头发是黑色的,然后下属就知道了三个女儿的年龄,问三个女儿的年龄各多少?7、甲、乙、丙、丁与小强五位同学一起比赛象棋,每 2 人都要赛 1 盘,到现在为止,甲已经赛了 4 盘,乙已经赛了 3 盘,丙已经赛了 2 盘,丁已经赛了 1 盘。

七个经典的逻辑推理故事

七个经典的逻辑推理故事
。三妹怎么找也找不到他。后来过了一个月,三妹把二姐
杀了。
问为什么?
第五个故事:半根火柴
有一个人在沙漠中,头朝下死了,身边散落着几个行李
箱子,死者赤身裸体,四周沙地上没有任何脚印和痕迹。
这个人手里紧紧地抓着半根火柴,推理这个人是怎么死的

第六个故事:满地木屑
马戏团里有两个侏儒,瞎子侏儒比另一个侏儒矮,马戏
第一个故事:企鹅肉
一个人在朋友家吃饭,问朋友这餐吃的是什么肉?朋友说
是企鹅肉,他不信,朋友于是带他去厨房,发现朋友家确
实有着他妻子的遗相自杀了。
为什么?
第二个故事:跳火车
一个人坐火车去邻镇看病,看完之后病全好了。回来的
头说:这河从没有长过水草。说到这时那男的突然跳到水
里,自杀了。
为什么?
第四个故事:葬礼的故事
有母亲和三个女儿一起生活,母亲死了,三姐妹去参
加葬礼,三妹在葬礼上遇见了一个很pp的男子,并对他一
见倾心。但是葬礼后那个男子就不见了,后来大姐不幸去
世,在葬礼上三妹又遇见了那个男人,但葬礼后又消失了
团只需要一个侏儒,马戏团里的侏儒当然是越矮越好了.两
个侏儒决定比谁的个子矮,个子高的就去自杀可是,在约定
比个子的前一天,瞎子侏儒也就是那个矮的侏儒已经在家里
自杀死了.在他的家里只发现木头做的家具和满地的木屑.
问他为什么自杀?
第七个故事:夜半敲门
一个人住在山顶的小屋里,半夜听见有敲门的,他打开
门却没有人,于是去睡了,等了一会又有敲门声,去开门
,还是没人,如是者几次。第二天,有人在山脚下发现死
尸一具,警察来把山顶的那人带走了。

经典的逻辑推理题

经典的逻辑推理题

经典的逻辑推理题展开全文第一题:懦弱的男人男人和女人坐皮艇在海上时,遭遇了鲨鱼,在鲨鱼离他们只有10米远的时候,男人着急的将女人推进了海里,并抽出匕首指着女人,说道,我们只能活一个!随即男人迅速划船逃离.女人很失望,对于这个懦弱自私的男人,她没有责怪他什么,只怪自己瞎了眼看上他...... 女人在默默的等待死亡, 五米,四米......鲨鱼速度很快,女人闭上了眼睛,忽然鲨鱼绕过了她,冲向皮艇,将男人拖下水,疯狂的撕咬男人,很快男人便尸骨无存.后来女人被路过的商船救了下来,女人发现船长望着海水在哭泣.女人问他哭什么?船长说出了原因,女人听后伤心欲绝,跳进海里自杀了.船长说了什么?第二题:迷路的男孩有个男人开车去机场赶班机,在到了一个三岔口时,看见一个男孩蹲在地上哭泣.男人下车询问男孩为什么哭,男孩说他迷路了.于是男人带着小男孩朝他描述的大致方向找去,在开了很久的车之后,男孩说看见了自己的家,便跳下车.这时,男人发现自己已经误了班机的起飞时间.男人在车里沮丧起来,突然又吓的直冒汗,然后又欣慰的笑了.是什么事造成男人这样的情感变化?第三题:地下酒吧的秘密在地下五层的酒吧中,一个年轻的小伙子坐在吧台边的椅子上焦急的等待.他的眼睛一动不动的注视着天花板上钟表上的时间.突然他像发了狂一样拿出手机,看了一眼,接着将手机狠狠的扔在地上,然后哭着大喊:救命!......他一系列行为的原因是什么?第四题:只有公主逃走了!王子带着公主逃出了鬼堡,到出口处时,魔鬼出现了,魔鬼说:“白色代表天使,与恶魔对立,所以穿白色连衣裙的公主不能通过,必须死在这里!”说着魔鬼掏出了匕首.结果王子却死了,公主逃出了鬼堡,为什么?第五题:死于心脏病.花匠和他的女朋友在谈论最近发生的一件变态的碎尸案件,谈着谈着,花匠的女朋友说:“还是谈点别的吧,比如你养的花!对了,你的后园里的花我可以参观一下吗?”花匠表示花还没有开好,等花开的时候再参观吧.女朋友点头同意了.傍晚的时候,花匠的女朋友偷偷进入的花匠的花园,在参观一周后,她突发心脏病死了.她到底受到了什么惊吓才导致心脏病的?第六题:妈妈的手小明睡在妈妈睡的大床旁边的小床上,每天夜里小明的妈妈都会从被窝里伸出手拉住小明的手,小明才能睡着.有一天,有人发现小明全家都死了.小明的爸爸被砍成了肉泥,小明的妈妈也死了,小明也死了。

