Matlab最小二乘法拟合笔记

合集下载

matlab最小二乘法曲线拟合

matlab最小二乘法曲线拟合

matlab最小二乘法曲线拟合最小二乘法是一种常用的曲线拟合方法,它通过最小化实际观测值与拟合曲线之间的平方误差来确定最佳拟合曲线的参数。

给定一组实际观测数据点(xi, yi),我们希望找到一个拟合曲线y=f(x;θ),其中θ表示曲线的参数。

最小二乘法的目标是使误差的平方和最小化,即使得下述损失函数最小化:L(θ) = ∑(yi - f(xi;θ))^2其中,∑表示求和运算,L(θ)是损失函数,yi是第i个观测数据点的输出值,f(xi;θ)是根据参数θ计算得到的拟合曲线在第i个观测点的预测值。

为了找到最佳的参数θ,我们通过最小化损失函数来求解优化问题:minimize L(θ)这个问题可以通过求解等式∂L/∂θ = 0 来得到最优参数θ的闭式解。

具体的求解方法,可以通过矩阵和向量的运算来实现。

在Matlab中,可以使用“polyfit”函数进行最小二乘法的曲线拟合。

该函数可以拟合出一条多项式曲线,通过指定最佳拟合的次数,即多项式的阶数。

拟合结果包括最佳参数和拟合误差等信息。

使用方法如下:```% 输入观测数据x = [x1, x2, x3, ...]';y = [y1, y2, y3, ...]';% 拟合曲线order = 1; % 最佳拟合的次数(如一次线性拟合)p = polyfit(x, y, order);% 最佳参数coefficients = p;% 拟合曲线curve = polyval(p, x);% 绘制拟合曲线和观测数据plot(x, y, 'o', x, curve)```这样,就可以使用Matlab的最小二乘法曲线拟合方法来得到最佳的拟合曲线。

Matlab最小二乘法曲线拟合

Matlab最小二乘法曲线拟合

最小二乘法在曲线拟合中比较普遍。

拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。

在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。

2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)];para=X\y3.多重回归(乘积回归)设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。

设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等!para=X\ypolyfit函数polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。

1.假设要拟合的多项式是:y=a+b*x+c*x^2p=polyfit(x,y,2)然后可以使用polyval在t处预测:y_hat=polyval(p,t)polyfit函数可以给出置信区间。

[p S]=polyfit(x,y,2) %S中包含了标准差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2)p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数。

matlab最小二乘法拟合直线

matlab最小二乘法拟合直线

matlab最小二乘法拟合直线【导言】直线拟合是数据分析和数学建模中常用的方法之一,而最小二乘法则是在直线拟合中最常用的方法之一。

在本文中,将介绍使用Matlab进行最小二乘法拟合直线的步骤和原理,并就此主题进行深入的探讨。

【正文】一、最小二乘法简介最小二乘法是一种数学优化方法,它通过最小化误差的平方和来寻找函数与观测数据之间的最佳拟合。

在直线拟合中,最小二乘法的目标是找到一条直线,使得所有观测数据点到直线的距离之和最小。

1. 确定拟合的模型在直线拟合中,我们的模型可以表示为:Y = a*X + b,其中a和b为待求参数,X为自变量,Y为因变量。

2. 计算误差对于每一个观测数据点(x_i, y_i),计算其到直线的垂直距离d_i,即误差。

误差可以表示为:d_i = y_i - (a*x_i + b)。

3. 求解最小二乘法问题最小二乘法的目标是最小化所有观测数据点到直线的距离之和,即最小化误差的平方和:min Σ(d_i^2) = min Σ(y_i - (a*x_i + b))^2。

通过求解该最小化问题,可以得到最佳拟合的直线斜率a和截距b的值。

二、Matlab实现最小二乘法拟合直线的步骤下面将介绍使用Matlab进行最小二乘法拟合直线的基本步骤。

1. 导入数据需要将实验数据导入Matlab。

可以使用matlab自带的readtable函数从文件中读取数据,也可以使用xlsread函数直接从Excel文件中读取数据。

2. 数据预处理在进行最小二乘法拟合直线之前,先对数据进行预处理。

一般情况下,可以对数据进行去除异常值、归一化等操作,以确保数据的准确性和可靠性。

3. 拟合直线使用Matlab的polyfit函数可以实现直线拟合。

polyfit函数可以拟合输入数据的曲线或平面,并返回拟合参数。

在拟合直线时,需要指定拟合的阶数,对于直线拟合,阶数为1。

4. 绘制拟合直线使用Matlab的plot函数可以将拟合的直线绘制出来,以便于观察拟合效果。

最小二乘法的基本原理和多项式拟合matlab实现

最小二乘法的基本原理和多项式拟合matlab实现

最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir2的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。

数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=mi ir2[]∑==-mi iiy x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。

