新人教A版高中数学:常用逻辑用语单元测试卷
2020学年新教材高中数学第1章集合与常用逻辑术语单元质量测评新人教A版必修第一册(最新整理)

第1章集合与常用逻辑术语单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句是命题的是( )A.2x2+3x-1〉0 B.比较两数大小C.撸起袖子加油干! D.cos45°=错误!答案D解析A项不能判断真假,不是命题;B,C两项不是陈述句,不是命题;D项是命题.2.下面所给三个命题中真命题的个数是()①若ac2〉bc2,则a>b;②若四边形的对角互补,则该四边形是圆的内接四边形;③若二次函数y=ax2+bx+c中,b2-4ac〈0,则该二次函数的图象与x轴有公共点.A.0 B.1C.2 D.3答案C解析①该命题为真命题,由ac2〉bc2,得c2>0,则有a>b。
②该命题为真命题,根据圆内接四边形的定义可进行判定.③该命题为假命题,因为当b2-4ac〈0时,一元二次方程ax2+bx +c=0没有实数根,因此二次函数的图象与x轴无公共点.综上所述,故选C.3.命题“∀x∈R,|x|+x2≥0"的否定是( )A.∀x∈R,|x|+x2〈0B.∀x∈R,|x|+x2≤0C.∃x∈R,|x|+x2<0D.∃x∈R,|x|+x2≥0答案C解析“∀x∈R,|x|+x2≥0”的否定是“∃x∈R,|x|+x2<0”.4.已知x1,x2∈R,则“x1>1且x2>1”是“x1+x2〉2且x1x2〉1"的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由x1>1且x2>1得x1+x2>1+1=2,x1x2>1×1=1,所以“x1>1且x2>1”是“x1+x2>2且x1x2>1”的充分条件;设x1=3,x2=错误!,则x1+x2=错误!>2且x1x2=错误!>1,但x2<1,所以不满足必要性.故选A。
新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》检测卷(包含答案解析)

一、选择题1.已知命题2:2,:2320p x q x x <--<,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7B .8C .9D .103.已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为( )A .{}0B .{}1C .{}0,1D .*N4.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④5.“0a =”是“函数2()sin cos f x x a x =+为奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.设{}n a 是等差数列,则“123a a a <<”是“数列{}n a 是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.已知条件:p k =q :直线2y kx =+与圆221x y +=相切,则q 是p 的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 8.“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 9.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“3sin 2x =”的一个必要不充分条件是“3x π=”C .若+=-a b a b ,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 10.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③D .①②③11.下列命题中,不正确的是( )A .0x R ∃∈,20010x x -+≥B .若0a b <<则11a b> C .设0a >,1a ≠,则“log 1a b >”是“b a >”的必要不充分条件D .命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”12.已知全集{1,2,3,4,5}U =,集合{1,2,4}A =,{1,3,5}B ,则()U C A B ( )A .{1}B .{3,5}C .{1,3,5}D .{2,3,4,5}二、填空题13.设集合{132}A x x x =-<-,集合1{1}B x x=<,则A B =________. 14.已知命题:44,:(2)(3)0p x a q x x -<-<-->,若p ⌝是q ⌝的充分不必要条件,求a 的取值范围________.15.定义全集U 的子集M 的特征函数()10M U x Mf x x C M∈⎧=⎨∈⎩,对于两个集合,M N ,定义集合()(){}*1M N M N x f x f x =+=,已知集合{}{}2,4,6,8,10,1,2,4,8,16A B ==,并用S 表示有限集S 的元素个数,则对于任意有限集,**M M A M B +的最小值为________.16.方程2210ax x 至少有一个正实数根的充要条件是________;17.定义全集的子集的特征函数为,这里表示在全集中的补集,那么对于集合,下列所有正确说法的序号是 .(1)(2)()1()U A A f x f x =- (3)()()()A B A B f x f x f x ⋃=+(4)()()()A B A B f x f x f x ⋂=⋅ 18.函数,若恒成立的充分条件是,则实数的取值范围是 .19.对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.若各数互不相等的正数数组()1234567,,,,,,a a a a a a a 的“逆序数”是4,则()7654321,,,,,,a a a a a a a 的“逆序数”是______.20.对任意的x ∈R ,函数()327f x x ax ax =++不存在极值点的充要条件是__________.三、解答题21.已知命题p :01x ≤≤;q :()120a x a a -≤≤>. (1)若1a =,写出命题“若p 则q ”的逆否命题,并判断真假; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.设m R ∈,命题2:043p x x <-<,命题:(1)(3)0q x m x m -+--<. (1)若p 为真命题,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.23.已知集合{}37A x x =≤<,{}210B x x =<<,{}5C x a x a =-<<. (1)求AB ,()R A B ⋂;(2)若()C A B ⊆⋃,求a 的取值范围.24.已知集合{}{}222|340,|240A x x x B x x mx m =--≤=-+-≤. (1)若[]1,4A B ⋂=,求实数m 的值; (2)若R A C B ⊆,求实数m 的取值范围.25.已知函数()()()322-f x x x =-+A ,()()()lg 12(1)g x x a a x a ⎡⎤=---<⎣⎦的定义域为B .(1)求A .(2)记2222222040/2/22300B A AB v v a m s m s S --===-⨯ :q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.26.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出q 成立的x 的范围,然后根据集合包含关系判断. 【详解】2:2320q x x --<,(21)(2)0x x +-<,122x -<<,由于1,22⎛⎫- ⎪⎝⎭是(,2)-∞的真子集,因此应是必要不充分条件. 故选:C .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉, 故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B.【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.3.D解析:D 【分析】解不等式确定集合,A B ,然后由交集的结果确定参数a 的取值范围. 【详解】()(){}{}22533A x x x x x =+-<=-<<, (){}{}2log 1,2,B x x a a N x x a a N =->∈=>+∈,因为AB =∅,所以23a +≥,1a ≥.又a N ∈,∴*a N ∈.故选:D . 【点睛】本题考查由集合交集的结果求参数范围,解题时可先确定两个集合中的元素,然后分析交集的结果得出结论.4.