第三讲(经典逻辑推理)

第三讲(经典逻辑推理)

公式集的合一
定义4.3 设有公式集F={F1,F2,…,Fn},若存在一个代 换λ使得
F1λ=F2λ=…=Fnλ 则称λ为公式集F的一个合一,且称F1,F2,…,Fn是 可合一的。 例如,设有公式集 F={P(x,y,f(y)),P(a,g(x),z)}
则下式是它的一个合一: λ={a/x,g(a)/y,f(g(a))/z}
2. 确定性、不确定性推理 3. 单调推理、非单调推理
推出的结论是否单调增加 4. 启发式、非启发式推理
所谓启发性知识是指与问题有关且能加快推理进程、 求得问题最优解的知识。 5. 基于知识的推理(专家系统) 、统计推理、直觉推理 (常识性推理)
4.1.3 推理的控制策略
推理的控制策略主要包括:推理方向、搜索策略、冲 突消解策略、求解策略及限制策略。 1. 正向推理(数据驱动推理) 正向推理的基本思想是:从用户提供的初始已知事实 出发,在知识库KB中找出当前可适用的知识,构成可 适用的知识集KS,然后按某种冲突消解策略从KS中 选出一条知识进行推理,并将推出的新事实加入到数 据库DB中,作为下一步推理的已知事实。在此之后, 再在知识库中选取可适用的知识进行推理。如此重复 进行这一过程,直到求得所要求的解。
3. 混合推理 先正向推理后逆向推理 先逆向推理后正向推理
4. 双向推理 正向推理与逆向推理同时进行,且在推理过程 中的某一步上“碰头”。
5. 求解策略 只求一个解,还是求所有解以及最优解。
6. 限制策略 限制搜索的深度、宽度、时间、空间等等。
4.1.4 模式匹配
所谓模式匹配是指对两个知识模式(例如两个谓词公 式、框架片断、语义网络片断)进行比较,检查这两 个知识模式是否完全一致或者近似一致。 模式匹配可分为确定性匹配与不确定性匹配。 确定性匹配是指两个知识模式完全一致,或者经过 变量代换后变得完全一致。

