PCB图布线的经验总结
PCB线路板设计技巧总结5篇

PCB线路板设计技巧总结5篇第一篇:PCB线路板设计技巧总结PCB线路板设计技巧总结~~~发表于:2009-01-26 13:23:53元件布局技巧:1.基本布局:(1)尽可能缩短高频元件之间的连线,设法减小其分布参数和相互之间的电磁干扰,易于相互干扰的元器件不能离得太近,输入和输出应尽量远离。
(2)当元件或导线之间可能有较高电位差时,应该加大其距离,以免放电击穿,引起短路。
(3)重15g以上的元件不能只靠导线焊盘来固定,应用支架或卡子固定。
(4)电位器、可变电容、可调电感线圈或微动开关等可调元件,应考虑整机的结构要求。
若是机外调节,其位置应考虑调节旋钮在机箱面板上的位置,若是机内调节,应考虑放在印刷板上能方便调节的地方。
(5)留出PCB板固定支架,定位螺孔和连接插座所用的位置。
2.按电路功能单元,对电路的全部器件布局:(1)通常按信号的流向逐个安排电路单元的位置,以便与主信号流通方向保持一致。
(2)以每个功能电路的核心元件为中心,围绕它布局。
元件应均匀,整齐,紧凑地排列在PCB上,尽量减少和缩短各单元之间的引线和连线。
(3)在高频下工作的电路,要考虑元件之间的分布参数,一般电路的元件应尽可能平行排列,这样不仅美观,还可以使装焊方便,易于批量生产。
(4)位于边上的元器件,应离PCB板边缘至少2mm。
PCB板的最佳形状是矩形(长宽为3:2或4:3),板面尺寸大于200mm*150mm时,应考虑PCB板所受的机械强度。
布线技巧:(1)输入、输出的导线应尽量避免相邻或平行,最好加线间地线,以免发生反馈。
高电平信号和低电平电路不要相互平行,特别是高阻抗、低电平信号电路,应尽可能靠近低电位。
PCB板两面的导线宜相互垂直,斜交或弯曲走线,应避免平行,以减小寄生耦合。
(2)在安装电源走线时,每1-3个TTL集成电路,2-6个CMOS 集成电路,都应在靠近集成块地方设旁路电容。
(3)PCB板导线的最小宽度主要由导线与绝缘基板间的粘附强度和流过其电流值决定。
PCB布线的技巧及注意事项

PCB布线的技巧及注意事项1.确定信号的类型与分类:首先需要明确信号的类型,如模拟信号、数字信号、高频信号等。
不同类型的信号在布线时需要采取不同的方式和策略。
此外,还需要将信号进行分类,根据其功能和特性确定合适的布线规则。
2.分层布线:为了降低互穿干扰和提高信号完整性,可以采用分层布线的方式。
将信号分散在不同的层次,如将地平面和电源平面分开,通过适当的间隔和规则来设计信号路径,能够有效减少信号串扰和辐射噪声。
3.地线与电源线的布线:地线是PCB布线中非常重要的一条线路,它负责回流电流和信号的引用。
在布线中,需要确保地线的连续性和低阻抗,避免开环和电流浪涌。
电源线的布线也需要注意稳定性和电流传输的需求,尽量避免电源线与信号线相互干扰。
4.信号线的长度匹配:如果需要传输同步或高速信号,信号线的长度匹配是十分重要的。
对于时序敏感的信号,如DDR总线,需要确保信号线的长度尽量相等,以避免信号的延迟差异影响其同步性能。
5.信号线的走线规则:对于高速信号,需要遵循规范的匹配走线方式,如使用直线、星形或者差分线走线等。
避免使用锯齿形的走线方式,以降低信号的串扰和辐射。
6.分区布线:如果电路较为复杂,可以将电路划分为不同的区域进行布线,以降低信号干扰和简化布线的复杂性。
每个区域可以独立进行布线并进行适当的隔离。
7.路径优化:在布线过程中,需要考虑信号的传输路径和相互之间的交叉。
尽量采用最短路径和避免交叉的方式来优化布线,以减少信号的延迟和干扰。
8.保护地线和信号线的距离:在布线中,需要保持地线和信号线的一定距离,避免信号线受到地线干扰。
一般情况下,地线和信号线的距离应大于5倍的线宽。
9.避免锯齿形走线:尽量避免使用锯齿形走线,如信号线多次转弯或穿越。
这样的走线方式容易导致信号串扰和辐射噪声。
10.引脚分配与走线规划:在进行PCB布线之前,需要进行引脚分配和走线规划。
将输入/输出端口、复位线、时钟线等关键信号的引脚安排在合适的位置,以提高布线的可行性和稳定性。
PCB板布线技巧

PCB板布线技巧1.合理规划布局:在开始布线之前,应该先对PCB板进行合理规划布局。
要根据电路的功能和信号传输的需求,将元器件和功能块合理地部署在PCB板上。
在布置元器件时,应该注意使信号路径尽可能的短,并保持良好的信号完整性。