函数)(x p 称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。

合中,函数类Φ可有不同的选取方法.6—1二多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。

最小二乘法拟合matlab

最小二乘法拟合matlab

最小二乘法拟合matlab
最小二乘法拟合MATLAB
最小二乘法是一种有效地估计未知参数值的统计学方法,它假定误差服从正态分布,然后进行极大似然估计。

下面我们就来介绍一下如何使用MATLAB来拟合最小二乘法。

1.第一步:绘制出要拟合的数据,这里我们绘制出了一个简单的抛物线数据:
x=[-3 -2 -1 0 1 2 3];
y=[6 3 1 0 -2 -4 -7];
plot(x,y);
2.第二步:根据你要拟合的函数,构建出你所要拟合的模型。

这里,我们想拟合一条抛物线:y=ax2+bx+c ;
3.第三步:定义拟合函数:
fun=@(x,xdata)x(1)*xdata.^2+x(2)*xdata+x(3);
4.第四步:调用最小二乘法函数:
[x,resnorm,residual,exitflag,output,lambda,jacobian]=lsqcur vefit(fun,[1 1 1],x,y);
现在你已经可以看到拟合函数的参数了:
x的值为[1.7, 0.3, -1.5],
而拟合函数为: y=1.7x2+0.3x-1.5
因此,使用MATLAB调用最小二乘法可以很方便地拟合出任意复
杂的函数,并且可以得到准确的参数值。

matlab 对数 最小二乘拟合

matlab 对数 最小二乘拟合

一、概述Matlab是一种强大的数学软件,它提供了许多用于数学建模、数据分析、图形可视化等功能的工具。

对数最小二乘拟合是其中一个重要的功能,它可以帮助研究人员处理实验数据,找出数据之间的相关性,从而进行有效的数据分析和建模。

在本文中,我们将讨论Matlab中对数最小二乘拟合的原理、方法和应用。

二、对数最小二乘拟合的原理对数最小二乘拟合是一种特殊的非线性拟合方法,它适用于当实验数据呈现出指数增长或指数衰减的趋势时。

对数最小二乘拟合的原理是将实验数据取对数变换,然后使用最小二乘法进行拟合。

最小二乘法是一种常用的数值优化方法,它通过最小化实际观测值和模型预测值之间的残差平方和来确定模型参数,从而实现拟合。

三、Matlab中对数最小二乘拟合的方法在Matlab中,可以使用“lsqcurvefit”函数进行对数最小二乘拟合。

该函数可以通过最小二乘法拟合非线性方程,并返回拟合参数和拟合效果。

使用该函数时,需要提供拟合的非线性方程、初始参数估计值、实验数据及其权重等信息,以便进行拟合。

在拟合结束后,可以通过绘制拟合曲线和残差图来评估拟合效果。

四、对数最小二乘拟合的应用对数最小二乘拟合在实际应用中具有广泛的意义。

在生物学领域,用对数最小二乘拟合可以研究物种种裙的增长趋势;在经济学领域,可以用来分析经济指标的增长规律等。

通过对数最小二乘拟合,研究人员可以更加准确地描述实验数据的变化规律,从而做出更有力的数据分析和预测。

五、结论对数最小二乘拟合是Matlab中的重要功能之一,它可以帮助研究人员处理实验数据、分析数据规律,并进行数学建模。

本文讨论了对数最小二乘拟合的原理、方法和应用,希望可以为对数最小二乘拟合的研究和应用提供一些有益的参考。

在实际应用中,研究人员可以根据具体的问题和实验数据,灵活运用Matlab中的数学工具,进行数据分析和建模工作。

六、对数最小二乘拟合的优缺点尽管对数最小二乘拟合在处理指数增长或指数衰减的数据时具有一定优势,但同样也存在一些局限性。

matlab最小二乘拟合问题

matlab最小二乘拟合问题

Matlab实现最小二乘拟合一、实验内容1对下列数据,求解最小二乘抛物线C+)(=2BxAxxf+2logistic曲线,具有形式P(t)=L/(1+Ce At)。

对下列数据集求解参数A和C,L是已知的。

(a)(0,200),(1,400),(2,650)(3,850),(4,950); L=1000(b)(0,500),(1,1000),(2,1800)(3,2800),(4,3700); L=5000二、实验原理:求使得偏差平方和最小的多项式三、实验说明:要求输入拟合点,输出拟合函数的系数并在同一坐标系下画出离散点和拟合曲线。

