2020北京丰台高三二模数学含答案
2020届丰台区高三第二学期综合练习数学答案

解得 a2 = 2,b2 = 1.
所以椭圆 C 的方程为 y2 + x2 = 1. 2
(Ⅱ) 假设存在点 Q 使得 OQN + OQM = .设 Q(m,0) , 2
因为 OQN + OQM = , 2
所以 OQN = OMQ .则 tan OQN = tan OMQ .
ON 即
=
OQ
,所以 OQ 2 = ON OM
.
OQ OM
因为直线 y = y0 交椭圆 C 于 A,B 两点,则 A,B 两点关于 y 轴对称.
设 A(x0 ,y0 ),B(−x0 ,y0 ) (x0 1) , 因为 P(1,0) ,
则直线 PA 的方程为: y = y0 (x −1) . x0 −1
令x
= 0 ,得
yM
=
− x0
y0 . −1
若 k = 1 ,即 b1 = b2 = 1时, c1 = c2 = 0 . 于是 bn = b2 = 1,b1 = b3 = 1. 所以 cn = c3 = 0 ,所以 b4 = b2 = 1.即 b2 = b3 = b4 = 1 . 依次类推可得 bk = bk+1 = 1 (k = 2,3,L ,n −1) . 所以 bk = 1 (k = 1,2,K ,n) .
(Ⅱ)从上表三个社区的志愿者中各任取 1 人,由表可知:A,B,C 三个社区负责现场值班值守
的概率分别为 3 ,1 ,1 . 10 3 3
X 的所有可能取值为 0,1,2,3.
7 2 2 28 14 P( X = 0) = = =
, P(X
= 1) =
3
22 +
7
12 +
北京市丰台区2022届高三高考二模数学试题(含详解)

所以d的最大值为 ,
故答案为: ,6
15.如图,某荷塘里浮萍的面积y(单位: )与时间t(单位:月)满足关系式: (a为常数),记 ( ).给出下列四个结论:
①设 ,则数列 是等比数列;
②存在唯一的实数 ,使得 成立,其中 是 的导函数;
③常数 ;
④记浮萍蔓延到 , , 所经过的时间分别为 , , ,则 .
又 ,
所以 .
故选:A
8.设等差数列 的前n项和为 .若 ,则下列结论中正确的是()
A. B.
C. D.
【8题答案】
【答案】D
【解析】
【分析】根据 ,可得 , ,从而可判断AB,举出反例即可判断C,根据等差数列的性质结合基本不等式即可判断D.
【详解】解:因为 ,
所以 ,故A错误;
,所以 ,
则公差 ,故B错误;
【13题答案】
【答案】
【解析】
【分析】利用正弦定理结合二倍角的正弦公式即可得解.
【详解】解:在 中,
由正弦定理可得 ,
即 ,即 ,
所以 .
故答案为: .
14.在平面直角坐标系中,已知点 ,动点N满足 ,记d为点N到直线l: 的距离.当m变化时,直线l所过定点的坐标为______;d的最大值为______.
北京市丰台区2021-2022学年度第二学期综合练习(二)
高三数学2022.04
第一部分(选择题共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.在复平面内,复数 对应的点的坐标是 ,则复数 ()
A. B. C. D.
2.“ ”是“ ”的()
2020届北京各区高三二模数学分类汇编—三角函数与解三角形(含答案)

2020北京各区高三二模数学分类汇编—三角函数与解三角形1.(2020▪丰台高三二模)下列函数中,最小正周期为π的是(A )1sin 2y x=(B )1sin 2y x= (C )cos()4y x π=+(D )12tan y x=2.(2020▪房山高三二模)函数()sin πcos πf x x x =的最小正周期为(A )1 (B )2 (C )π(D )2π3.(2020▪海淀二模)将函数()sin(2)6f x x π=-的图象向左平移3π个单位长度,得到函数()g x 的图象,则()g x =(A )sin(2)6x π+(C )cos2x (B )2sin(2)3x π+(D )cos2x-4.(2020▪密云高三二模)设函数,,其中,.若,,且的最小正周期大于,则A .,B .,C .,D .,5.(2020▪朝阳高三二模)已知函数()sin(2)6f x x π=-,则下列四个结论中正确的是(A )函数()f x 的图象关于512π(,0)中心对称(B )函数()f x 的图象关于直线8x π=-对称(C )函数()f x 在区间ππ(-,)内又4个零点 (D )函数()f x 在区间[,0]2π-上单调递增6. (2020▪东城高三二模)《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为 (A)135平方米 (B)270平方米 (C)540平方米 (D)1080平方米7.(2020▪海淀二模)在△ABC 中,若7a =,8b =,1cos 7B =-,则A ∠的大小为(A )6π(B )4π(C )3π(D )2π8.(2020▪西城高三二模)在ABC ∆中,若::4:5:6a b c =,则其最大内角的余弦值为(A )18(B )14(C )310(D )359. (2020▪丰台高三二模)在△ABC 中,3AC =,BC =2AB =,则AB 边上的高等于(A )(B(C(D )3210.(2020▪房山高三二模)在△ABC 中,若π4A =,π3B =,a =b =1 (A )(B )(C )(D )11.