2.地线和电源线设计:地线和电源线是电路中非常重要的信号线。
在布线时,要保证地线和电源线的宽度足够大以承受电流负载,并且要尽量减小地线和电源线的阻抗。
此外,还需要注意地线和电源线之间的间距,以避免相互干扰。
3.运用差分信号线:对于高速传输信号线,可以采用差分信号线布线。
差分信号线可以提高信号的抗干扰能力,减小信号线对周围环境的敏感度。
在布线时,应保持差分信号线的长度相等,并保持一定的间距,以避免互相干扰。
4.控制信号和高频信号的布线:对于控制信号和高频信号,布线时需要格外注意。
控制信号线应尽量和地线分开,以减小相互干扰的可能性。
对于高频信号线,应尽量避免走直线,而是采用更曲折的布线方式,以减小信号的辐射和串扰。
5.设计适当的信号地方向:在布线时,需要合理地选择信号的走向。
对于高频信号和运放信号,应尽量避免穿越整个板子。
信号线的走向应避免和其他高频信号和电源线相交,以减小相互干扰的可能性。
6.控制阻抗匹配:在布线中,要注意保持信号线的阻抗匹配。
如果信号线的阻抗不匹配,会导致信号的反射和损耗,从而影响信号的传输和质量。
通过控制信号线的宽度和间距,可以实现阻抗的匹配。
7.确保信号完整性:在布线时,需要注意信号的完整性。
可以通过增加电容和电感等元器件来实现信号的滤波和隔离,以减小干扰和噪声对信号的影响。
此外,还可以采用差分对地布线来降低信号的串扰。
8.注意电流回路:在布线时,需要特别关注电流回路的设计。
电流回路的布线需要注意回路的完整性,避免出现回路断开或者电流集中在其中一小段线路上的情况,从而引起电压降低和电流过载的问题。
以上就是PCB板布线的一些技巧。
在实际设计过程中,还需要根据具体的电路设计要求和特性进行合理的布线设计,从而实现电路性能和可靠性的最优化。
PCB图布线的经验总结

PCB图布线的经验总结1.组件布置组件布置合理是设计出优质的PCB图的基本前提。
关于组件布置的要求主要有安装、受力、受热、信号、美观六方面的要求。
1.1.安装指在具体的应用场合下,为了将电路板顺利安装进机箱、外壳、插槽,不致发生空间干涉、短路等事故,并使指定接插件处于机箱或外壳上的指定位置而提出的一系列基本要求。
这里不再赘述。
1.2.受力电路板应能承受安装和工作中所受的各种外力和震动。
为此电路板应具有合理的形状,板上的各种孔(螺钉孔、异型孔)的位置要合理安排。
一般孔与板边距离至少要大于孔的直径。
同时还要注意异型孔造成的板的最薄弱截面也应具有足够的抗弯强度。
板上直接"伸"出设备外壳的接插件尤其要合理固定,保证长期使用的可靠性。
1.3.受热对于大功率的、发热严重的器件,除保证散热条件外,还要注意放置在适当的位置。
尤其在精密的模拟系统中,要格外注意这些器件产生的温度场对脆弱的前级放大电路的不利影响。
一般功率非常大的部分应单独做成一个模块,并与信号处理电路间采取一定的热隔离措施。
1.4.信号信号的干扰PCB版图设计中所要考虑的最重要的因素。
几个最基本的方面是:弱信号电路与强信号电路分开甚至隔离;交流部分与直流部分分开;高频部分与低频部分分开;注意信号线的走向;地线的布置;适当的屏蔽、滤波等措施。
这些都是大量的论着反复强调过的,这里不再重复。
1.5.美观不仅要考虑组件放置的整齐有序,更要考虑走线的优美流畅。
由于一般外行人有时更强调前者,以此来片面评价电路设计的优劣,为了产品的形象,在性能要求不苛刻时要优先考虑前者。
但是,在高性能的场合,如果不得不采用双面板,而且电路板也封装在里面,平时看不见,就应该优先强调走线的美观。
下一小节将会具体讨论布线的"美学"。
2.布线原则下面详细介绍一些文献中不常见的抗干扰措施。
考虑到实际应用中,尤其是产品试制中,仍大量采用双面板,以下内容主要针对双面板。
PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。
比如,将稳压电路、放大电路、数字电路等放在不同的区域内。
-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。
因此,尽量把线路缩短,减少线路长度。
-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。
因此,尽量避免线路的交叉,使布局更加清晰。