十大经典逻辑推理

十大经典逻辑推理

十大经典逻辑推理1.调查或数据分析——在逻辑推理中,数据和事实是非常重要的证据。

一个经典的方法是通过调查或数据分析来收集事实和数据,然后使用这些证据来推理和得出结论。

2. 演绎推理——演绎推理是一种根据已知事实推断出新事实的逻辑推理方法。

它基于一些已知的前提,从而推断出逻辑上必然成立的结论。

3. 归纳推理——归纳推理是基于一组具体的实例或情况,推断出普遍规律或原则的逻辑推理方法。

它依赖于从具体的实例中总结出一般性的规律。

4. 假设推理——假设推理是一种基于某个假设或前提得出结论的逻辑推理方法。

它依赖于通过推理假设,从而确定结论是否成立。

5. 反证法——反证法是一种逻辑推理方法,它通过反向推理来证明某个结论的正确性。

它基于假设结论是错误的,然后推理出与之矛盾的结论,从而证明原来的结论是正确的。

6. 等价转换——等价转换是一种将一个陈述式转化成另一个等价的陈述式的逻辑推理方法。

这个方法可以帮助我们发现两个陈述式之间的逻辑关系,从而得出更精确的结论。

7. 充分必要条件——充分必要条件是一种逻辑关系,它表明一个事件或状态是发生的充分条件和必要条件。

这个概念非常重要,因为它可以帮助我们确定某个事件或状态是否可能发生。

8. 诉诸权威——在逻辑推理中,有时我们需要采取一些特殊的方法来支持我们的观点。

诉诸权威是一种将某个权威或专家的意见作为证据的逻辑推理方法。

9. 基于类比的推理——基于类比的推理是一种将两个或多个不同的事物进行比较,从而得出结论的逻辑推理方法。

这个方法可以帮助我们理解新的情况或问题,并从中得出正确的结论。

10. 联想推理——联想推理是一种将多个不同的陈述式或概念联系在一起,从而得出结论的逻辑推理方法。

这个方法可以帮助我们发现多个事物之间的联系,从而得出更精确的结论。

经典逻辑推理题附答案

经典逻辑推理题附答案
已知哥哥步行的速度是每小时4公里,弟弟骑车速度是每小时20公里,鸽子的速度是每小时100公里,若鸽子掉头的时间不计,当弟弟撵上哥哥时,鸽子一共飞了多少公里?