(2020▪朝阳高三二模)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5°,夏至正午太阳高度角(即ADC ∠)为73.5°,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为(A )sin532sin 47a(B )2sin 47sin 53a(C )tan 26.5tan 73.5tan 47a(D )sin 26.5sin73.5sin 47a12. (2020▪西城高三(下)6月模拟)在锐角ABC 中,若2,3,6a b A π===,则cosB =(A)3413. (2020▪丰台高三二模) 已知直线10x y ++=的倾斜角为α,则cos α=________.14.(2020▪西城高三二模)设函数2()sin 22cos f x x x =+,则函数()f x 的最小正周期为________;若对于任意x ∈R ,都有()f x m ≤成立,则实数m 的最小值为_________.15.(2020▪东城高三二模)已知1cos 23α=,则()22πcos ()2cos π2αα+--的值为________. 16.(2020▪东城高三二模)从下列四个条件①a =;②π6C =;③cos B =;④b =件,能使满足所选条件的△ABC 存在且唯一,你选择的三个条件是___(填写相应的序号),所选三个条件下的c 的值为 ____.17.(2020▪昌平高三二模) 在平面直角坐标系中,角与角均以为始边,它们的终边关于原点对称,点在角的终边上.若, 则________ ;_____ .18.(2020▪密云高三二模) 在中,三边长分别为,,,则的最大内角的余弦值为_________,的面积为_______.19. (2020▪西城高三(下)6月模拟)(本小题满分14分)已知函数()()0,0,02f x Asin x A πωϕωϕ⎪=>⎛⎫ ⎝+><⎭<同时满足下列四个条件中的三个:①最小正周期为π;②最大值为2;③()01f =-;④06f π⎛⎫-⎪⎝⎭= .(Ⅰ)给出函数()f x 的解析式,并说明理由;(Ⅱ)求函数()f x 的单调递增区间.20.(2020▪昌平高三二模)(本小题14分)在中,(Ⅰ)求; (Ⅱ)若,,求的面积. 21.(2020▪密云高三二模)(本小题满分15分)已知函数 .(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当时,关于的不等式_______,求实数 的取值范围.请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.2020北京各区高三二模数学分类汇编—三角函数与解三角形参考答案1.D2.A3.C4.B5.C6.B7.C8.A9.B 10.C 11.D 12.C;13. 14. , 15.-1 16. ①③④,,或者②③④, 17. ,18. ,19.(本小题满分14分)解:(Ⅰ)若函数满足条件③,则.这与矛盾,故不能满足条件③,所以函数只能满足条件①,②,④.………………2分由条件①,得,又因为,所以.………………4分由条件②,得.………………5分由条件④,得,又因为,所以.所以.………………8分(Ⅱ)由,,………………10分得,………………12分所以函数的单调递增区间为,.………………14分(注:单调区间写成开区间亦可.)20.(本小题满分14分)解:(Ⅰ)在中,由正弦定理,因为,所以……………..2分因为,所以所以……………..4分因为,所以. ……………..6分(Ⅱ)因为,,由余弦定理可得. ……………..8分所以……………..12分所以. ……………..14分21.(本小题满分15分)(Ⅰ)解:因为==.所以函数的最小正周期.因为函数的的单调增区间为,所以,解得.所以函数数的的单调增区间为,(Ⅱ)解:若选择①由题意可知,不等式有解,即.因为,所以.故当,即时,取得最大值,且最大值为.所以.若选择②由题意可知,不等式恒成立,即.因为,所以.故当,即时,取得最小值,且最小值为.所以.。
2020届北京市丰台区高三下学期综合练习(二)(二模)数学试题 PDF版

( ⅱ ) 记 An 和 B n 分 别 表 示 集 合 A, B 中 不 大 于 n(n N*) 的 元 素 个 数 , 写 出 满 足 An B n n1的元素 n 的集合.(只需写出结果,不需要证明)
(考生务必将答案答在答题卡上,在试卷上作答无效)
20.(本小题共 14 分)
已知椭圆 C :
x2 a2
y2 b2
1(a
b 0) 经过 A(1,0) , B(0,b) 两点. O 为坐标原点,且△
AOB 的面积为
2 . 过点 P(0,1) 且斜率为 k(k 0) 的直线 l 与椭圆 C 有两个不同的交点 M,N ,且直线 AM , AN 分别
酉、戌、亥.干支纪年法中,天干地支对应的规律如下表:
天甲乙丙丁戊己庚辛壬癸甲乙丙 ┈
干 地子丑寅卯辰巳午未申酉戌亥子
┈ 支 干甲乙丙丁戊己庚辛壬癸甲乙丙 支子丑寅卯辰巳午未申酉戌亥子
┈ 纪年年年年年年年年年年年年年 年
丰台区高三数学二模考试试题 第 2 页/ 共 13 页
2049 年是新中国成立 100 周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049 年 是己巳年,则 2059 年是_____年;使用干支纪年法可以得到______种不同的干支纪年.
平面 PDM 的法向量为 u (1,1,2) .
………5 分13 页
设直线 PC 与平面 PDM 所成的角为 ,
uuur
uuur
PC u
所以 sin cos PC,u uuur
3 .
PC u 6
所以直线 PC 与平面 PDM 所成角的正弦值为
则称集合 A, B 互为“完美加法补集”.