-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。
-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。
2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。
-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。
-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。
-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。
-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。
总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。
通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。
PCB布线经验总结

PCB布线经验总结首先,布局和走线是一个相互作用的过程。
在布线之前,需要对电路进行合理布局,尽量减少信号线的长度和走线的复杂度。
同时要注意将电源线和地线布置得合理稳定,母线和高速信号线之间要有足够的间距和屏蔽。
对于大规模的复杂电路,可以使用分区布局的方式,将不同功能的电路分开布置,以降低互相干扰的可能性。
其次,要合理规划信号线的走向。
在布线前要考虑信号的传输和接收方向,将走线和信号流的方向保持一致,尽量减少信号线的弯曲和交叉。
对于高速信号,可以使用直线走线或45度斜线走线的方式,减小信号的反射和串扰。
对于时钟信号和复杂的差分信号,应采用匹配长度的方法,以确保信号的同步性和稳定性。
第三,要注意信号线的长度匹配。
在布线时,可以通过减少信号线的弯曲和拉直首尾两端的方式,尽量使信号线的长度保持一致。
对于时序性要求较高的电路,要注意保持信号线的长度匹配,以防止因信号传输延时不同而引起的问题。
可以使用差分线路来进行信号传输,以提高抗干扰能力和信号传输速度。
第四,要合理分配信号线的宽度。
信号线的宽度对信号的传输速度和功耗都有影响,要根据电流大小和信号带宽来合理确定信号线的宽度。
一般来说,可以根据电流大小和信号带宽来选择合适的导线宽度,避免因过细或过粗导线而引起的问题。
第五,要注意功耗和散热。
在布线时,要考虑功耗和散热的问题。
对于功耗较大的器件,要确保其周围有足够的散热空间和散热手段,避免器件因过热而损坏。
可以在布线中合理安排散热片和风扇等散热装置,以保证电路的正常运行。
最后,布线结束后要进行必要的测试和验证。
在通过DRC检查和生成Gerber文件之前,可以使用SI仿真工具对信号线进行仿真分析,以确保布线的质量符合设计要求。
并且在PCB制造出来后,应进行必要的测试和验证,以确保电路的工作正常。
PCB布线的技巧及注意事项

PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。
将电路分成模拟、数字和电源部分,然后分别布线。
这样可以减少干扰和交叉耦合。
2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。
这可以减少干扰和噪声,提高信号完整性。
3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。
可以通过设立地板隔离和电源隔离来降低电磁干扰。
4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。
这样可以减少丢失信号和干扰。
5.简化布线:简化布线路径,尽量缩短导线长度。
短导线可以减少信号传输延迟,并提高电路稳定性。
6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。
差分线布线可以减少信号的传输损耗和干扰。
7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。
地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。