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.5.C解析:C 【分析】先将根据函数2()sin cos f x x a x =+为奇函数求参数0a =,判断前后两个条件相互等价,即可解题. 【详解】解:∵函数2()sin cos f x x a x =+为奇函数, ∴(0)0f =即2sin0cos 00a +=,解得:0a =,∴ 0a =⇔函数2()sin cos f x x a x =+为奇函数,∴“0a =”是“函数2()sin cos f x x a x =+为奇函数”的充要条件. 故选:C. 【点睛】本题考查根据函数的奇偶性求参数、判断p 是q 的什么条件,是中档题.6.C解析:C 【分析】结合等差数列的单调性,根据充分条件、必要条件的判定方法,即可求解. 【详解】在{}n a 是等差数列,若123a a a <<,可得21320d a a a a =-=->, 所以数列{}n a 是递增数列,即充分性成立;若数列{}n a 是递增数列,则必有123a a a <<,即必要性成立, 所以“123a a a <<”是“数列{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及等差数列的单调性判定及应用,其中解答中熟记等差数列的性质是解答的关键,着重考查推理与论证能力.7.B解析:B 【分析】结合直线和圆相切的等价条件,利用充分条件和必要条件的定义进行判断即可. 【详解】若直线2y kx =+与圆221x y +=相切,则圆心(0,0)到直线20kx y -+=的距离1d ==,即214k +=,23k ∴=,即k =∴q 推不出p ,而p 而以推出q ,q ∴是p 的必要不充分条件.故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,利用直线与圆相切的等价条件是解决本题的关键,属于基础题.8.B解析:B 【分析】根据异面直线的定义及直线与平面平行的定义即可判定. 【详解】因为满足“一条直线l 与平面α内无数条直线异面”这样条件的直线可以和平面相交, 所以推不出“这条直线与平面α平行”,当直线满足与平面α平行时,可以推出这条直线与平面α内无数条直线异面, 所以“一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的必要不充分条件, 故选:B 【点睛】本题主要考查了充分条件、必要条件,直线与平面的位置关系,属于中档题.9.A解析:A 【分析】对选项逐个分析,对于A 项,根据特称命题的否定是全称命题,得到其正确;对于B 项,根据充分必要条件的定义判断正误;对于C 项根据向量垂直的条件得到其错误,对于D 项,从空间直线平面的关系可判断正误. 【详解】对于A ,命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥,A 正确;对于B ,当3x π=时, sin 2x =成立,所以“3x π=”是“sin 2x =”的充分条件,所以B 错误; 对于C ,a b >且两向量反向时 +=-a b a b 成立, a b ⊥不成立C 错误; 对于D ,若m n ⊥,m α⊥,βn//,则α,β的位置关系无法确定,故D 错误. 故选:A. 【点睛】该题考查的是有关选择正确命题的问题,涉及到的知识点有含有一个量词的命题的否定,充分必要条件的判断,空间直线和平面的关系,属于简单问题.10.C解析:C 【分析】①,证明x 2>4是x 3<-8的必要不充分条件.所以该命题正确;②,在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误;③,证明“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确. ②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C. 【点睛】本题主要考查充分必要条件的判定,考查逆否命题和原命题的等价性,意在考查学生对这些知识的理解掌握水平.11.C解析:C 【分析】根据存在性命题的判定方法,可判定A 正确;根据不等式的性质,可判定B 正确;根据对数的运算性,可判定C 不正确;根据含有一个量词的否定,可判定D 正确. 【详解】对于A 中,由2000131()024x x x -+=-+≥,所以A 为真命题; 对于B 中,由0a b <<,则110b aa b ab --=>,所以11a b>,所以B 是正确的; 对于C 中,设0a >,1a ≠,例如11,24a b ==,则121log log 24a b ==,所以充分性不成立,又如1,22a b ==,此时12log log 21a b ==-,所以必要性不成立,所以“log 1a b >”是“b a >”的既不充分也不必要条件,所以C 是错误的;对于D 中,根据全称命题和存在性命题的关系,可得命题“2[1,2],320x x x ∀∈-+≤”的否定为“2000[1,2],320x x x -∃∈+>”,所以是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到含有一个量词的真假判定及否定,对数的运算性质,不等式的性质等知识的综合应用,属于中档试题.12.B解析:B 【分析】根据补集的运算,求得{3,5}U C A =,再根据集合交集的运算,即可求得()U C A B ⋂. 【详解】由题意,全集{1,2,3,4,5}U =,集合{1,2,4}A =,可得{3,5}U C A =, 所以()U C A B {3,5}.故选:B . 【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合运算的概念和计算方法是解答的关键,着重考查了计算能力,属于基础题.二、填空题13.【分析】先解不等式再根据交集的定义求解即可【详解】由题因为则解得;又因为则即解得或则或即故答案为:【点睛】本题考查绝对值不等式分式不等式的解法考查交集考查运算能力解析:()4,013⎛⎫-∞⋃ ⎪⎝⎭,【分析】先解不等式,再根据交集的定义求解即可 【详解】由题,因为132x x -<-,则23132x x x -<-<-,解得43x <; 又因为11x<,则10xx -<,即()10x x -<,解得0x <或1x >, 则{|0A B x x ⋂=<或413x <<},即()4,013⎛⎫-∞⋃ ⎪⎝⎭, 故答案为:()4,013⎛⎫-∞⋃ ⎪⎝⎭, 【点睛】本题考查绝对值不等式、分式不等式的解法,考查交集,考查运算能力14.【分析】是的充分不必要条件可转化为是的充分不必要条件再化简两命题对应的取值范围进一步判断即可【详解】是的充分不必要条件是的充分不必要条件命题中:命题中:由是的充分不必要条件可知应满足解得故答案为:【 解析:[1,6]-【分析】p ⌝是q ⌝的充分不必要条件可转化为q 是p 的充分不必要条件,再化简两命题对应x 的取值范围,进一步判断即可 【详解】“p ⌝是q ⌝的充分不必要条件”⇔q 是p 的充分不必要条件,命题p 中:44a x a -<<+,命题q 中:23x <<,由q 是p 的充分不必要条件可知,应满足4243a a -≤⎧⎨+≥⎩,解得[1,6]a ∈- 故答案为:[1,6]- 【点睛】本题考查由命题的充分不必要条件求解参数范围,属于中档题15.4【分析】通过新定义及集合的并集与补集的运算求解计算即得结论【详解】由M*N 的定义可知fM (x )+fN (x )=1则M*N ∈{x|x ∈M ∪N 且x ∉M∩N}即M*A ={x|x ∈M ∪A 且x ∉M∩A}M*B解析:4 【分析】通过新定义及集合的并集与补集的运算求解计算即得结论. 【详解】由M *N 的定义可知,f M (x )+f N (x )=1 ,则M *N ∈{x |x ∈M ∪N ,且x ∉ M ∩N } 即M *A ={x |x ∈M ∪A ,且x ∉M ∩A },M *B ={x |x ∈M ∪B ,且x ∉M ∩B } 要使Card (M *A )+Card (M *B )的值最小,则2,4,8一定属于集合M ,且M 不能含有A ∪B 以外的元素, 所以集合M 为{6,10,1,16}的子集与集合{2,4,8}的并集, 要使**M A M B +的值最小,M ={2,4,8}, 此时,**M A M B +的最小值为4, 故答案为:4 【点睛】本题考查对集合运算的理解以及新定义的应用,考查计算能力.注意解题方法的积累,属于中档题.16.【分析】讨论和三种情况计算得到答案【详解】当时方程为满足条件当时方程恒有两个解且两根一正一负满足条件当时即此时两根均为正数满足条件综上所述:故答案为:【点睛】本题考查了充要条件分类讨论是一个常用的方 解析:[)1,a ∈-+∞【分析】讨论0a =,0a >和0a <三种情况,计算得到答案. 【详解】当0a =时,方程为1210,2x x -==满足条件. 当0a >时,2210,440axx a 方程恒有两个解,且1210x x a=-<,两根一正一负,满足条件 当0a <时,2210,4401axx a a ,即01a ,此时,1210x x a=->, 1220x x a+=->,两根均为正数,满足条件 综上所述:1a ≥- 故答案为:[)1,a ∈-+∞ 【点睛】本题考查了充要条件,分类讨论是一个常用的方法,需要同学们熟练掌握.17.