北京市丰台区2020年高三统一练习(二)(数学理)word精校版doc高中数学

北京市丰台区2020年高三统一练习(二)(数学理)word 精校版doc 高中数学 数学试题〔理〕本试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两部分。
考试时刻120分钟。
考试终止,将本试卷和答题卡上并交回。
第一卷〔选择题 共40分〕本卷须知:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦洁净后,再选涂其他答案标号。
不能答在试卷上。
一、选择题:本大题共8个小题,每题5分,共40分。
在每个小题列出的四个选项中,选出符合题目要求的一项。
1.设集合B A x x B x g y x A ⋃<+==则},1|{)},1(1|{等于〔 〕A .RB .}11|{<<-x xC .-3D .}11|{>-<x x x 或2.i ii a 3313=-+,其中i 是虚数单位,那么实数a 等于〔 〕A .3B .3C .-3D .-33.圆x y F ,y x C 4)(cos 2,sin 23:2-=⎩⎨⎧=+-=为抛物线点为参数θθθ的焦点,那么|CF|等于〔 〕A .6B .4C .2D .0 4.函数|cos sin |21)cos (sin 21)(x x x x x f -++=的值域是〔 〕A .[-1,1]B .]1,22[-C .]21,21[-D .]22,1[- 5.如图,在体积为V 1的正方体ABCD —A 1B 1C 1D 1中,M ,N 分不 为所在边的中点,正方体的外接球的体积为V ,有如下四个命题; ①BD 1=AB 3②BD 1与底面ABCD 所成角是45°;③π231=V V ; ④MN//平面D 1BC 。
其中正确命题的个数为〔 〕A .4B .3C .2D .16.某班5位同学参加周一到周五的值日,每天安排一名学生,其中学生甲只能安排到周一或周二,学生乙不能安排在周五,那么他们不同的值日安排有 〔 〕 A .288种 B .72种 C .42种 D .36种7.设函数f 〔x 〕是以2为周期的奇函数,在则)(,2)(),1,0(x f x f x x=∈〔1,2〕上是〔 〕 A .增函数且0)(>x f B .减函数且0)(<x fC .增函数且0)(<x fD .减函数且0)(>x f8.数列{a n }满足*∈+=+++N n nn a a a n n ,22)911()911(9112221 。
2020年北京市丰台区高三数学二模试卷及参考答案

2020年北京市丰台区高三二模试卷 数 学 2020.06第一部分 (选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 集合{}22A x x =∈-<<Z 的子集个数为(A )4 (B )6 (C )7 (D )82. 函数()f x =(A )(02),(B )[02],(C )(0)(2)-∞+∞U ,,(D )(0][2)-∞+∞U ,,3. 下列函数中,最小正周期为π的是(A )1sin 2y x =(B )1sin2y x =(C )cos()4y x π=+(D )12tan y x =4. 已知数列{}n a 的前n 项和2n S n n =-,则23a a +=(A )3(B )6(C )7(D )85. 设,a b 为非零向量,则“⊥a b ”是“+=-a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件6. 已知抛物线M :)0(22>=p py x 的焦点与双曲线13:22=-x y N 的一个焦点重合,则=p(A(B )2(C )(D )47. 已知函数()ln(1)ln(1)f x x x =--+,则()f x(A )是奇函数,且在定义域上是增函数 (B )是奇函数,且在定义域上是减函数 (C )是偶函数,且在区间(01),上是增函数 (D )是偶函数,且在区间(01),上是减函数8. 如图所示,一个三棱锥的主视图和左视图均为等边三角形,俯视图为等腰直角三角形,则该棱锥的体积为(A )233 (B )43(C )433(D )239. 在△ABC 中,3AC =,7BC =,2AB =,则AB 边上的高等于(A )23 (B )33(C )26 (D )3210. 某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入了的最后角逐.他们还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为,,(,a b c a b c >>且,,)N a b c *∈;选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是 (A )每场比赛的第一名得分a 为4 (B )甲至少有一场比赛获得第二名 (C )乙在四场比赛中没有获得过第二名 (D )丙至少有一场比赛获得第三名第二部分 (非选择题 共110分)二、填空题共5小题,每小题5分,共25分. 11. 已知复数2i z =-,则z = .12. 已知直线10x y ++=的倾斜角为α,则cos α= .13. 双曲线)0,0(1:2222>>=-b a by a x M 的离心率为3,则其渐近线方程为 .14. 天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支有十二,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法中,天干地支对应的规律如下表: 天干 甲 乙 丙 丁 戊 己 庚 辛 壬 癸 甲 乙 丙 ┈ 地支 子 丑 寅 卯 辰 巳 午 未 申 酉 戌 亥 子 ┈干支 纪年甲子年乙丑年丙 寅年丁 卯年戊 辰年己 巳年庚 午年辛 未年壬 申年癸 酉年甲 戌年乙 亥年丙子年┈ 纪年法,2049年是己巳年,则2059年是_____年;使用干支纪年法可以得到______种不同的干支纪年.15.已知集合{}22()|(cos )(sin )40P x y x y θθθ=-+-=≤≤π,,.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”. 