8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。
参考层对称布线可以减少干扰,并提高信号完整性。
注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。
2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。
3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。
4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。
通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。
6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。
7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。
可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。
总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。
PCB布线技巧分享

PCB布线技巧分享
PCB布线是电子设计中非常重要的一环,良好的布线设计可以提高电路性能和稳定性。
下面将分享一些PCB布线的技巧,帮助大家在设计电路板时更加高效和有效地进行布线。
首先,一个良好的PCB布线设计应该遵循一些基本原则。
首先是尽量缩短信号路径,减少信号传输的时间和损耗。
其次是避免信号干扰,尽量减少信号线之间的交叉和交错,尤其是数模混合信号电路。
此外,要保持信号线的阻抗匹配,尽量避免信号线的阻抗不匹配导致信号失真。
最后,还要注意电源线和地线的布线,保持良好的电源和地连接,以减少电磁干扰。
在进行PCB布线时,还有一些实用的技巧可以帮助设计者快速有效地完成布线。
首先是使用层叠布线技术,将信号线和电源线分布在不同的板层上,避免干扰和串扰。
其次是采用直连式布线,尽量减少线路的弯曲和长度,以减小信号传输的延迟和损耗。
此外,还可以使用差分信号线,提高信号的抗干扰能力,尤其适用于高速传输的信号线。
另外,在PCB布线设计中,还可以考虑一些特殊的布线技巧,如使用跳线连接不在同一板层上的电路元件,减少信号线的长度和复杂度。
此外,可以使用特殊形状的线路,如扇出线、波浪形线路等,减少信号线之间的干扰和串扰。
另外,还可以考虑使用地线填充技术,将多余的地线填满整个板面,减少电磁干扰和噪声。
总之,PCB布线是电子设计中非常重要的一环,良好的布线设计可以提高电路性能和稳定性。
通过遵循基本原则和采用一些实用的技巧,可以帮助设计者更加高效和有效地完成布线设计,提高电路板的质量和性能。
希望以上分享的PCB布线技巧对大家有所帮助,祝大家设计愉快!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB图布线的经验总结1.组件布置组件布置合理是设计出优质的PCB图的基本前提。
关于组件布置的要求主要有安装、受力、受热、信号、美观六方面的要求。
1.1.安装指在具体的应用场合下,为了将电路板顺利安装进机箱、外壳、插槽,不致发生空间干涉、短路等事故,并使指定接插件处于机箱或外壳上的指定位置而提出的一系列基本要求。
这里不再赘述。
1.2.受力电路板应能承受安装和工作中所受的各种外力和震动。
为此电路板应具有合理的形状,板上的各种孔(螺钉孔、异型孔)的位置要合理安排。
一般孔与板边距离至少要大于孔的直径。
同时还要注意异型孔造成的板的最薄弱截面也应具有足够的抗弯强度。
板上直接"伸"出设备外壳的接插件尤其要合理固定,保证长期使用的可靠性。
1.3.受热对于大功率的、发热严重的器件,除保证散热条件外,还要注意放置在适当的位置。
尤其在精密的模拟系统中,要格外注意这些器件产生的温度场对脆弱的前级放大电路的不利影响。
一般功率非常大的部分应单独做成一个模块,并与信号处理电路间采取一定的热隔离措施。
1.4.信号信号的干扰PCB版图设计中所要考虑的最重要的因素。
几个最基本的方面是:弱信号电路与强信号电路分开甚至隔离;交流部分与直流部分分开;高频部分与低频部分分开;注意信号线的走向;地线的布置;适当的屏蔽、滤波等措施。