(1)(2)(4)【详解】试题分析:(1)∵A ⊆B 分类讨论:①当则此时②当且即此时③当且即时此时综合有故(1)正确;(2)故(2)正确;故(3)不正确;故(4)正确;考点:集合的交并补运算解析:(1)(2)(4) 【详解】试题分析:(1)∵A ⊆B ,分类讨论: ①当,则,此时,②当,且,即,此时,③当,且,即时,,,此时,综合有,故(1)正确;(2),故(2)正确;1,()()()0,()A B A B U x A B f x f x f x x C A B ⋃∈⋃⎧=≠+⎨∈⋃⎩,故(3)不正确;,故(4)正确; 考点:集合的交并补运算18.1<<4【详解】试题分析:根据充分条件的定义将条件转化为不等式恒成立即当时恒成立即恒成立;然后利用二次函数的性质易求其最值为要使得需要满足化简求解得1<<4考点:必要条件充分条件与充要条件的判断解析:1<a <4 【详解】试题分析:根据充分条件的定义将条件转化为不等式恒成立,即当时,恒成立,即恒成立;然后利用二次函数的性质易求其最值为,要使得,需要满足,化简求解得1<a <4.考点:必要条件、充分条件与充要条件的判断.19.17【分析】用减去4即得【详解】由题意知正数数组的逆序数与的逆序数和为所以的逆序数为故答案为:17【点睛】本题考查新定义问题考查排列组合的应用解题关键是理解认识到数组与中逆序数的和为解析:17 【分析】 用27C 减去4即得. 【详解】由题意知正数数组()1234567,,,,,,a a a a a a a 的“逆序数”与()7654321,,,,,,a a a a a a a 的“逆序数”和为27C ,所以()7654321,,,,,,a a a a a a a 的“逆序数”为27417C -=.故答案为:17. 【点睛】本题考查新定义问题,考查排列组合的应用.解题关键是理解认识到数组()12,,,n i i i ⋅⋅⋅与()11,,,n n i i i -⋅⋅⋅中逆序数的和为2n C .20.【分析】求出导数可得出从而可求解出实数的取值范围【详解】由于函数在上不存在极值点则即解得因此函数不存在极值点的充要条件是故答案为:【点睛】本题考查利用函数极值点求参数解题时理解函数的极值点与导数零点 解析:021a ≤≤【分析】求出导数()2327f x x ax a '=++,可得出0∆≤,从而可求解出实数a 的取值范围.【详解】()327f x x ax ax =++,()2327f x x ax a '∴=++,由于函数()y f x =在R 上不存在极值点,则24840a a ∆=-≤,即2210a a -≤, 解得021a ≤≤.因此,函数()327f x x ax ax =++不存在极值点的充要条件是021a ≤≤.故答案为:021a ≤≤. 【点睛】本题考查利用函数极值点求参数,解题时理解函数的极值点与导数零点之间的关系,考查运算求解能力,属于中等题.三、解答题21.(1)逆否命题为“若0x <或2x >,则0x <或1x >”,真命题;(2)112a ≤≤. 【分析】(1)直接写出命题“若p 则q ”逆否命题并判断真假即可; (2)由题意得{}|01x x ≤≤(){}|120x a x a a -≤≤>,即1021a a -≤⎧⎨≥⎩解不等式组可得答案. 【详解】(1)若1a =,则q :02x ≤≤,命题“若p 则q ”为“若01x ≤≤,则02x ≤≤”, 命题“若p 则q ”的逆否命题为“若0x <或2x >,则0x <或1x >”,是真命题; (2)若p 是q 的充分不必要条件,{}|01x x ≤≤(){}|120x a x a a -≤≤>则1021a a -≤⎧⎨≥⎩,解得112a ≤≤,实数a 的取值范围为112a ≤≤.【点睛】结论点睛:充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}|24x x <<;(2){}|13m m ≤≤ 【分析】(1)解不等式2043x x <-<即可求解;(2)设命题p 成立对应集合A ,命题q 成立对应集合B ,由题意可得A 是B 的真子集,利用数轴即可求解. 【详解】(1)若p 为真命题,则2043x x <-<,即240x ->且243x x -<, 由240x ->得2x >或2x <-, 由243x x -<可得14x -<<, 所以解集为:{}|24x x <<, 故实数x 的取值范围为{}|24x x <<,(2)由(1)知:p 为真命题,则24x <<,设{}|24A x x =<<,由(1)(3)0x m x m -+--<可得13m x m -<<+,设{}|13B x m x m =-<<+, 若p 是q 的充分不必要条件,则A 是B 的真子集,所以1234m m -≤⎧⎨+≥⎩,解得: 13m ≤≤,经检验当1m =和3m =时满足A 是B 的真子集,所以实数m 的取值范围是{}|13m m ≤≤ 【点睛】结论点睛:从集合的观点判断命题的充分条件和必要条件的规则(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1){}210x x <<,{|23x x <<或}710x ≤<;(2)(-∞,3].. 【分析】(1)直接利用集合并集、补集、交集的运算法则求解即可;(2)由题意分类讨论C φ=、C φ≠,根据包含关系列不等式,从而可求实数a 的取值范围. 【详解】(1)因为集合{}37A x x =≤<,{}210B x x =<< 所以{}210A B x x ⋃=<<, ∵{3RA x x =<或}7x ≥,∴(){|23RA B x x ⋂=<<或}710x ≤<;(2)由(1)知{}210A B x x ⋃=<<,①当C =∅时,满足()C A B ⊆⊂,此时5a a -≥,得52a ≤; ②当C ≠∅时,要()C A B ⊆⋃,则55210a a a a -<⎧⎪-≥⎨⎪≤⎩,解得532a <≤;由①②得,3a ≤,综上所述,所求实数a 的取值范围为(-∞,3]. 【点睛】本题考查了集合的化简与运算,同时考查利用包含关系求参数,考查了分类讨论思想的应用,属于中档题.24.(1)3m =(2)6m >或3m <- 【分析】(1)先化简集合{}{}2||14340A x x x x x =--≤=-≤≤,{}{}22|240|22B x x mx m x m x m =-+-≤=-≤≤+,根据[]1,4A B ⋂=求解.(2)由(1)得到{|2R C B x x m =<-或}2x m >+,再利用子集的定义由R A C B ⊆求解. 【详解】(1)因为集合{}{}2||14340A x x x x x =--≤=-≤≤,{}{}22|240|22B x x mx m x m x m =-+-≤=-≤≤+,又因为[]1,4A B ⋂=, 所以21m -=, 所以3m =.(2){|2R C B x x m =<-或}2x m >+, 因为R A C B ⊆,所以42m <-或21m +<-, 解得6m >或3m <-. 【点睛】本题主要考查集合的基本关系及其运算,还考查了运算求解的能力,属于中档题. 25.(1) {|11}A x x x =≥≤-或 (2)][1,2,12⎛⎫-∞-⋃ ⎪⎝⎭【分析】(1)根据二次根式有意义条件,可解不等式得定义域A.(2)根据对数函数真数大于0,解不等式得集合B.根据p 是q 的的必要不充分条件,即可得关于a 的不等式,进而求得a 的取值范围. 【详解】(1)要使()f x 有意义,则()()3x 22x 0-+-≥ 化简整理得()()x 1x 10+-≥ 解得x 1x 1≥≤-或∴ A {x |x 1x 1}=≥≤-或(2)要使()g x 有意义,则()()x a 12a x ]0---> 即()()x a 1x 2a ]0---< 又a 1<a 12a ∴+>B {x |2a x a 1}∴=<<+p 是q 的必要不充分条件 B ∴是A 的真子集2a 1a 11∴≥+≤-或解得1a 1a 22≤<≤-或 a ∴的取值范围为][1,2,12⎛⎫-∞-⋃ ⎪⎝⎭.【点睛】本题考查了函数定义域的求法,充分必要条件的应用,根据集合的关系求参数的取值范围,属于基础题.26.12a <<【分析】根据题意得出集合B 是集合A 的真子集,解绝对值不等式以及一元二次不等式得出集合,A B ,根据包含关系得出实数a 的取值范围.【详解】解:因为x A ∈是x B ∈的必要不充分条件,所以集合B 是集合A 的真子集 解不等式1x a -<,得11a x a -+<<+,所以{}11A x a x a =-+<<+ 解不等式2320x x -+≤,得12x ≤≤ 所以{}12B x x =≤≤因为集合B 是集合A 的真子集,所以1112a a -+<⎧⎨+>⎩即12a << 【点睛】本题主要考查了根据必要不充分条件求参数的值,属于中档题.。
第一章集合与常用逻辑用语+单元检测-2022-2023学年高一上学期数学人教A版必修第一册