给出下列结论: ① “水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为(0,1);②在集合P 中任取一点M ,则M 到原点的距离的最大值为3;③阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则33CD =+;④白色“水滴”图形的面积是1136π-.其中正确的有__________.注:本题给出的结论中,有多个符合题目要求.全部选对得5分,不选或有错选得0分,其他得3分.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题共14分)如图,四边形ABCD 为正方形, MA ‖PB ,MA BC ⊥,AB PB ⊥,1MA =,2AB PB ==.(Ⅰ)求证:PB ⊥平面ABCD ;(Ⅱ)求直线PC 与平面PDM 所成角的正弦值.17.(本小题共14分)已知等差数列{}n a 的前n 项和为n S ,12a =,520=S . (Ⅰ)求数列{}n a 的通项公式;(Ⅰ)若等比数列{}n b 满足449a b +=,且公比为q ,从Ⅰ2q =;Ⅰ12q =;Ⅰ1q =-这三个条件中任选一个作为题目的已知条件,求数列{}n n a b -的前n 项和n T . 注:如果选择多个条件分别解答,按第一个解答计分.为了增强学生的冬奥会知识,弘扬奥林匹克精神,北京市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在北京市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(Ⅰ)现从这10所学校中随机选取2所学校进行调查. 求选出的2所学校参与越野滑轮人数都超过40人的概率;(Ⅱ)现有一名旱地冰壶教练在这10所学校中随机选取2所学校进行指导,记X 为教练选中参加旱地冰壶人数在30人以上的学校个数,求X 的分布列和数学期望; (Ⅲ)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导. 规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.19.(本小题共15分)已知函数1()exx f x +=.(Ⅰ)求函数()f x 的极值;(Ⅱ)求证:当(0,)x ∈+∞时,21()12f x x >-+;(Ⅲ)当0x >时,若曲线()y f x =在曲线21y ax =+的上方,求实数a 的取值范围.已知椭圆2222:1(0)x y C a b a b +=>>经过(10)A ,,(0)B b ,两点.O 为坐标原点,且△AOB 的面积为4. 过点(01)P ,且斜率为(0)k k >的直线l 与椭圆C 有两个不同的交点M N ,,且直线AM ,AN 分别与y 轴交于点S ,T . (Ⅰ)求椭圆C 的方程;(Ⅱ)求直线l 的斜率k 的取值范围;(Ⅲ)设PS PO PT PO λμ==u u r u u u r u u u r u u u r,,求λμ+的取值范围.21.(本小题共14分)已知无穷集合,A B ,且,A B ⊆⊆N N ,记{},A B a b a A b B +=+∈∈,定义:满足*()A B ⊆+N 时,则称集合,A B 互为“完美加法补集”.(Ⅰ)已知集合{}21,,A a a m m ==+∈N {}2,B b b n n ==∈N .判断2019和2020是否属于集合A B +,并说明理由; (Ⅱ)设集合{}2422024222+2+2++2++2,0,1;0,1,,,N ,i s i s i A x x i s s εεεεεε==⨯⨯⨯⨯==∈L L L {}132121*132121212+2++2++2,0,11,,,N i s i s i B x x i s s εεεεε-----==⨯⨯⨯⨯==∈L L L ;.(ⅰ)求证:集合,A B 互为“完美加法补集”;(ⅱ)记()A n 和()B n 分别表示集合,A B 中不大于*()n n ∈N 的元素个数,写出满足()A n ()1B n n =+的元素n 的集合.(只需写出结果,不需要证明)(考生务必将答案答在答题卡上,在试卷上作答无效)2020北京丰台高三二模数学参考答案一、选择题共10小题,每小题4分,共40分. 题号 1 2 3 4 5 6 7 8 9 10 答案DCDBCDBABC11.5 12.22-13.2y x =±14. 己卯;60 15. ②③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题共14分)证明:(Ⅰ)因为MA BC ⊥ ,MA //PB ,所以PB BC ⊥,因为AB PB ⊥,AB BC B =I ,所以PB ⊥平面ABCD . ………5分 (Ⅱ)因为PB ⊥平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以PB AB ⊥,PB AD ⊥. 因为四边形ABCD 为正方形, 所以AB BC ⊥.如图建立空间直角坐标系B xyz -,则(002)P ,,,(201)M ,,,(020)C ,,,(220)D ,,,(022)PC =-u u u r,,,(222)PD =-u u u r ,,,(201)PM =-u u u r,,.设平面PDM 的法向量为()x y z =,,u ,则00PD PM ⋅=⋅=⎧⎪⎨⎪⎩u u u r u u u r,,u u 即222020x y z x z +-=-=⎧⎨⎩,. 令2z =,则1x =,1y =-.于是(112)=,,u . 平面PDM 的法向量为(112)=,,u . 设直线PC 与平面PDM 所成的角为θ,所以sin cos 6PC PC PC θ⋅=<>==u u u ru u u ru u u r,uu u. 所以直线PC 与平面PDM所成角的正弦值为6. ………14分17.(本小题共14分)解: (Ⅰ)设等差数列{}n a 的公差为d ,又因为1(1)2n n n S na d -=+,且12a =,所以5101020S d =+=,故1d =.所以1n a n =+. ………6分 (Ⅱ)由(Ⅰ)可知,45a =,又449a b +=,所以44b =.若选择条件①2q =,可得41312b b q==,1122()()()n n n T a b a b a b =-+-+⋅⋅⋅+-1212()()n n a a a b b b =++⋅⋅⋅+-++⋅⋅⋅+11()(1)21n n n a a b q q+-=--1(3)1222n n n -+=-+. ………14分若选择条件②12q =,可得41332b b q ==,1122()()()n n n T a b a b a b =-+-+⋅⋅⋅+-1212()()n n a a a b b b =++⋅⋅⋅+-++⋅⋅⋅+11()(1)21n n n a a b q q+-=--6(3)2642n n n -+=+-.