这些都是大量的论着反复强调过的,这里不再重复。
1.5.美观不仅要考虑组件放置的整齐有序,更要考虑走线的优美流畅。
由于一般外行人有时更强调前者,以此来片面评价电路设计的优劣,为了产品的形象,在性能要求不苛刻时要优先考虑前者。
但是,在高性能的场合,如果不得不采用双面板,而且电路板也封装在里面,平时看不见,就应该优先强调走线的美观。
下一小节将会具体讨论布线的"美学"。
2.布线原则下面详细介绍一些文献中不常见的抗干扰措施。
考虑到实际应用中,尤其是产品试制中,仍大量采用双面板,以下内容主要针对双面板。
2.1.布线"美学"转弯时要避免直角,尽量用斜线或圆弧过渡。
走线要整齐有序,分门别类集中排列,不仅可以避免不同性质信号的相互干扰,也便于检查和修改。
对于数字系统,同一阵营的信号线(如数据线、地址线)之间不必担心干扰的问题,但类似读、写、时钟这样的控制性信号,就应该独来独往,最好用地线保护起来。
大面积铺地(下面会进一步论述)时,地线(其实应该是地"面")与信号线间尽量保持合理的相等距离,在防止短路、漏电的前提下尽量靠近。
对于弱电系统,地线与电源线要尽量靠近。
使用表贴组件的系统,信号线尽量全走正面。
2.2.地线布置文献中对地线的重要性及布置原则有很多论述,但关于实际PCB中的地线排布仍然缺乏详细准确的介绍。
我的经验是,为了提高系统的可靠性(而不只是做出一个实验样机),对地线无论怎样强调都不为过,尤其是在微弱信号处理中。
为此,必须不遗余力地贯彻"大面积铺地"的原则。
铺地时,一般必须是网格状地,除非那些被其它线路分割出来的零星地盘。
网格状地的受热性能和高频导电性能都要大大优于整块的地线。
在双面板布线中,有时为了走信号线,不得不将地线分割开,这对于保持足够低的地电阻是极为不利的。
为此,必须采用一系列的"小聪明"手段来保证地电流的"通畅"。
这些技巧包括:大量使用表面贴装组件,省去焊孔所占用的"本来"应属于地线的空间。
充分利用正面空间:在大量使用表面贴装组件的场合下,设法使信号线尽量走顶层,将底层"无私"地让给地线,这其中又涉及到无数细碎的小窍门,本人拙作《PCB技巧之一:交换管脚》中就有一招,还有很多类似的法术,以后会陆续写出。
合理安排信号线,将板上的重要地带,尤其是"腹地"(这里关系到整个板地线的沟通)"让"给地线,只要精心设计,这一点还是能做到的。
正面与反面的配合:有时在板的某一面,地线实在是"走投无路"了,这时可设法使两面的布线相互协调,"此处不留爷,自有留爷处",在反面的相对应位置空出一块足够的地盘铺设地线,再通过数量足够、位置合理的过孔(考虑到过孔有较大的电阻),通过这?quot;桥梁"将被横行而过的信号线强行分割却又恋恋不舍、盼望统一的两岸连成一个导电性能足够的整体。
狗急跳墙的着数:实在滕不出地方而又不甘心庞大的地线被区区一根信号线拦腰切断时,就让这个信号委屈一点,走跨接线吧。
有时,我不甘心仅仅拉一根光秃秃的导线,这个信号恰好又要经过一个电阻或其它"长脚"的器件,我就可以名正言顺的延长这个器件的管脚,使之兼任跨接线的职务,既通过了信号,又避免了跨接线这个不体面的称呼:-(当然,在大多数情况下,我总可以让这样的信号从合适的地方通过而避免与地线的交叉,唯一需要的是观察力和想象力。
起码的原则:地电流的路径要合理,大电流与微弱的信号电流决不能并肩前进。
有时,选择合理的路径,一个排的地线抵得上不合理配置的一个集团军。
最后,顺便说明一点,有一句名言:"你可以相信你的母亲,但永远不要相信你的地"。
在极微弱信号处理的场合(微伏以下),即使不择手段保证了地电位的一致,电路上关键点的地电位差别仍然要超过被处理信号的幅度,至少是同一量级,即使静态电位合适了,瞬时的电位差仍然可能很大。
对于这样的场合,首先要在原理上使电路的工作尽可能的不依赖于地电位。
2.3.电源线布置与电源滤波一般的文献都认为电源线应尽可能粗,对此我不敢完全苟同。
只有在大功率(1秒内平均电源电流可能达到1A)的场合,才必须保证足够的电源线宽度(我的经验,每1A电流对应50mil能够满足大多数场合的需求)。
如果只为了防止信号的窜扰的话,电源线的宽度不是关键。
甚至,有时细一些的电源线更有利!电源的质量一般主要不在于其绝对值,而在于电源的波动和迭加的干扰。