2022年第一章集合与常用逻辑用语单元测试评卷人得分一、单选题1.已知集合,则()A.{2,4} B.{2,4,6} C.{2,4,6,8} D.{1,2,3,4,6,8}2.已知集合,,全集,则集合中的元素个数为()A.1 B.2 C.3 D.43.集合,则()A.B.C.D.4.设集合,B={y|y=x2},则A∩B=()A.[-2,2] B.[0,2]C.[0,+∞)D.{(-1,1),(1,1)}5.已知集合,,则()A.B.C.D.6.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“且”是“”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件8.设集合,,且,则()A.1 B.C.2 D.评卷人得分二、多选题9.(2022·全国·高一课时练习)下列四个命题中正确的是()A.B.由实数x,-x,,,所组成的集合最多含2个元素C.集合中只有一个元素D.集合是有限集10.已知集合,若B⊆A,则实数a的值可能是()A.0 B.1 C.2 D.311.(2022·湖南·株洲二中高一开学考试)下列命题中,真命题是()A.若且,则至少有一个大于1B.C.的充要条件是D.命题“”的否定形式是“”12.(2022·陕西·千阳县中学高一开学考试)若“,都有”是真命题,则实数可能的值是()A.1 B.C.3 D.评卷人得分三、填空题13.(2021·上海市洋泾中学高一阶段练习)己知集合,若,则实数a的值为____________.14.(2021·上海市洋泾中学高一阶段练习)已知全集且,,,且,则的值为_____________.15.(2021·上海市青浦区第一中学高一阶段练习)已知命题或,命题或,若是的充分条件,则实数的取值范围是___________.16.(2021·上海市洋泾中学高一阶段练习)若集合,则,则实数a的值为_________.评卷人得分四、解答题17.(2022·全国·高一课时练习)已知全集,集合,,.(1)求;(2)求.18.(2022·湖北·华中师大一附中高一开学考试)已知集合.(1)若,求实数的取值范围;(2)若,求实数的取值范围:(3)若,求实数的取值范围.19.(2021·上海市青浦区第一中学高一阶段练习)已知.(1)若,求;(2)若,求实数的取值范围.20.(2022·全国·高一课时练习)已知为实数,,.(1)当时,求的取值集合;(2)当 时,求的取值集合.21.不等式的解集为集合,不等式的解集为集合.(1)求集合;(2)设条件,条件,若是成立的充分不必要条件,求实数的取值范围.22.在①;②““是“”的充分不必要条件;③,这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合,.(1)当时,求;(2)若,求实数的取值范围.参考答案1.D 2.C 3.B 4.B 5.B6.A【详解】依题意,可得,即,显然是的充分不必要条件.故选:A7.B【详解】解:由且,则且,所以,即充分性成立;由推不出且,如,,满足,但是不成立,故必要性不成立;故“且”是“”的充分不必要条件;故选:B8.C【详解】解,即,当即时,,此时,不合题意;故,即,则,由于,,所以,解得,故选:C 9.BCD 10.AB11.AD【详解】对于A中,若实数都小于等于1,那么可以推出,所以A正确;对于B中,当时,,所以B错误;对于C中,当时,满足,但不成立,所以C错误;对于D中,由含有一个量词的否定的概念,可得命题“”的否定形式是“”,所以D是正确的.故选:AD.12.AB【详解】解:二次函数的对称轴为,①若即,如图,由图像可知当时随的增大而增大,且时,即满足题意;②若时,如图,由图像可知的最小值在对称轴处取得,则时,,解得,此时,,综上,,故选:AB.13.【详解】由集合中元素的互异性得,故,则,又,所以,解得.故答案为:14.66【详解】解:因为全集,,所以3,9,12,15中有两个属于,因为中的方程中,两根之积,所以,所以,又,所以,因为中的方程中,两根之和,所以,则,所以.故答案为:.15.【详解】由题意,所以.故答案为:16.【详解】由题意,集合,因为,可得方程组无解,即直线与平行,可得,解得.故答案为:.17.【解析】(1),解得或,所以,,解得,所以.所以.(2)由(1)知.将化为,即,所以,解得,所以,所以.18.【解析】(1)由题意知,,因为,所以, ,即实数的取值范围为;(2)由(1)知,,,即实数的取值范围是;(3)由题意知或,,或,或,即实数的取值范围是.19.【解析】(1)若所以.(2)由,所以,故,所以实数的取值范围是.20.【解析】(1)因为,所以当时,,当时,.又,所以,此时,满足.所以当时,的取值集合为.(2)当时,, 不成立;当时,,, 成立;当且时,,,由 ,得,所以.综上,的取值集合为.21.【解析】(1)不等式可化为,即,∴.(2)由题意得,∵是成立的充分不必要条件,∴是的真子集,∴,∴实数的取值范围是.22.【解析】(1)当时,集合,,所以;(2)若选择①,则,则,因为,所以,又,所以,解得,所以实数的取值范围是;若选择②,““是“”的充分不必要条件,则 ,因为,所以,又,所以,解得,所以实数的取值范围是.若选择③,,因为,,所以或,解得或,所以实数的取值范围是.。
2020-2021学年新教材人教A版高一数学必修一 第一章 集合与常用逻辑用语 单元测试题

2020-2021学年新教材人教A版高一数学必修一第一章集合与常用逻辑用语单元测试题第一章集合与常用逻辑用语检测试题时间:120分钟分值:150分第Ⅰ卷 (单项选择题,共60分)一、选择题 (每小题5分,共60分)1.设集合 $A=\{x|-1<x<2\}$,集合 $B=\{x|-1<x\leq1\}$,则 $A\cap B=$A。
$\{x|-1\leq x\leq1\}$ B。
$\{x|1\leq x\leq2\}$ C。
$\{x|-1<x<2\}$ D。
$\{x|-1\leq x<2\}$2.已知集合 $A=\{x|x^2-5x+6=0\}$,集合$B=\{x|x+2\leq0\}$,则 $A\cup B=$A。
$\{0,1,4\}$ B。
$\{0,2,4\}$ C。
$\{1,2\}$ D。
$\{0,1,2,4\}$3.已知全集 $U=\mathbb{R}$,集合 $M=\{x|x\leq-2\text{或}x\geq1\}$,$N=\{x|-1<x\leq1\}$,则$(\complement_U M)\cap N=$A。
$\{x|-2\leq x\leq-1\}$ B。
$\{x|-1<x\leq1\}$ C。
$\{x|-1\leq x<1\}$ D。
$\{x|1\leq x\leq2\}$4.已知集合 $A=\{x\in\mathbb{Z}|-1\leq x<2\}$,则集合$A$ 的子集的个数为A。
7 B。
8 C。
15 D。
165.XXX同志在《清平乐·六盘山》中的两句诗为“不到长城非好汉,屈指行程二万”,假设诗句的前一句为真命题,则“到长城”是“好汉”的A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件6.“$\exists m,n\in\mathbb{Z},m^2=n^2+1998$” 的否定是A。
高中数学 第一章 常用逻辑用语单元测试(二)新人教A版高二选修2-1数学试题

word第一章 常用逻辑用语注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知原命题“若2a b +>,则a 、b 中至少有一个不小于1”,原命题与其逆命题的真假情况是( ) A .原命题为假,逆命题为真 B .原命题为真,逆命题为假 C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题2.已知命题p :∀x ∈R ,0x a >(a >0且a ≠1),则( ) A .¬p :∀x ∈R ,0x a ≤ B .¬p :∀x ∈R ,0x a > C .¬p :0x ∃∈R ,00x a >D .¬p :0x ∃∈R ,00x a ≤3.若命题“p ∧q ”为假,且“¬p ”为假,则( ) A .p 或q 为假 B .q 为假C .q 为真D .不能判断q 的真假4.“a =-3”是“圆22=1x y +与圆()224x a y ++=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知p 是R 的充分不必要条件,s 是R 的必要条件,q 是s 的必要条件,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.设x 、y 、z ∈R ,则“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题p :对任意x ∈R ,总有20x >;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝8.命题“t a n x =0”是命题“co sx =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知命题p :“对x ∀∈R ,m ∃∈R ,使4210x x m ++=”.