若选择条件③1q =-,可得4134b b q==-,1122()()()n n n T a b a b a b =-+-+⋅⋅⋅+-1212()()n n a a a b b b =++⋅⋅⋅+-++⋅⋅⋅+11()(1)21n n n a a b q q+-=--(3)+2(1(1))2n n n +=--.18.(本小题共14分)解:(Ⅰ)记“选出的两所学校参与越野滑轮人数都超过40人”为事件S ,参与越野滑轮人数超过40人的学校共4所,随机选择2所学校共246C =种,所以242104322()109152C P S C ⨯===⨯. ………4分(Ⅱ)X 的所有可能取值为0,1,2,参加旱地冰壶人数在30人以上的学校共4所.02462101(0)3C C P X C ⋅===,11462108(1)15C C P X C ⋅===,20462102(2)15C C P X C ⋅===.X 的分布列为:()012315155E X =⨯+⨯+⨯=. ………11分(Ⅲ)答案不唯一.答案示例1:可以认为甲同学在指导后总考核为“优”的概率发生了变化.理由如下:指导前,甲同学总考核为“优”的概率为:2233330.10.90.10028C C ⋅⋅⋅=+..指导前,甲同学总考核为“优”的概率非常小,一旦发生,就有理由认为指导后总考核达到“优”的概率发生了变化. 答案示例2:无法确定.理由如下: 指导前,甲同学总考核为“优”的概率为:2233330.10.90.10028C C ⋅⋅⋅=+..虽然概率非常小,但是也可能发生,所以,无法确定总考核达到“优”的概率发生了变化. ………14分19.(本小题共15分)解:(Ⅰ)因为1()exx f x +=,定义域R ,所以'()exxf x =-.令'()0f x =,解得0x =.随x 的变化,'()f x 和()f x 的情况如下:由表可知函数()f x 在0x =时取得极大值(0)1f =,无极小值. ……5分(Ⅱ)令22111()()11(0)2e 2x x g xf x x x x +=+-=+->, 1e 1'()=(1)()eeex xxxx g x x x x --+=-=.由0x >得e 10x->,于是'()0g x >,故函数()g x 是[0)∞,+上的增函数.所以当(0)x ∈∞,+时,()(0)0g x g >=,即21()12f x x >-+. ………9分(Ⅲ)当12a ≤-时,由(Ⅱ)知221()121f x x ax >-+≥+,满足题意.令221()()11e xx h x f x ax ax +=--=--,1'()2(2)eexxx x ax x a h =--=-+.当102a -<<时,若1(0ln())2x a∈-,,'()0h x <,则()h x 在1[0ln()]2a-,上是减函数.所以1(0ln())2x a∈-,时,()(0)0h x h <=,不合题意.当0a ≥时'()0h x <,则()h x 在(0)∞,+上是减函数, 所以()(0)0h x h <=,不合题意.综上所述,实数a 的取值范围1(]2-∞-,. ………15分20.(本小题共14分)解:(Ⅰ)因为椭圆2222:1x y C ab+=经过点(10)A ,,所以21a =解得1a =.由△AOB 的面积为4可知,124ab =,解得2b =,所以椭圆C 的方程为2221x y +=. ………3分(Ⅱ) 设直线l 的方程为1y kx =+,1122()()M x y N x y ,,,.联立22211x y y kx +==+⎧⎨⎩,消y 整理可得:22(21)410k x kx +++=.因为直线与椭圆有两个不同的交点,所以22164(21)0k k ∆=-+>,解得212k >.因为0k >,所以k的取值范围是)2+∞. ………7分(Ⅲ)因为(10)(01)A P ,,,1122()()M x y N x y ,,,, 所以直线AM 的方程是:11(1)1y y x x =--.令0x =,解得111y y x -=-.所以点S 的坐标为11(0)1y x --,.同理可得:点T 的坐标为22(0)1y x --,.所以11(01)1y PS x -=--u u r,,22(01)1y PT x -=--u u u r,,(01)PO =-u u u r,.由,,PO PT PO PS μλ==可得:12121111y y x x λμ---=--=---,,所以111111111y kx x x λ+=+=+--.同理22111kx x μ+=+-.由(Ⅱ)得121222412121k x x x x k k +=-=++,,所以 121211211kx kx x x λμ+++=++--()121212122(1)()221kx x k x x x x x x +-+-=+-++22222222142(1)()22121214()121212442(21)21421(1)2(1)1 21k k k k k kk k k k k k k k k k k ⋅+---++=+--+++-+-+=++++-+=++=-++g所以λμ+的范围是2). ………14分21.(本小题共14分)解: (Ⅰ)由21a m =+,2b n =得2)1a b m n +=++(是奇数, 当210091a =⨯+,20=0b =⨯时,2019a b +=,所以2019A B ∈+,2020A B ∉+. ………4分(Ⅱ)(ⅰ)首先证明:对于任意自然数p 可表示为唯一一数组012i k εεεεε(,,,,,,)L L ,其中0101i i k k ε==∈N ,;,,,,L , 使得1210121+2+2++2+2++20101i i k i i k i p i k k εεεεεεε++=⨯⨯⨯⨯⨯==∈N ,;,,,,,L L L ,由于12112101210+2+2++2+2++22+2++2++221i i k i k k i i k εεεεεε+++≤⨯⨯⨯⨯⨯≤=-L L L L这种形式的自然数p 至多有12k +个,且最大数不超过121k +-.由0101i i k k ε==∈N ,;,,,,L ,每个i ε都有两种可能, 所以这种形式的自然数p 共有1122222k k ++⨯⨯⨯=L 14444244443个个结果.