33."鸡蛋
一位老太太挎了一筐鸡蛋到市场去卖。路上被一位骑车的人撞倒,鸡蛋全部打破。骑车人搀起老太太说:
“你带了多少鸡蛋?我赔你。”老太太说:
3
5."小孩
昨天,我的邻居告诉我,他家才6岁的小孩不小心从5楼的窗台上摔下来了。
我吃了一惊,忙问“摔的怎么样?”他说“还好,只是胳膊腿擦破了点皮,没伤着骨头。”我心里的石头落了地:
“这孩子的命可真大。”
3
6."问题小唱
什么菜煮不熟?什么菜洗不净?
什么蛋不能吃?什么饼不能吃?
什么河没有水?什么马不能骑?
善于寻找事物的异同点和内在的联系,善于发现事物的发展规律,是做好任何研究工作应具备的基本素质和条件。请你找找看,下面的两个数有多少相同点?
2468
357929."上楼
我上班的办公楼和我居住的家属楼都是6层楼,而我工作和居住的楼层均在3层。于是我想:
我每天所爬的台阶数是家住6楼,工作也在6楼的同事的几分之几呢?
“你知道我将怎样处决你吗?猜对了,我可以让你死得好受些,给你吃个枪子。要是你猜错了,那就对不起了,请你尝尝上绞刑架的滋味。”行刑官想:
“反正我说了算,说你对你就对,说你错你就错”没想到由于死刑犯聪明的回答,使得行刑官无法执行死刑,这个死刑犯绝处逢生。这个死刑犯是怎样回答的?
☆☆
19."怪城
有一个怪城,城里一边住着好人,一边住着坏人,城门左右各有一个人站岗,其中一个是好人,一个是骗子,好人总说实话,骗子总说假话。有个人到了这个城门后,忘记了哪边是好人,如果问错了人,就会走到骗子住的地方,吃亏上当。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.3 推理的控制策略
推理的控制策略主要包括:推理方向、搜索策略、 推理的控制策略主要包括:推理方向、搜索策略、冲 突消解策略、求解策略及限制策略。 突消解策略、求解策略及限制策略。 正向推理(数据驱动推理) 1. 正向推理(数据驱动推理) 正向推理的基本思想是: 正向推理的基本思想是:从用户提供的初始已知事实 出发, 中找出当前可适用的知识, 出发,在知识库KB中找出当前可适用的知识,构成可 适用的知识集KS,然后按某种冲突消解策略从KS中 选出一条知识进行推理, 选出一条知识进行推理,并将推出的新事实加入到数 作为下一步推理的已知事实。在此之后, 据库DB中,作为下一步推理的已知事实。在此之后, 再在知识库中选取可适用的知识进行推理。 再在知识库中选取可适用的知识进行推理。如此重复 进行这一过程,直到求得所要求的解。 进行这一过程,直到求得所要求的解。
求取最一般合一
差异集:两个公式中相同位置处不同符号的集合。 差异集:两个公式中相同位置处不同符号的集合。 例:F1:P(x,y,z), F2:P(x,f(a),h(b)),则D1={y,f(a)}, D2={z,h(b)} 是差异集。 是差异集。 求取最一般合一的算法: 求取最一般合一的算法: 1. 令k=0,Fk=F, σk=ε。 ε是空代换。 是空代换。 。 是空代换 2. 若Fk只含一个表达式,则算法停止,σk就是最一般合一。 只含一个表达式,则算法停止, 就是最一般合一。 3. 找出 k的差异集 k。 找出F 的差异集D 4. 若Dk中存在元素 k和tk,其中 k是变元,tk是项,且xk不在 中存在元素x 其中x 是变元, 是项, tk中出现,则置: 中出现,则置:
代换的复合
定义4.2 设 θ= {t1/x1,t2/x2,…,tn/xn} λ= {u1/y1,u2/y2,…,um/ym} 是两个代换,则这两个代换的复合也是一个代换,它是 从 {t1λ/x1,t2λ/x2,…,tnλ/xn,u1/y1,u2/y2,…,um/ym} 中删去如下两种元素: tiλ/xi 当tiλ=xi ui/yi 当yi∈{x1,x2,…,xn} 后剩下的元素所构成的集合,记为θ°λ 。 注: tiλ表示对ti运用λ进行代换。 θ°λ就是对一个公式F先运用θ进行代换,然后再运用λ进 行代换:F( θ°λ )=(F θ)λ
4.1.5 冲突消解策略
冲突:多个知识都匹配成功。 冲突:多个知识都匹配成功。 正向推理: 正向推理:
多条产生式前件都与已知事实匹配成功
逆向推理: 逆向推理:
多条规则后件都和同一个假设匹配成功
冲突消解的基本思想都是对知识进行排 序。
几种冲突消解策略
1. 按针对性排序
优先选用针对性强的产生式规则。 优先选用针对性强的产生式规则。
4.1.4 模式匹配
所谓模式匹配是指对两个知识模式(例如两个谓词公 式、框架片断、语义网络片断)进行比较,检查这两 个知识模式是否完全一致或者近似一致。 模式匹配可分为确定性匹配与不确定性匹配。 确定性匹配是指两个知识模式完全一致,或者经过 变量代换后变得完全一致。 知识:IF father(x,y) and man(y) THEN son(y,x) 事实:father(李四,李小四) and man(李小四) 不确定性匹配是指两个知识模式不完全一致,但是 它们的相似程度又在规定的限度内。
Fk+1=Fk{tk/xk} σK+1=σk°{tk/xk} k=k+1 然后转(2)。若不存在这样的 k和tk则算法停止。 则算法停止。 然后转 。若不存在这样的x
5. 算法终止,F的最一般合一不存在。 算法终止, 的最一般合一不存在 的最一般合一不存在。
求取最一般合一的例子
例如,设 F={P(a,x,f(g(y))),P(z,f(z),f(u))} 求其最一般合一。 1. 令F0=F, σ0=ε。F0中有两个表达式,所以σ0不是最一般合一。 2. 差异集:D0={a,z}。代换: {a/z} 3. F1= F0 {a/z}={P(a,x,f(g(y))),P(a,f(a),f(u))} 。 σ1=σ0°{a/z}={a/z} 4. D1={x,f(a)} 。代换: {f(a)/x} 5. F2=F1{f(a)/x}={P(a,f(a),f(g(y))),P(a,f(a),f(u))} 。 σ2=σ1°{f(a)/x}={a/z,f(a)/x} D2={g(y),u} 。代换: {g(y)/u} 6. F3=F2{g(y)/u}={P(a,f(a),f(g(y))),P(a,f(a),f(g(y)))} 。 σ3=σ2°{g(y)/u}={a/z,f(a)/x,g(y)/u}