四、实验过程及结果分析第1题:相关输入与输出:>> X=[-3 -1 1 3];>> Y=[15 51 5];>> M=2;>> C=lspoly(X,Y,M)C =0.8750-1.70002.1250(降幂排列)>> x=-3:0.1:3;>> y=polyval(C,x);>> plot(X,Y,'ro',x,y,'b-')图像:-3-2-10123第2题:(1):>> P=[200 400 650 850 950];>> L=1000;>> y=dd(L,P)y =0.6094 -0.0837 -0.5692 -0.8375 -0.9487>> y=[0.6094 -0.0837 -0.5692 -0.8375 -0.9487];>> t=[0 1 2 3 4];>> M=1;>> a=lspoly(t,y,M)a =-0.38700.4081>> A=a(1)A =-0.3870>> C=exp(a(2))C =1.5039>>T=0:0.1:4;>>Y=polyval(a,T);>>plot(t,y,'ro',T,Y,'b-')变换后图像:00.51 1.52 2.53 3.54第2题:(2)>> P=[ 500 1000 1800 2800 3700]; >> L=5000;>> y=dd(L,P)y =1.3026 0.6094 0.0217 -0.4202 -0.6989>> y=[1.3026 0.6094 0.0217 -0.4202 -0.6989];>> t=[0 1 2 3 4];>> M=1;>> a=lspoly(t,y,M)a =-0.50331.1694>> A=a(1)A =-0.5033>> C=exp(a(2))C =3.2202>> T=0:0.1:4;Y=polyval(a,T);plot(t,y,'ro',T,Y,'b-')变换后图像:00.51 1.52 2.53 3.54五、实验总结:1.本实验lspoly意思是最小二乘多项式的英文简写,其程序运行到C=A\B时,C 为升幂排列,最后加上C=flipud(C)表示上下颠倒,使得所求C即为根据x的幂次由高到低排列的2.引用matlab系统函数polyval是求多项式的值3.在第2问中,所求函数模型不是线性的,这就要考虑对其进行相应的变化六、参考程序:1、lspoly.mfunction C=lspoly(X,Y,M)n=length(X);B=zeros(1:M+1);F=zeros(n,M+1);for k=1:M+1F(:,k)=X'.^(k-1);endA=F'*F;B=F'*Y';C=A\B;C=flipud(C);2、计算y与P、L关系的m文件dd.m:function y=dd(L,P);y=zeros(1,5);for i=1:5y(i)=log(L./P(i))-1); y(i)=log(L./P(i))-1; end。

用Matlab进行最小二乘法线性拟合(求传感器非线性误差、灵敏度)

用Matlab进行最小二乘法线性拟合(求传感器非线性误差、灵敏度)

%后面的为注释,红色部分代码需要根据实际情况更改%最小二乘法线性拟合y=ax+bx=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量xmean=mean(x);ymean=mean(y);sumx2=(x-xmean)*(x-xmean)';sumxy=(y-ymean)*(x-xmean)';a=sumxy/sumx2;%解出直线斜率a(即传感器灵敏度)b=ymean-a*xmean;%解出直线截距bz=((a*(x(1,10))+b-(y(1,10)))/(y(1,10)));%“10”是自变量的个数,z为非线性误差(即线性度)abz%作图,先把原始数据点用蓝色"十"字描出来figureplot(x,y,'+');hold on% 用红色绘制拟合出的直线px=linspace(0,6,50);%(linspace语法(从横坐标负轴起点0画到横坐标正轴终点6,50等分精度))py=a*px+b;plot(px,py,'r');运行结果:a =236.9818b =87.4000另一种简单一点的方法:%最小二乘法线性拟合y=ax+bx=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量p=polyfit(x,y,1);p运行结果:p =236.9818 87.4000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法拟合
在科学实验的统计方法研究中,往往要从一组实验数据中寻找出自变量x 和因变量y之间的函数关系y=f(x) 。

由于观测数据往往不够准确,因此并
不要求y=f(x)经过所有的点,而只要求在给定点上误差
按照某种标准达到最小,通常采用欧氏范数作为误差量度的标准。

这就是所谓的最小二乘法。

在MATLAB中实现最小二乘法拟合通常采用polyfit函数进行。

函数polyfit是指用一个多项式函数来对已知数据进行拟合,我们以下列数据为例介绍这个函数的用法:
>> x=0:0.1:1;
>> y=[ -0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2 ]
为了使用polyfit,首先必须指定我们希望以多少阶多项式对以上数据进行拟合,如果我们指定一阶多项式,结果为线性近似,通常称为线性回归。

我们选择二阶多项式进行拟合。

>> P= polyfit (x, y, 2)
P=
-9.8108 20.1293 -0.0317
函数返回的是一个多项式系数的行向量,写成多项式形式为:
为了比较拟合结果,我们绘制两者的图形:
>> xi=linspace (0, 1, 100); %绘图的X-轴数据。

>> Z=polyval (p, xi); %得到多项式在数据点处的值。

当然,我们也可以选择更高幂次的多项式进行拟合,如10阶:
>> p=polyfit (x, y, 10);
>> xi=linspace (0, 1,100);
>> z=ployval (p, xi);
读者可以上机绘图进行比较,曲线在数据点附近更加接近数据点的测量值了,但从整体上来说,曲线波动比较大,并不一定适合实际使用的需要,所以在进行高阶曲线拟合时,“越高越好”的观点不一定对的。

相关文档
最新文档