下证1210121+2+2++2+2++2i i k i i k p εεεεεε++=⨯⨯⨯⨯⨯L L121121+2+2++2+2++2i i k i i kεεεεεε++''''''=⨯⨯⨯⨯⨯L L 其中010101i i i k k εε===∈'N ,;,;,,,,L ,则i i εε'= 假设存在i i εε'≠中,取i 最大数为j ,则12112101210121(+2+2++2+2++2)+2+2++2+2++2()i i k i i k i i k i i k εεεεεεεεεεεε++++''''''⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-L L L L1001111001111110111111=()+()2++()2()2()+()2++()2()2(+2++2))2(122)1j j j i j j j j j jj j j j j j j εεεεεεεεεεεεεεεεεεεεεε-------'''--⨯-⨯''''≥-⨯---⨯-⨯''''≥-⨯---⨯-⨯≥-+++=L L L L所以01≥ 不可能.综上,任意正整数p 可唯一表示为1210121+2+2++2+2++2i i k i i k p εεεεεε++=⨯⨯⨯⨯⨯L L 2130213(+2)(2+2+)εεεε=⨯++⨯⨯L L显然2130213(+2)(2+2+)A B εεεε⨯+∈⨯⨯∈,L L ,满足*()A B ⊆+N ,所以集合,A B 互为“完美加法补集”. ………11分(ⅱ){}*21k n n k =-∈N,. ………14分(若用其他方法解题,请酌情给分)。
北京市丰台区2023届高三二模数学试题

一、单选题1. 已知函数y = f (x )+x 是偶函数,且f (2)= 3 ,则f (-2)=( )A .-7B .7C .-5D .52. 函数是定义在R 上的奇函数,当时,,则函数在上的所有零点之和为( )A .-32B .32C .16D .83. 指数函数(,且)在上是减函数,则函数在其定义域上的单调性为A .单调递增B .单调递减C .在上递增,在上递减D .在上递减,在上递增4. 若干年前,某老师刚退休的月退休金为4000元,月退休金各种用途占比统计图如下面的条形图.该老师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该老师的月退休金为()A .5000元B .5500元C .6000元D .6500元5.已知,,,则的最小值是A .2B.C .4D .36. 钟灵大道是连接新余北站和新余城区的主干道,是新余对外交流的门户之一,而仰天岗大桥就是这一条主干道的起点,其桥拱曲线形似悬链线,桥型优美,被广大市民们美称为“彩虹桥”,是我市的标志性建筑之一,函数解析式为,则下列关于的说法正确的是()A .,为奇函数B .,在上单调递增C .,在上单调递增D .,有最小值17.将函数的图象向左平移个单位长度得到f (x )的图象,则( )A.B .的图象关于对称C.D.的图象关于直线对称8. 某中学高一年级560人,高二年级540人,高三年级520人,用分层抽样的方法抽取部分样本,若从高一年级抽取28人,则从高二、高三年级分别抽取的人数是北京市丰台区2023届高三二模数学试题北京市丰台区2023届高三二模数学试题二、多选题三、填空题四、解答题A .27 26B .26 27C .26 28D .27 289.已知函数的最小正周期为,将的图象向左平移个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,得到函数的图象,则下列结论正确的是( )A.B .的图象关于点对称C.的图象关于对称D .在上的最大值是110. 已知抛物线的焦点为为抛物线上一点,且,过的直线交于两点,是坐标原点,则( )A .抛物线的准线方程为B .的最小值为4C .若,则的面积为D .若,则的方程为11. 1487年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写下公式,这个公式在复变函数中有非常重要的地位,即著名的“欧拉公式”,被誉为“数学中的天桥”,据欧拉公式,则( )A.B.C.D.12. 已知直线a ,b ,c 两两异面,且,,下列说法正确的是( )A .存在平面α,β,使,,且,B .存在平面α,β,使,,且,C .存在平面γ,使,,且D .存在唯一的平面γ,使,且a ,b 与γ所成角相等13. 已知复数为虚数单位),则___________.14. 某电影院同时上映A 与B 两部电影,甲、乙、丙3人同时去电影院观影,3人必须在A ,B 两部电影中选择一部进行观看,且甲、乙2人观看A 电影的概率均为,丙观看B 电影的概率为,若3人观看哪部电影相互独立,则恰有2人观看B 电影的概率为___________.15. 已知函数的定义域是,满足且,若存在实数k ,使函数在区间上恰好有2021个零点,则实数a 的取值范围为____16. 为推动实施健康中国战略,树立大卫生、大健康理念,某单位组织职工参加“万步有约”健走激励大赛活动,且每月评比一次,对该月内每日运动都达到一万步及以上的职工授予该月“健走先锋”称号,其余参与的职工均获得“健走之星”称号,下表是该单位职工2021年1月至5月获得“健走先锋”称号的统计数据:月份12345“健走先锋”职工数1201051009580(1)请利用所给数据求“健走先锋”职工数y 与月份x 之间的回归直线方程,并预测该单位10月份的“健走先锋”职工人数;(2)为进一步了解该单位职工的运动情况,现从该单位参加活动的职工中随机抽查70人,调查获得“健走先锋”称号与性别的关系,统计结果如下:健走先锋健走之星男员工2416女员工1614能否据此判断有90%的把握认为获得“健走先锋”称号与性别有关?参考公式:,.(其中)0.150.100.050.0250.0102.072 2.7063.841 5.024 6.63517. 为落实《关于全面加强和改进新时代学校体育工作的意见》,完善学校体育“健康知识+基本运动技能+专项运动技能”教学模式,建立“校内竞赛—校级联赛—选拔性竞赛—国际交流比赛”为一体的竞赛体系,构建校、县(区)、地(市)、省、国家五级学校体育竞赛制度.某校开展“阳光体育节活动,其中传统项目定点踢足球”深受同学们喜爱.