若命题¬p 是假命题, 则实数m 的取值X 围是( ) A .-2≤m ≤2 B .m ≥2C .m ≤-2D .m ≤-2或m ≥210.下列命题中,错误的是( )A .命题“若2560x x -+=,则x =2”的逆否命题是“若x ≠2,则2560x x -+≠”B .已知x ,y ∈R ,则x =y 是22x y xy +⎛⎫≥ ⎪⎝⎭成立的充要条件C .命题p :x ∃∈R ,使得210x x ++<,则¬p :x ∀∈R ,则210x x ++≥D .已知命题p 和q ,若p q ∨为假命题,则命题p 与q 中必一真一假 11.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;word②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆2212x y +=相切. 其中真命题的序号是( ) A .①②③B .①②C .①③D .②③12.设a 、b ∈R ,现给出下列五个条件:①a +b =2;②a +b >2;③a +b >-2; ④ab >1;⑤log ab <0,其中能推出:“a ,b 中至少有一个大于1”的条件为( ) A .②③④ B .②③④⑤C .①②③⑤D .②⑤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.命题“若|x |>1,则x >1”的否命题是__________________.(填“真”或“假”) 14.写出命题“若方程()200ax bx c a -+=≠的两根均大于0,则0ac >”的一个等价命题是______________________________________________.15.已知p (x ):220x x m +->,如果p (1)是假命题,p (2)是真命题,则实数m 的取值X 围是__________________.16.若p 的逆命题是r ,r 的否命题是s ,则s 是p 的否命题的__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤有非空解集,则240a b -≥,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.18.(12分)写出下列命题的否定,并判断其真假: (1)p :∀m ∈R ,方程20x x m +-=必有实数根; (2)q :∃x ∈R ,使得210x x ++≤.word19.(12分)已知P ={x |a -4<x <a +4},{}2430Q x x x =-+<,且x P ∈是x Q ∈的必要条件,某某数a 的取值X 围.20.(12分)已知命题p :1,[]1m -∀∈,不等式253a a --≥;命题q :∃x ,使不等式220x ax ++<.若p 或q 是真命题,¬q 是真命题,求a 的取值X 围.word21.(12分)求使函数()()()2245413f x a a x a x +---+=的图象全在x 轴上方成立的充要条件.22.(12分)已知命题p :方程2220x ax a +-=在[-1,1]上有解;命题q :只有一个实数0x 满足不等式200220x ax a ++≤,若命题“p 或q ”是假命题,求a 的取值X 围.word2018-2019学年选修2-1第一章训练卷常用逻辑用语(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】逆否命题为:a ,b 都小于1,则a +b ≤2是真命题,所以原命题是真命题, 逆命题为:若a 、b 中至少有一个不小于1,则2a b +>,例如,当a =2,b =﹣2时,满足条件,当()220a b +=+-=,这与2a b +>矛盾,故为假命题.故选B . 2.【答案】D【解析】∵命题p 为全称命题,∴¬p 为特称命题,由命题的否定只否定结论知0x a >的否定为0xa ≤,∴故选D . 3.【答案】B【解析】∵“¬p ”为假,∴p 为真,又∵p ∧q 为假,∴q 为假,p 或q 为真.故选B . 4.【答案】A【解析】当3a =-时,圆()2234x y -+=的圆心为()3,0,半径12R =, 与圆221x y +=相外切,当两圆相内切时,a =±1,故选A . 5.【答案】A【解析】图示法/p R s q⇒⇐⇒⇒,故/q p ⇒,否则q ⇒p ⇒R ⇒q ⇒p ,则R ⇒p ,故选A . 6.【答案】A【解析】由题意得,“lg y 为lg x ,lg z 的等差中项”,则22lg lg lg y x z y xz =+⇒=,则“y 是x ,z 的等比中项”;而当2y xz =时,如1x z ==,1y =-时,“lg y 为lg x ,lg z 的等差中项”不成立, 所以“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件, 故选A . 7.【答案】D【解析】命题p 是真命题,命题q 是假命题,所以选项D 正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断. 8.【答案】B【解析】x =π时,t a n x =0,但co sx =-1;co sx =1时,s in x =0,故t a n x =0. 所以“t a n x =0”是“co sx =1”的必要不充分条件. 9.【答案】C【解析】由题意可知命题p 为真,即方程4210x x m ++=有解,∴4122x x m +=-≤--,当且仅当0x =时取等号,所以m ≤-2.10.【答案】D【解析】由逆否命题的定义知A 正确;当x =y 时,22x y xy +⎛⎫≥ ⎪⎝⎭成立;22x y xy +⎛⎫≥ ⎪⎝⎭||2x y +≥,故x =y ,∴B 为真命题;由特称命题的否定为全称命题知C 为真命题;∵p q ∨为假,∴p 假且q 假,∴D 为假命题. 11.【答案】C【解析】对于①,设球半径为R ,则34π3V R =,12R R =, ∴33141π1π3268R V R V ⎛⎫=⨯== ⎪⎝⎭,故①正确; 对于②,两组数据的平均数相等,标准差一般不相等; 对于③,圆心()0,0,圆心()0,0到直线的距离d =,故直线和圆相切,故①,③正确. 12.【答案】D【解析】①2a b +=可能有1a b ==;word②a +b >2时,假设a ≤1,b ≤1,则a +b ≤2矛盾; ③a +b >-2可能a <0,b <0; ④ab >1,可能a <0,b <0;⑤log ab <0,∴0<a <1,b >1或a >1,0<b <1,故②⑤能推出.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】真【解析】原命题的否命题为“若|x |≤1,则x ≤1”, ∵|x |<1,∴-1<x <1,故原命题的否命题为真命题.14.【答案】若a c≤0,则方程()200ax bx c a -+=≠的两根不全大于0. 【解析】根据原命题与它的逆否命题是等价命题可直接写出. 15.【答案】3≤m <8【解析】∵p (1)是假命题,p (2)是真命题,∴3080m m -≤⎧⎨->⎩,解得3≤m <8.16.【答案】逆命题【解析】解法1:依据四种命题的关系图解.由图示可知?处应为互逆关系. 解法2:用特殊命题探究p :若x >2,则x >1,r :若x >1,则x >2,s :若x ≤1,则x ≤2,p 的否命题:若x ≤2,则x ≤1,故s 是p 的否命题的逆命题.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】逆命题,已知a 、b 为实数,若240a b -≥,则关于x 的不等式20x ax b ++≤有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤没有非空解集, 则240a b -<.逆否命题:已知a 、b 为实数,若240a b -<,则关于x 的不等式20x ax b ++≤没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题. 18.【答案】(1)见解析;(2)见解析.【解析】(1)¬p :∃m ∈R ,使方程20x x m +-=无实数根.若方程20x x m +-=无实数根,则140Δ=m +<,∴14m <-,∴¬p 为真.(2)¬q :∀x ∈R ,使得210x x ++>.∵22131024x x x ⎛⎫++=++> ⎪⎝⎭,∴¬q 为真.19.【答案】-1≤a ≤5.【解析】P ={x |a -4<x <a +4},Q ={x |1<x <3}.∵x P ∈是x Q ∈的必要条件,∴x Q ∈⇒x P ∈,即Q ⊆P . ∴4143a a -≤⎧⎨+≥⎩,51a a ≤⎧⎨≥-⎩,∴-1≤a ≤5.20.【答案】221a -≤≤-.【解析】根据p 或q 是真命题,¬q 是真命题,得p 是真命题,q 是假命题.