解决电源干扰的关键在于滤波电容!如果你的应用场合对电源质量的确有苛刻的要求,就不要吝啬滤波电容的钱!使用滤波电容时要注意以下几条:整个电路的电源输入端应该有"总"的滤波措施,而且各种类型的电容要互相搭配,"一样都不能少",至少不会坏事的J对于数字系统至少要有100uF电解+10uF片钽+0.1uF贴片+1nF贴片。
较高频(100kHz)100uF电解+10uF片钽+0.47uF贴片+0.1uF贴片。
交流模拟系统:对于直流及低频模拟系统:1000uF|1000uF电解+10uF片钽+1uF贴片+0.1uF贴片。
每个重要芯片身边都应该有"一套"滤波电容。
对于数字系统,一个0.1uF贴片一般就够了,重要的或工作电流较大的芯片还应并上一个10uF片钽或1uF 贴片,工作频率最高的芯片(CPU、晶振)还要并10nF|470pF或一个1nF。
该电容应尽可能接近芯片的电源管脚并尽可能直接连接,越小的应越靠近。
对于芯片滤波电容,以内(滤波电容至芯片电源管脚)的一段应尽可能粗,如能采用多根细线并排就更好。
有了滤波电容提供低(交流)阻抗电压源并抑制交流耦合干扰,电容管脚以外(指从总电源至滤波电容的一段)的电源线就不那幺重要了,线宽不必太粗,至少不必为此占用大量的板面积。
某些模拟系统中还要求电源输入采用RC滤波网络以进一步抑制干扰,而较细的电源线有时恰好就兼具RC滤波器中电阻的作用,反而有利。
对于工作温度变化范围较大的系统,要注意铝电解电容在低温下性能会降低甚至丧失滤波作用,此时要用适当的钽电容代替之。
例如,用100uF钽|1000uF 铝代替470uF铝,或用22uF片钽代100uF铝。
注意铝电解电容不要离大功率发热器件太近。
PCB设计过程中的注意事项PCB设计过程中的注意事项:1、电源线最好要比其它的走线粗很多,因为导线粗会使得导线上的电阻变小,这样电源的功率在导线上的消耗就会变小,减少了功率的浪费;2、当走线在转弯处应该有一个过渡,最好是45或者135度角过渡,而不应该采用直角转弯,因为这样会减少信号受到干扰;3、电源电路部分最好放在板子的边缘部分,因为电源会产生热量,这样可以避免电源部分对其它各部分电路造成干扰;4、数字电路与模拟电路部分要分开,这样可以避免相互之间的干扰;5、高频部分要与低频部分严格分开,这样可以避免低频信号对高频部分产生干扰;6、有高频的地方,对这部分要单独敷铜,其它部分可以一起敷铜,这样可以避免其它部分对高频部分产生影响,进而减少干扰;7、有对称的电路,尽量布置在一起,这样既方便了走线,也会给人以美观的感觉;8、尽量使走线能够平行,这样会减少信号间的相互干扰,也会使布线变的容易,还会使效果更加美观;9、走线的时候,尽量先别连地线,因为地的网络线一般情况下很多,先连起来以后可能会使其它走线变得不容易;10、尽量在布线的时候,在板子上面多加一些地的过孔,这样会使得地的网络能够自动的连接在一起;11、每一块电路部分要使得元器件放置在一起,这样的话,走线也会很容易;12、元件的封装大小一定要按照合理的参数进行设置。
PCB设计过程中容易犯的错误和解决的方法:1、电源部分放置的位置不合理,使其它电路部分的信号受到的干扰大,影响电路的正常工作。
重新合理的把电源部分进行布置,最好放置在板子的最边缘地方,并且把容易受到干扰的部分远离电源部分;2、每个独立电路部分的元器件放置不合理或者没有放置在一起,给布线带来了很大的麻烦,增加了布线的工作量。
重新合理的分配放置、布置,这样既减少了工作量,也降低了因连线不合理造成的电路的干扰;3、高频和低频部分没有分开敷铜,使得高频信号在接收时非常容易的受到低频部分的干扰。
重新合理的把高频的地与低频部分的地分开敷铜,以减少低频信号对高频信号的干扰;4、元件的封装大小与实物的封装不匹配,所以在设计时一定要合理的选择参数,如果需要自己设计的话,在测量实物的时候,务必使测量的参数精确度很高,这样可以避免参数不匹配的错误;5、由于元件任意放置,导致很不容易走线。
所以,在放置元件时,一定要对照原理图中各个元件所在的位置,合理的分配,同时要兼顾走线是否合理、是否美观等等。
PCB布线要横平竖直?提起PCB布线,许多工程技术人员都知道一个传统的经验:正面横向走线、反面纵向走线,横平竖直,既美观又短捷;还有个传统经验是:只要空间允许,走线越粗越好。
可以明确地说,这些经验在注重EMC的今天已经过时。
要使单片机系统有良好的EMC性能,PCB设计十分关键。
一个具有良好的EMC性能的PCB,必须按高频电路来设计——这是反传统的。