其间甲、乙两人轮流进行足球定点踢球比赛(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,甲先踢,每人踢一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次踢球命中的概率为,乙每次踢球命中的概率为,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为,求的数学期望;(2)用表示经过第轮踢球累计得分后甲得分高于乙得分的概率.求,.18. 记是等差数列的前项和,数列是等比数列,且满足,.(1)求数列和的通项公式;(2)设数列满足,(ⅰ)求的前项的和;(ⅱ)求.19. 设椭圆的方程为,为坐标原点,直线与椭圆交于点为线段的中点.(1)若分别为的左顶点和上顶点,且的斜率为,求的标准方程;(2)若,且,求面积的最大值.20. 如图,三棱锥中,底面和侧面都是等边三角形,.(1)若P点是线段的中点,求证:平面;(2)点Q在线段上且满足,求与平面所成角的正弦值.21. 已知数列的前n项和.(1)求证:数列为等比数列;(2)若数列满足,,求数列的前n项的和.。
北京市丰台区2020届高三数学第二学期统一练习(二)文(丰台二模)

丰台区 2020 年高三年级第二学期一致练习(二)数学(文科)一、本大题共8 小题,每题 5 分,共40 分.在每题列出的四个选项中,选出切合题目要求的一项.2- a},则a= 1.若2∈{1,a,a(A) - 1 (B) 0 (C) 2 (D) 2 或-12.以下四个命题中,假命题为x(A) x R ,2 0 (B) x R , 2 3 1 0x x(C) x R ,l g x 0 (D) x R ,x 12 23.已知a>0 且a≠1,函数y log a x ,xy a 在同一坐标系中的图象可能是(A) (B) (C) (D)3 4.已知数列{ a n} 中,a1 ,51a 1 (n 2)nan 1,则a2011(A) 12(B)23(C)35(D)52对于数列的观点是几次考试中第一次考,要注意惹起关注。
碰到这样既不可等差又不可等比的数列,求a,只好是周期性。
2011uu u r uu u r5.以下图,已知AB 2BCuu u r r,OA au u u r r,OB bu u u r r,OC c ,则以下等 C式中建立的是(A) r r r3 1c b a2 2 r r r(C) c 2a brrr(B)c2ba(D)r r r3 1c a b2 2ABO这样的问题是学生的难点和易错点,学生的问题常常是不知从何下手。
讲评时可再选一填空题进行复练。
6.已知函数y A sin( x ) 的图象以下图,则该函数的分析式可能是(A)(B)4 4 1y sin( x )5 5 53 1y sin(2 x )2 5y1(C)(D)4 4 1y sin( x )5 5 54 1y sin(2 x )5 5O 2- 1x此题就是观察正弦函数的图象变换。
最好采纳清除法。
观察的要点是A,ω,φ每一个字母的意义。
7.已知x,y 的取值以下表:x 0 1 3 4y 2.2 4.3 4.8 6.7 从散点图能够看出y 与x 线性有关,且回归方程为$y0.95x a,则a(A) 3.25 (B) 2.6 (C) 2.2 (D) 0此题就是观察回归方程过定点(x, y) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tn = (a1 − b1) + (a2 − b2 ) + + (an − bn )
= (a1 + a2 + + an ) − (b1 + b2 + + bn )
= n(a1 + an ) − b1(1− qn )
2
1− q
= n(n + 3) + 26−n − 64 . 2
若选择条件③ q
(A)3
(B) 6
(C) 7
(D) 8
5. 设 a,b 为非零向量,则“ a ⊥ b ”是“ a +b = a − b ”的
(A)充分而不必要条件 (C)充分必要条件
(B)必要而不充分条件 (D)既不充分也不必要条件
6. 已知抛物线 M : x2= 2 py( p 0) 的焦点与双曲线 N : y2 − x2 = 1 的一个焦点重合,则 p = 3
集合 A, B 互为“完美加法补集”.
(Ⅰ)已知集合 A = a a = 2m +1, m N , B = b b = 2n, n N .判断 2019 和 2020 是否属于集合 A + B ,并说
明理由;
(Ⅱ)设集合 A = x x = 0 +2 22 +4 24 + +2i 22i + +2s 22s,2i = 0,1;i = 0,1, , s, s N ,
(A) 2
(B)2
(C) 2 2
(D)4
7. 已知函数 f (x) = ln(1− x) − ln(1+ x) ,则 f (x)
(A)是奇函数,且在定义域上是增函数
1 / 14
(B)是奇函数,且在定义域上是减函数 (C)是偶函数,且在区间 (0,1) 上是增函数 (D)是偶函数,且在区间 (0,1) 上是减函数 8. 如图所示,一个三棱锥的主视图和左视图均为等边三角形,俯视图为等腰直角三角形,则该棱锥的体积为
如图,四边形 ABCD 为正方形, MA‖ PB , MA ⊥ BC , AB ⊥ PB , MA = 1 , AB = PB = 2 . (Ⅰ)求证: PB ⊥ 平面 ABCD ; (Ⅱ)求直线 PC 与平面 PDM 所成角的正弦值.
3 / 14
17.(本小题共 14 分)
已知等差数列an 的前 n 项和为 Sn , a1 = 2 , S5 =20 .
③阴影部分与 y 轴相交,最高点和最低点分别记为 C,D,则 CD = 3 + 3 ;
④白色“水滴”图形的面积是 11 − 3 . 6
其中正确的有__________. 注:本题给出的结论中,有多个符合题目要求.全部选对得 5 分,不选或有错选得 0 分,其他得 3 分. 三、解答题共 6 小题,共 85 分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题共 14 分)
(A) 2 3 3
(B) 4 3
(C) 4 3 3
(D) 2 3
9. 在△ ABC 中, AC = 3 , BC = 7 , AB = 2 ,则 AB 边上的高等于
(A) 2 3
(B) 3 3 2
(C) 26 2
(D) 3 2
10. 某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入了的最后角逐.他们还将进行四场知识
于点 S , T .
