曲线拟合的最小二乘法matlab举例

合集下载

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。

matlab function编程最小二乘法

matlab function编程最小二乘法

matlab function编程最小二乘法在MATLAB中,使用最小二乘法拟合数据通常涉及到使用函数进行编程。

以下是一个简单的MATLAB函数,用于实现最小二乘法拟合直线的例子:function [coefficients, fittedData] = leastSquaresFit(x, y, degree)% x: 输入数据的 x 值% y: 输入数据的 y 值% degree: 拟合多项式的次数% 创建 Vandermonde 矩阵A = zeros(length(x), degree + 1);for i = 1:degree + 1A(:, i) = x.^(degree + 1 - i);end% 使用最小二乘法计算系数coefficients = (A' * A)\(A' * y);% 生成拟合曲线的数据fittedData = polyval(coefficients, x);% 绘制原始数据和拟合曲线figure;plot(x, y, 'o', x, fittedData, '-');legend('原始数据', '拟合曲线');xlabel('X轴');ylabel('Y轴');title('最小二乘法拟合');end你可以通过调用这个函数并提供你的数据和拟合多项式的次数来进行最小二乘法拟合。

例如:x = [1, 2, 3, 4, 5];y = [2.1, 2.8, 3.4, 3.7, 4.2];degree = 1;[coefficients, fittedData] = leastSquaresFit(x, y, degree);disp('拟合系数:');disp(coefficients);这是一个简单的线性拟合的例子。

你可以根据需要修改该函数,以适应高次多项式的情况。

Matlab曲线拟合 最小二乘法

Matlab曲线拟合 最小二乘法

Matlab曲线拟合最小二乘法polyfit2009-04-07 19:04曲线拟合已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值,这一过程称为曲线拟合。

最常用的曲线拟合方法是最小二乘法,该方法是寻找函数使得最小。

MATLAB函数:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

x必须是单调的。

矩阵s用于生成预测值的误差估计。

(见下一函数polyval)多项式曲线求值函数:polyval( )调用格式: y=polyval(p,x)[y,DELTA]=polyval(p,x,s)说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。

它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。

则Y DELTA将至少包含50%的预测值。

练习:如下给定数据的拟合曲线,x=[0.5,1.0,1.5,2.0,2.5,3.0],y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:x=[0.5,1.0,1.5,2.0,2.5,3.0];y=[1.75,2.45,3.81,4.80,7.00,8.60];p=polyfit(x,y,2)x1=0.5:0.05:3.0;y1=polyval(p,x1);plot(x,y,'*r',x1,y1,'-b')计算结果为:p =0.5614 0.8287 1.1560即所得多项式为y=0.5614x^2+0.08287x+1.15560。

曲线拟合的最小二乘法实验

曲线拟合的最小二乘法实验

Lab04.曲线拟合的最小二乘法实验【实验目的和要求】1.让学生体验曲线拟合的最小二乘法,加深对曲线拟合的最小二乘法的理解;2.掌握函数ployfit和函数lsqcurvefit功能和使用方法,分别用这两个函数进行多项式拟合和非多项式拟合。

【实验内容】1.在Matlab命令窗口,用help命令查询函数polyfit和函数lsqcurvefit 功能和使用方法。

2.用多项式y=x3-6x2+5x-3,产生一组数据(xi,yi)(i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)均匀分布随机数),然后对xi和添加了随机干扰的yi用Matlab提供的函数ployfit用3次多项式拟合,将结果与原系数比较。

再作2或4次多项式拟合,分析所得结果。

3.用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为,其中V0是电容器的初始电压,τ是充电常数。

对于下面的一组t,v数据,用Matlab提供的函数lsqcurvefit确定V0和τ。

t(秒) 0.5 1 2 3 4 5 7 9v(伏) 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 【实验仪器与软件】1.CPU主频在1GHz以上,内存在128Mb以上的PC;2.Matlab 6.0及以上版本。