∵,1[]1m ∈-2822,3m ⎡⎤+⎣⎦. 因为1,[]1m -∀∈,不等式22538a a m --=+2533a a --≥,∴a ≥6或a ≤-1.故命题p 为真命题时,a ≥6或a ≤-1.又命题q :∃x ,使不等式220x ax ++<,∴280Δ=a ->,∴22a >22a <- 从而命题q 为假命题时,2222a -≤word所以命题p 为真命题,q 为假命题时,a 的取值X 围为1a -≤≤-. 21.【答案】1≤a <19.【解析】∵函数()f x 的图象全在x 轴上方,∴()()22245016144530a a Δa a a ⎧+->⎪⎨=--+-⨯<⎪⎩,或245010a a a ⎧+-=⎨-=⎩, 解得1<a <19或a =1,故1≤a <19.所以使函数()f x 的图象全在x 轴的上方的充要条件是1≤a <19. 22.【答案】{a |a >2或a <-2}.【解析】由2220x ax a +-=得(2x -a )(x +a )=0,∴2ax =或x =-a , ∴当命题p 为真命题时12a≤或|-a |≤1,∴|a |≤2. 又“只有一个实数0x 满足200220x ax a ++≤”,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480Δ=a a -=,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值X 围为{a |a >2或a <-2}.。
高中数学选修1-1第一章《常用逻辑用语》单元测试(一)

105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
2020届人教A版_常用逻辑用语-单元测试

常用逻辑用语一、单选题 1.“1-=m”是直线01)12(=+-+y m mx 和直线033=++my x 垂直的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【解析】若直线01)12(=+-+ym mx 和直线033=++my x 垂直,则3(21)0m m m +-=,即1m =-或0m =, 所以1m =-是这两条直线垂直的充分不必要条件。
2.椭圆()2210y x m m+=>的离心率大于12的充分必要条件是( )A.14m <B.3443m <<C.34m > D.304m <<或43m > 【答案】D 【解析】试题分析:设椭圆的离心率为e ,当1m >时,焦点落在y 轴上,2114m e m -=>,解得43m >;当01m <<时,焦点落在x 轴上,则21130144m e m -=>⇒<<,综上所示,实数m 的取值范围是340,,43⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,故选D. 考点:1.椭圆的离心率;2.充分必要条件3.已知命题p: “若x 2−x >0,则x >1”;命题q: “若x,y ∈R ,x 2+y 2=0,则xy =0”,则下列命题是真命题的是( )A .p ∨(¬q )B .p ∨qC .p ∧qD .(¬p )∧(¬q ) 【答案】B 【解析】【分析】先分别判定命题p,q的真假性,再根据选项判断复合命题的真假性。
【详解】求解一元二次不等式x2−x>0可得x>1或x<0,命题p是假命题;若x,y∈R,x2+y2=0,则x=y=0,此时xy=0,命题q为真命题;逐一考查所给命题的真假:A.p∨(¬q)是假命题;B.p∨q是真命题;C.p∧q是假命题;D.(¬p)∧(¬q)是假命题;故选B.【点睛】复合命题的真假性由真值表判定:4.下列命题为真命题的是().A.若x>y>0,则lnx+lny>0”是“函数y=sin(2x+φ)为偶函数”的充要条件B.“φ=π2C.∃x0∈(−∞,0),使3x0<4x0成立D.已知两个平面α,β,若两条异面直线m,n满足m⊂α,n⊂β且m//β,n//α,则α//β【答案】D【解析】对于A:令x=1,y=1,则lnx+lny=−1>0不成立,故排除A;e”是“函数y=sin(2x+φ)为偶函数”的充分不必要条件,故排除B;对于B:“φ=π2对于C:根据幂函数y=xα,当α<0时,函数单调递减,故不存在x0∈(−∞,0),使3x0< 4x0成立,故排除C;对于D:已知两个平面α,β,若两条异面直线m,n满足m⊂α,n⊂β且m//β,n//α,可过n作一个平面与平面α相交于n′,由线面平行的性质定理可得n′//n,再由线面平行的判断定理可得,n′//β,由面面平行的判断定理可得α//β,所以D正确;故选D. 5.已知下列命题中:(1)若k R ∈,且0kb =,则0k =或0b =,(2)若0a b ⋅=,则0a =或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a (4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( ) A .0 B .1 C .2 D .3 【答案】C 【解析】试题分析:对于(1)若k R ∈,且0kb =,则0k =或0b =,成立。
2021_2022学年高中数学第一章常用逻辑用语测评含解析新人教A版选修1_1

第一章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知命题p:∀x>0,x+2,那么命题p为()A.∀x>0,x+<2B.∀x≤0,x+<2C.∃x0>0,x0+<20,x0+<22.命题“若x<0,则ln(x+1)<0”的否命题是()A.若x≥0,则ln(x+1)<0B.若x<0,则ln(x+1)≥0C.若x≥0,则ln(x+1)≥0x+1)≥0,则x≥03.已知命题p:若(a-b)3b2>0,则a>b,则在命题p的逆命题、否命题和逆否命题中,假命题的个数为()B.1C.2D.3p为真,故其逆否命题为真;p的逆命题为假,故其否命题也为假,因此假命题个数为4.(原创题)命题“∀x>0,>0”的否定是()A.∃x0<0,0B.∃x0>0,0<x0≤10,0 D.∀x<0,0<x≤15.对于非零向量a,b,“a+b=0”是“a∥b”的()A.充分不必要条件B.必要不充分条件D.既不充分也不必要条件a+b=0,则a=-b,所以a∥b.若a∥b,则a+b=0不一定成立,所以“a+b=0”是“a∥b”的充分不必要条件.故选A.6.已知命题p:函数y=log a(x-1)+1的图象恒过定点(2,2);命题q:若函数y=f(x-1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨qB.p∨(q)q D.p∧qy=log a(x-1)+1的图象可看作把y=log a x的图象先向右平移1个单位,再向上平移1个单位得到,而y=log a x的图象恒过(1,0),所以函数y=log a(x-1)+1恒过(2,1)点,所以命题p假,则p真;函数f(x-1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x-1)向左平移了1个单位,所以f(x)的图象关于直线x=-1对称,所以命题q假,则命题q真.综上可知,四个选项只有命题p∨(q)为真命题.故选B.7.下列说法错误的是()A.“x=1”是“x2-3x+2=0”的充分不必要条件B.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”C.若命题p:∃x0∈R,使得+x0+1<0,则p:∀x∈R,均有x2+x+1≥0∧q为假命题,则p,q均为假命题A,x2-3x+2=0的解为x=1或x=2,所以“x=1”是“x2-3x+2=0”的充分不必要条件,A正确;对于B,命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”,B正确;对于C,特称命题的否定为全称命题,C正确;对于D,若p∧q为假命题,则p,q中至少有一个为假命题,D错误.故选D.8.已知命题p:存在x∈(1,2)使得e x-a>0,若p是真命题,则实数a的取值X围为()A.(-∞,e)B.(-∞,e]2∞) D.[e2,+∞)p是真命题,所以p为假命题,所以∀x∈(1,2),有e x-a≤0,即a≥e x,又y=e x在(1,2)上的最大值为e2,所以a≥e2.9.已知p:∃x0∈R,m+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值X围为()A.{m|m≥2}B.{m|m≤-2}≤-2,或m≥2} D.{m|-2≤m≤2}p:∃x0∈R,m+1≤0,可得m<0,由q:∀x∈R,x2+mx+1>0,可得Δ=m2-4<0,解得-2<m<2,因为p∨q为假命题,所以p与q都是假命题,若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m的取值X围为m≥2.10.已知p:函数f(x)=(x-a)2在(-∞,1)上是减函数,q:∀x>0,a恒成立,则p是q的()A.充分不必要条件B.必要不充分条件D.