(Ⅰ)求椭圆 C 的方程;
(Ⅱ)求直线 l 的斜率 k 的取值范围;
(Ⅲ)设 PS = PO,PT = PO,求 + 的取值范围.
21.(本小题共 14 分)
已知无穷集合 A, B ,且 A N, B N ,记 A + B = a + b a A,b B ,定义:满足 N* ( A + B) 时,则称
.
a2 b2
14. 天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、 乙、丙、丁、戊、己、庚、辛、壬、癸;地支有十二,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、 亥.干支纪年法中,天干地支对应的规律如下表:
2 / 14
天干 甲 乙 丙 丁 戊 己 庚 辛 壬 癸 甲 乙 丙 ┈
11. 5
12. − 2 2
13. y = 2x
14. 己卯;60
15. ②③④
三、解答题共 6 小题,共 85 分.解答应写出文字说明,演算步骤或证明过程.
16.(本小题共 14 分)
证明:(Ⅰ)因为 MA ⊥ BC , MA // PB ,
所以 PB ⊥ BC ,
因为 AB ⊥ PB , AB BC = B ,
=
−1 ,可得 b1
=
b4 q3
=
−4 ,
Tn = (a1 − b1) + (a2 − b2 ) + + (an − bn )
= (a1 + a2 + + an ) − (b1 + b2 + + bn )
(Ⅰ)求数列an 的通项公式;
(Ⅱ)若等比数列 bn
满足
a4
+
b4
=
9
,且公比为
q
,从①
q
=
2
;②
q
=
1 2
;③ q
=
−1 这三个条件中任选一
个作为题目的已知条件,求数列an − bn 的前 n 项和Tn .
注:如果选择多个条件分别解答,按第一个解答计分.
18.(本小题共 14 分)
为了增强学生的冬奥会知识,弘扬奥林匹克精神,北京市多所中小学校开展了模拟冬奥会各项比赛的活动.为 了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在北京市中小学学校中随机抽取了 10 所学校,10 所学 校的参与人数如下:
地支 子 丑 寅 卯 辰 巳 午 未 申 酉 戌 亥 子 ┈
干支 纪年
甲乙丙丁戊己庚辛壬癸甲乙丙
子丑
┈
寅卯辰巳午未申酉戌亥子
年年
年年年年年年年年年年年
2049 年是新中国成立 100 周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049 年是己 巳年,则 2059 年是_____年;使用干支纪年法可以得到______种不同的干支纪年.
所以 PB ⊥ 平面 ABCD .
(Ⅱ)因为 PB ⊥ 平面 ABCD ,
AB 平面 ABCD , AD 平面 ABCD ,
所以 PB ⊥ AB , PB ⊥ AD .
因为四边形 ABCD 为正方形,
所以 AB ⊥ BC .
如图建立空间直角坐标系 B − xyz ,
则 P(0,0,2) , M (2,0,1) , C(0,2,0) , D(2,2,0) ,
20.(本小题共 14 分)
已知椭圆 C
:
x2 a2
+
y2 b2
= 1(a b 0) 经过 A(1,0) , B(0,b) 两点. O 为坐标原点,且△ AOB 的面积为
2. 4
过点 P(0,1) 且斜率为 k(k ห้องสมุดไป่ตู้0) 的直线 l 与椭圆 C 有两个不同的交点 M,N ,且直线 AM , AN 分别与 y 轴交
(Ⅰ)现从这 10 所学校中随机选取 2 所学校进行调查. 求选出的 2 所学校参与越野滑轮人数都超过 40 人的概 率;
(Ⅱ)现有一名旱地冰壶教练在这 10 所学校中随机选取 2 所学校进行指导,记 X 为教练选中参加旱地冰壶人 数在 30 人以上的学校个数,求 X 的分布列和数学期望;
(Ⅲ)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这 3 个动作进行技术指导. 规定:这 3 个动作中至少有 2 个动作达到“优”,总考核记为“优”.在指导前,该校甲同学 3 个动作中每个动作达 到“优”的概率为 0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达 到“优”的概率发生了变化?请说明理由.
竞赛.规定:每场知识竞赛前三名的得分依次为 a,b, c(a b c, 且 a, b, c N ) ;选手总分为各场得分之
和.四场比赛后,已知甲最后得分为 16 分,乙和丙最后得分都为 8 分,且乙只有一场比赛获得了第一名,则 下列说法正确的是
(A)每场比赛的第一名得分 a 为 4
(B)甲至少有一场比赛获得第二名
的元素 n 的集合.(只需写出结果,不需要证明)
(考生务必将答案答在答题卡上,在试卷上作答无效)
6 / 14
2020 北京丰台高三二模数学
参考答案
一、选择题共 10 小题,每小题 4 分,共 40 分.
题号
1
2
3
4
5
6
7
8
9
10
答案
D
C
D
B
C
D
B
A
B
C
二、填空题共 5 小题,每小题 5 分,共 25 分.
Sn
=
na1
+
n(n −1) 2
d
,且 a1
=
2
,
所以 S5 = 10 +10d = 20 ,故 d = 1 .
所以 an = n + 1.
(Ⅱ)由(Ⅰ)可知, a4 = 5 ,又 a4 + b4 = 9 ,所以 b4 = 4 .
若选择条件① q = 2 ,可得 b1
=
b4 q3
=
1 2
,
Tn = (a1 − b1) + (a2 − b2 ) + + (an − bn )
平面 PDM 的法向量为 u = (1,1,2) .
设直线 PC 与平面 PDM 所成的角为 ,