令θ= {t1/x1,t2/x2,…,tn/xn}为一个代换,F为表达 式,则Fθ表示对F用ti代换xi后得到的表达式。 Fθ称为F的特例。 规则: IF father(x,y) and man(y) THEN son(y,x) 事实: father(李四,李小四) and man(李小四) F=father(x,y) ∧ man(y) θ= {李四/X,李小四/Y} Fθ= father(李四,李小四) ∧ man(李小四) 结论: son(李小四,李四)
代换的例子
例如,设有代换
θ= {f(y)/x,z/w} λ= {a/x,b/y,w/z} 则 θ°λ={z} ={f(b)/x, w/w, a/x, b/y, w/z} ={f(b)/x,w/z}
公式集的合一
定义4.3 设有公式集F={F1,F2,…,Fn},若存在一个代 换λ使得 F1λ=F2λ=…=Fnλ 则称λ为公式集F的一个合一,且称F1,F2,…,Fn是 λ F F 可合一的。 例如,设有公式集 F={P(x,y,f(y)),P(a,g(x),z)} 则下式是它的一个合一: λ={a/x,g(a)/y,f(g(a))/z} 一个公式集的合一一般不唯一。
把规则按照下上文分组,并只能选取组中的规则。 把规则按照下上文分组,并只能选取组中的规则。
6. 按冗余限制排序
冗余知识越少的规则先推。 冗余知识越少的规则先推。
7. 按条件个数排序
条件少的规则先推。 条件少的规则先推。
4.2 自然演绎推理
从一组已知为真的事实出发, 从一组已知为真的事实出发 , 直接运用 经典逻辑的推理规则推出结论的过程, 经典逻辑的推理规则推出结论的过程 , 称为自然演绎推理。 其中, 称为自然演绎推理 。 其中 , 基本的推理 规则是P规则 规则、 规则 假言推理、 规则、 规则是 规则、 T规则、假言推理 、拒取 式推理等。 式推理等。 假言推理的一般形式
2. 按已知事实的新鲜性排序
优先选用与较多新事实匹配的规则。 优先选用与较多新事实匹配的规则。
3. 按匹配度排序
在不确定性匹配中,计算两个知识模式的相似度(匹配度 匹配度), 在不确定性匹配中,计算两个知识模式的相似度(匹配度), 并对其排序,相似度高的规则先推。 并对其排序,相似度高的规则先推。
4. 按领域问题特点排序 5. 按上下文限制排序
定理证明即证明P→Q(P∨Q)的永真性。 ∨ 的永真性 的永真性。 定理证明即证明 根据反证法,只要证明其否定(P∧ 根据反证法,只要证明其否定 ∧Q) 不可满足性即可。 不可满足性即可。 海伯伦(Herbrand)定理为自动定理证明 海伯伦 定理为自动定理证明 奠定了理论基础;鲁滨逊(Robinson)提出 奠定了理论基础;鲁滨逊 提出 的归结原理使机器定理证明成为现实。 的归结原理使机器定理证明成为现实。
P, P →Q Q
拒取式推理的一般形式
P →Q,Q P
P规则:在推理的任何步骤都可以引入前提。 规则:在推理的任何步骤都可以引入前提。 规则:推理时, T规则:推理时,如果前面步骤中有一个或者多 个公式永真蕴含公式S 则可把S 个公式永真蕴含公式S,则可把S引入推理过程 中。
4.3 归结演绎推理
变量代换
定义4.1 代换是一个形如 {t1/x1,t2/x2,…,tn/xn} 的有限集合。 其中t1,t2,…,tn是项(常量、变量、函数); x1,x2,…,xn是(某一公式中)互不相同的变元; ti/xi表示用ti代换xi t x 不允许ti与xi相同,也不允许变元xi循环地出现 在另一个tj中。 例如: {a/x,f(b)/y,w/z}是一个代换 {g(y)/x,f(x)/y}不是代换 {g(a)/x,f(x)/y}是代换
3. 混合推理 先正向推理后逆向推理 先逆向推理后正向推理 4. 双向推理 正向推理与逆向推理同时进行, 正向推理与逆向推理同时进行,且在推理过程 中的某一步上“碰头” 中的某一步上“碰头”。 5. 求解策略 只求一个解,还是求所有解以及最优解。 只求一个解,还是求所有解以及最优解。 6. 限制策略 限制搜索的深度、宽度、时间、空间等等。 限制搜索的深度、宽度、时间、空间等等。
N 在KB中找出所有能导出 该假设的知识送入KS 有此事实? Y 从KS中选出一条知 识,并将该知识的 一个运用条件作为 新的假设目标 该假设成立, 并将此事实存 入数据库 N
动物识别的例子
已知事实:一动物 有毛 吃草,黑条纹} 有毛, 已知事实:一动物{有毛,吃草,黑条纹
R1:动物有毛 → 哺乳类 : R2:动物产奶 → 哺乳类 : R3:哺乳类 ∧ 吃肉 → 食肉类 : R4:哺乳类 ∧ 吃草 → 有蹄类 : R5:食肉类 ∧ 黄褐色 ∧ 有斑点→ 猎狗 : 有斑点 R6:食肉类 ∧ 黄褐色 ∧ 黑条纹 虎 黑条纹→ : R7:有蹄类 ∧ 长脖 → 长颈鹿 : R8:有蹄类 ∧ 黑条纹 → 斑马 :
最一般的合一
定义4.4 设σ是公式集 的一个合一,如果对任一个合一 是公式集F的一个合一 定义 是公式集 的一个合一,如果对任一个合一θ 都存在一个置换λ,使得θ=σ°λ 都存在一个置换 ,使得 ° 则称σ是一个最一般的合一 是一个最一般的合一。 则称 是一个最一般的合一。 (1)置换过程是一个用项代替变元的过程,因此是一 )置换过程是一个用项代替变元的过程, 个从一般到特殊的过程。 个从一般到特殊的过程。 (2) 最一般合一是唯一的。 ) 最一般合一是唯一的。
相关文档
最新文档