既不充分也不必要条件p:函数f(x)=(x-a)2在(-∞,1)上是减函数,得a≥1.所以p:a<1;由q:∀x>0,a恒成立,得a≤2,所以p是q的充分不必要条件.11.(原创题)已知函数f(x)=,设命题p:∀a∈R,函数f(x)的值域不可能是(0,+∞);命题q:∃a∈R,使函数f(x)的单调递增区间是(-∞,-2].那么下列命题为真命题的是()A.p∧qB.p∨(q)C.(p)∧q(q)a=0时,f(x)=的值域为(0,+∞),故命题p为假命题;要使函数f(x)的单调递增区间是(-∞,-2],只需y=ax2+2x-1的单调递减区间是(-∞,-2],这时只要满足解得a=,因此命题q为真命题,故(p)∧q 为真.12.(改编题)若“x>1”是“不等式2x>a-x成立”的必要不充分条件,则实数a的取值X围是()B.a<3C.a>4D.a<42x>a-x,则2x+x>a,设f(x)=2x+x,该函数为增函数.由题知2x+x>a成立,即f(x)>a成立能得到x>1,并且反之不成立.因为x>1时,f(x)>3,所以a>3.二、填空题(本大题共4小题,每小题5分,共20分)“∃x0∈R,sin x0+2>cos x0”的否定为.x∈R,sin x+2x2≤cos x14.已知命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=的定义域是[3,+∞),则“p∨q”“p”中是真命题的为.p假,q真,所以“p∨q”,“p”是真命题.∨q,p)函数f(x)=有且只有一个零点的充分必要条件是.x>0时,x=1是函数的一个零点,要使函数有且只有一个零点,应使函数f(x)在(-∞,0]上没有零点,即-2x+a=0无解,而当x≤0时,0<2x≤1,所以实数a应满足a≤0或a>1.≤0或a>116.下列四个命题:①“∃x0∈R,-x0+1≤0”的否定;②“若x2+x-6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sin A>的充分不必要条件;④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈Z)”.其中真命题的序号是.解析对于①,因为x2-x+1=x-2+>0,所以命题“∃x0∈R,-x0+1≤0”为假命题,所以命题“∃x0∈R,-x0+1≤0”的否定为真命题;对于②,由x2+x-6=(x+3)(x-2)≥0,解得x≥2或x≤-3,即命题“若x2+x-6≥0,则x>2”的逆命题为真命题,所以其否命题为真命题;对于③,例如A=160°,此时sin A<sin150°=,所以充分性不成立,反之,若sin A>且0°<A<180°,根据三角函数的性质,可得A>30°,即必要性成立,所以在△ABC中,“A>30°”是“sin A>的充分不必要条件是假命题;对于④,由函数f(x)=tan(x+φ)为奇函数可得φ=kπ或φ=+kπ(k∈Z),所以该命题为假命题.故答案为①②.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)写出下列命题的逆命题、否命题以及逆否命题:(1)若α-β=,则sin α=cos β;a,b,c,d为实数,若a≠b,c≠d,则a+c≠b+d.逆命题:若sinα=cosβ,则α-β=;否命题:若α-,则sinα≠cosβ;逆否命题:若sinα≠cosβ,则α-(2)逆命题:已知a,b,c,d为实数,若a+c≠b+d,则a≠b,c≠d;否命题:已知a,b,c,d为实数,若a=b或c=d,则a+c=b+d;逆否命题:已知a,b,c,d为实数,若a+c=b+d,则a=b或c=d.18.(本小题满分12分)已知命题p:∃x0∈R,使得4+(a-2)x0+0,命题q:a2-7a+10≤0,若命题p为假,命题q为真,求a的取值X围.p为假,所以其否定:∀x∈R,4x2+(a-2)x+>0恒成立为真,则Δ=(a-2)2-4×4=a2-4a<0,所以0<a<4,又由命题q为真得2≤a≤5,所以a∈[2,4).19.(本小题满分12分)已知命题:“∃x0∈(-1,1),使等式-x0-m=0成立”是真命题.(1)某某数m的取值集合M;(x-a)(x+a-2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值X围.由题意知,方程x2-x-m=0在(-1,1)上有解,即m的取值X围为函数y=x2-x在(-1,1)上的值域,易得M=(2)因为x∈N是x∈M的必要条件,所以M⊆N.当a=1时,解集N为空集,不满足题意;当a>1时,a>2-a,此时集合N={x|2-a<x<a},则解得a>;当a<1时,a<2-a,此时集合N={x|a<x<2-a},则解得a<-综上,a a>,或a<-.20.(本小题满分12分)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F>0),求曲线C在x轴上所截线段长度为1的充要条件,并证明.G2-4F=1.(1)必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|==1,则G2-4F=1.(2)充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.21.(本小题满分12分)已知p:>2,q:x2-ax+5>0.(1)若p为真,求x的取值X围;q是p的充分不必要条件,某某数a的取值X围.因为p为真,所以>2,所以<0,所以(x-2)(x-5)<0,解得2<x<5,即x的取值X围是(2,5);(2)因为q是p的充分不必要条件,所以p是q的充分不必要条件,所以p对应的x取值集合是q对应的x取值集合的真子集,即对任意x∈(2,5),x2-ax+5>0恒成立,所以对任意x∈(2,5),a<x+,即a<x+min,x∈(2,5),又因为x+2=2,当且仅当x=时,等号成立,所以a∈(-∞,2).22.(本小题满分12分)已知m∈R,命题p:对∀x∈[0,8],不等式lo(x+1)≥m2-3m恒成立;命题q:对∀x∈(-∞,-1),不等式2x2+x>2+mx恒成立.(1)若命题p为真命题,某某数m的取值X围;p∧q为假,p∨q为真,某某数m的取值X围.令f(x)=lo(x+1),则f(x)在(-1,+∞)上为减函数,因为x∈[0,8],所以当x=8时,f(x)min=f(8)=-2, 不等式lo(x+1)≥m2-3m恒成立,等价于-2≥m2-3m,解得1≤m≤2,故命题p为真命题时,实数m的取值X围为[1,2].(2)若命题q为真命题,则m>2x-+1,对∀x∈(-∞,-1)上恒成立,令g(x)=2x-+1,因为g(x)在x∈(-∞,-1)上为单调递增函数,则g(x)<g(-1)=1,故m≥1,即命题q为真命题时,m≥1.若p∧q为假,p∨q为真,则命题p与q一真一假;①若p为真,q为假时,则此时无解;②若p为假,q为真时,则则m>2.综上m的取值X围为(2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x是实数,则“x>0”是“|x|>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由x>0⇒|x|>0充分,而|x|>0⇒x>0或x<0,不必要.答案:A2.命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1,或x<-1,则x2>1D.若x≥1,或x≤-1,则x2≥1解析:-1<x<1的否定是“x≥1,或x≤-1”;“x2<1”的否定是“x2≥1”.答案:D3.下列命题中是全称命题的是()A.圆的内接四边形B. 3 > 2C. 3 < 2D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形解析:由全称命题的定义可知:“圆有内接四边形”,即为“所有圆都有内接四边形”,是全称命题.答案:A4.若α,β∈R,则“α=β”是“tan α=tanβ”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:当α=β=π2时,tanα,tan β不存在;又α=π4,β=5π4时,tanα=tan β,所以“α=β”是“tan α=tan β”的既不充分又不必要条件.答案:D5.命题“∀x>0,都有x2-x≤0”的否定是()A.∃x0>0,使得x20-x0≤0 B.∃x0>0,使得x20-x0>0C.∀x>0,都有x2-x>0 D.∀x≤0,都有x2-x>0解析:由含有一个量词的命题的否定应为B.答案:B6.命题p:a2+b2<0(a,b∈R);命题q:(a-2)2+|b-3|≥0(a,b∈R),下列结论正确的是()A.“p∨q”为真B.“p∧q”为真C.“⌝p”为假D.“⌝q”为真解析:显然p假q真,故“p∨q”为真,“p∧q”为假,“⌝p”为真,“⌝q”为假.答案:A7.如果命题“p或q”与命题“⌝p”都是真命题,那么() A.命题p不一定是假命题B.命题q一定为真命题C.命题q不一定为真命题D.命题p与命题q真假相同解析:因为⌝p为真,所以p为假;又因为p或q为真,所以q 必为真.答案:B8.已知条件p:|x+1|>2,条件q:5x-6>x2,则⌝q是⌝p的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题易知p:x>1或x<-3;q:2<x<3,所以⌝q:x≥3或x≤2,⌝p:-3≤x≤1,所以⌝q是⌝p的必要不充分条件,故选B.答案:B9.已知命题p:∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则⌝p 是()A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0B.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0解析:解题的突破口为全称命题的否定是特称命题,特称命题的否定是全称命题.故∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0的否定是∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0.答案:C10.已知p:关于x的不等式x2+2ax-a>0的解集是R,q:-1<a<0,则p是q的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.以上说法均不正确解析:p:x2+2ax-a>0的解集为R⇔Δ=4a2+4a<0⇔-1<a<0.所以p是q的充分必要条件.答案:C11.已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=π2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:B12.设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.命题p:∃x0∈R,x20+2x0+4<0的否定⌝p:_______________.解析:特称命题“∃x0∈M,p(x0)”的否定是全称命题“∀x∈M,⌝p(x).”故填∀x∈R,x2+2x+4≥0.答案:∀x∈R,x2+2x+4≥014.设p:x>2或x<23;q:x>2或x<-1,则⌝p是⌝q的________条件.解析:⌝p:23≤x≤2.⌝q:-1≤x≤2.⌝p⇒⌝q,但⌝q⌝p.所以⌝p是⌝q的充分不必要条件.答案:充分不必要15.“函数y=x2+bc+c,在x∈[0,+∞)上是单调函数”的充要条件为________.解析:对称轴为x=-b 2,要使y=x2+bx+c在x∈[0,+∞)上单调,只需满足-b2≤0,即b≥0.答案:b≥016.给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题在“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④若“m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.答案:①②③三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)命题:已知a,b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.解:逆命题:已知a ,b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.否命题:已知a ,b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0.逆否命题:已知a ,b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.18.(本小题满分12分)写出下列命题的否定,并判断其真假.(1)p :∀m ∈R ,方程x 2+x -m =0必有实数根;(2)q :∃x ∈R ,使得x 2+x +1≤0.解:(1) ⌝p :∃m ∈R ,使方程x 2+x -m =0无实数根.若方程x 2+x -m =0无实数根,则Δ=1+4m <0,则m <-14,所以当m =-1时,⌝p 为真.(2) ⌝q :∀x ∈R ,使得x 2+x +1>0. 因为x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0, 所以⌝q 为真.19.(本小题满分12分)若x ∈[-2,2],关于x 的不等式x 2+ax +3≥a 恒成立,求a 的取值范围.解:设f (x )=x 2+ax +3-a ,则此问题转化为当x ∈[-2,2]时, f (x )min ≥0即可.①当-a 2<-2,即a >4时,f (x )在[-2,2]上单调递增, f (x )min =f (-2)=7-3a ≥0,解得a ≤73.又因为a >4,所以a 不存在.②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=12-4a -a 24≥0,解得-6≤a ≤2.又因为-4≤a ≤4,所以-4≤a ≤2.③当-a 2>2,即a <-4时,f (x )在[-2,2]上单调递减,f (x )min =f (2)=7+a ≥0,解得a ≥-7.又因为a <-4,所以-7≤a <-4.综上所述,a 的取值范围是{a |-7≤a ≤2}.20.(本小题满分12分)下列三个不等式:①|x -1|+|x +4|<a ;②(a -3)x 2+(a -2)x -1>0;③a >x 2+1x 2. 若其中至多有两个不等式的解集为空集,求实数a 的取值范围. 解:对于①,因为|x -1|+|x +4|≥|(x -1)-(x +4)|=5,所以,不等式|x -1|+|x +4|<a 的解集为空集时,实数a 的取值范围是a ≤5.对于②,当a =3时,不等式的解集{x |x >1},不是空集;当a ≠3时,要使不等式(a -3)x 2+(a -2)x -1>0的解集为空集,则⎩⎪⎨⎪⎧a -3<0,(a -2)2+4(a -3)≤0,解得-22≤a ≤2 2. 对于③,因为x 2+1x 2≥2x 2·1x 2=2, 当且仅当x 2=1,即x =±1时取等号.所以,不等式a >x 2+1x 2的解集为空集时,a ≤2. 因此,当三个不等式的解集都为空集时,-22≤a ≤2.所以要使三个不等式至多有两个不等式的解集为空集,则实数a 的取值范围是{a |a <-22或a >2}.21.(本小题满分12分)已知函数f (x )=⎩⎨⎧-x -1(x <-2),x +3⎝⎛⎭⎪⎫-2≤x ≤12(x ∈R).(1)求函数f (x )的最小值; (2)已知m ∈R ,命题p :关于x 的不等式f (x )≥m 2+2m -2对任意m ∈R 恒成立;q :函数y =(m 2-1)x 是增函数.若“p 或q ”为真,“p 且q ”为假,求实数m 的取值范围.解:(1)作出函数f (x )的图象,可知函数f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,故f (x )的最小值为f (x )min =f (-2)=1.(2)对于命题p ,m 2+2m -2≤1,故-3≤m ≤1;对于命题q ,m 2-1>1,故m >2或m <- 2.由于“p 或q ”为真,“p 且q ”为假,则①若p 真q 假,则⎩⎪⎨⎪⎧-3≤m ≤1,-2≤m ≤2,则得-2≤m ≤1. ②若p 假q 真,则⎩⎪⎨⎪⎧m >1或m <-3,m <-2或m >2,解得m <-3或m > 2. 故实数m 的取值范围是(-∞,-3)∪[-2,1]∪(2,+∞).22.(本小题满分12分)已知a >0,且a ≠1,命题p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p 和q 有且只有一个真命题,求a 的取值范围.当a >1时,y =log a (x +1)在(0,+∞) 内单调递增.解:当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,y =log a (x +1)在(0,+∞)内单调递增.曲线y =x 2+(2a-3)x +1与x 轴交于不同的两点等价于(2a -3)2-4>0,即a <12或a >52. (1)若p 真,q 假,即函数y =log a (x +1)在(0,+∞)内单调递减,曲线y =x 2+(2a -3)x +1与x 轴至多有一个交点,则0<a <1,且12≤a <1或1<a ≤52,即12≤a <1. (2)若p 假,q 真,即函数y =log a (x +1)在(0,+∞)内单调递增,曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,则a >1,且a <12或a >52,所以a >52. 综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫12,1∪⎝ ⎛⎭⎪⎫52,+∞.。