实验讲评:实验成绩:评阅教师:200 年月日问题及算法分析:1、利用help命令,在MATLAB中查找polyfit和lsqcurvefit函数的用法。

2、在一组数据(xi,yi)(i=1,2,…,n)上,对yi上添加随机干扰,运用多项式拟合函数,对数据进行拟合(分别用2次,3次,4次拟合),分析拟合的效果。

3、根据t和V的关系画散点图,再根据给定的函数运用最小二乘拟合函数,确定其相应参数。

第一题:(1)>> help polyfitPOLYFIT Fit polynomial to data.P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) ofdegree N that fits the data Y best in a least-squares sense. P is arow vector of length N+1 containing the polynomial coefficients indescending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1).[P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and astructure S for use with POLYVAL to obtain error estimates forpredictions. S contains fields for the triangular factor (R) from a QRdecomposition of the Vandermonde matrix of X, the degrees of freedom(df), and the norm of the residuals (normr). If the data Y are random,an estimate of the covariance matrix of P is(Rinv*Rinv')*normr^2/df,where Rinv is the inverse of R.[P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polynomial inXHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). Thiscentering and scaling transformation improves the numerical propertiesof both the polynomial and the fitting algorithm.Warning messages result if N is >= length(X), if X has repeated, ornearly repeated, points, or if X might need centering and scaling.Class support for inputs X,Y:float: double, singleSee also poly, polyval, roots.Reference page in Help browserdoc polyfit>>(2)>> help lsqcurvefitLSQCURVEFIT solves non-linear least squares problems.LSQCURVEFIT attempts to solve problems of the form:min sum {(FUN(X,XDATA)-YDATA).^2} where X, XDATA, YDATA and the valuesX returned by FUN can be vectors ormatrices.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA) starts at X0 and finds coefficients Xto best fit the nonlinear functions in FUN to the data YDATA (in theleast-squares sense). FUN accepts inputs X and XDATA and returns avector (or matrix) of function values F, where F is the same size asYDATA, evaluated at X and XDATA. NOTE: FUN should returnFUN(X,XDATA)and not the sum-of-squares sum((FUN(X,XDATA)-YDATA).^2).((FUN(X,XDATA)-YDATA) is squared and summed implicitly in thealgorithm.)X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB) defines a set of lower andupper bounds on the design variables, X, so that the solution is in therange LB <= X <= UB. Use empty matrices for LB and UB if no boundsexist. Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf ifX(i) is unbounded above.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB,OPTIONS) minimizes with thedefault parameters replaced by values in the structure OPTIONS, anargument created with the OPTIMSET function. See OPTIMSET for details.Used options are Display, TolX, TolFun, DerivativeCheck, Diagnostics,FunValCheck, Jacobian, JacobMult, JacobPattern, LineSearchType,LevenbergMarquardt, MaxFunEvals, MaxIter, DiffMinChange andDiffMaxChange, LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG,OutputFcn, and TypicalX. Use the Jacobian option to specify that FUNalso returns a second output argument J that is the Jacobian matrix atthe point X. If FUN returns a vector F of m components when X has length n, then J is an m-by-n matrix where J(i,j) is the partialderivative of F(i) with respect to x(j). (Note that the Jacobian J isthe transpose of the gradient of F.)[X,RESNORM]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returns the valueof thesquared 2-norm of the residual at X: sum {(FUN(X,XDATA)-YDATA).^2}.[X,RESNORM,RESIDUAL]=LSQCURVEFIT(FUN,X0,...) returns the value of residual,FUN(X,XDATA)-YDATA, at the solution X.[X,RESNORM,RESIDUAL,EXITFLAG]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returnsan EXITFLAG that describes the exit condition of LSQCURVEFIT. Possiblevalues of EXITFLAG and the corresponding exit conditions are1 LSQCURVEFIT converged to a solution X.2 Change in X smaller than the specified tolerance.3 Change in the residual smaller than the specified tolerance.4 Magnitude of search direction smaller than the specified tolerance.0 Maximum number of function evaluations or of iterations reached.-1 Algorithm terminated by the output function.-2 Bounds are inconsistent.-4 Line search cannot sufficiently decrease the residual alongthecurrent search direction.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT]=LSQCURVEFIT(FUN,X0,XDATA,YDATA ,...)returns a structure OUTPUT with the number of iterations taken inOUTPUT.iterations, the number of function evaluations inOUTPUT.funcCount,the algorithm used in OUTPUT.algorithm, the number of CG iterations (ifused) in OUTPUT.cgiterations, the first-order optimality (if used)inOUTPUT.firstorderopt, and the exit message in OUTPUT.message.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA]=LSQCURVEFIT(FUN,X0,XDAT A,YDATA,...)returns the set of Lagrangian multipliers, LAMBDA, at the solution:LAMBDA.lower for LB and LAMBDA.upper for UB.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN]=LSQCURVEFIT(FU N,X0,XDATA,YDATA,...)returns the Jacobian of FUN at X.ExamplesFUN can be specified using @:xdata = [5;4;6]; % example xdataydata = 3*sin([5;4;6])+6; % example ydatax = lsqcurvefit(@myfun, [2 7], xdata, ydata)where myfun is a MATLAB function such as:function F = myfun(x,xdata)F = x(1)*sin(xdata)+x(2);FUN can also be an anonymous function:x = lsqcurvefit(@(x,xdata) x(1)*sin(xdata)+x(2),[2 7],xdata,ydata)If FUN is parameterized, you can use anonymous functions to capture theproblem-dependent parameters. Suppose you want to solve the curve-fittingproblem given in the function myfun, which is parameterized by its secondargument c. Here myfun is an M-file function such asfunction F = myfun(x,xdata,c)F = x(1)*exp(c*xdata)+x(2);To solve the curve-fitting problem for a specific value of c, first assignthe value to c. Then create a two-argument anonymous function that capturesthat value of c and calls myfun with three arguments. Finally, pass thisanonymous function to LSQCURVEFIT:xdata = [3; 1; 4]; % example xdataydata = 6*exp(-1.5*xdata)+3; % example ydatac = -1.5; % define parameterx = lsqcurvefit(@(x,xdata) myfun(x,xdata,c),[5;1],xdata,ydata) See also optimset, lsqnonlin, fsolve, @, inline.Reference page in Help browserdoc lsqcurvefit>>第二题:1 三次线性拟合clear allx=0:0.5:5;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,3);b=polyval(a,x);plot(x,y,'*',x,b),aa =1.0121 -6.1033 5.1933 -2.4782② 二次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,2);b=polyval(a,x);plot(x,y,'*',x,b),aa =23.9982 -232.0179 367.9756③ 四次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for j=1:length(y)y1(j)=y1(j)+rand;enda=polyfit(x,y1,4);b=polyval(a,x);plot(x,y,'*',x,b),aa =-0.0001 1.0038 -6.0561 5.2890 -2.8249 >>第三题:1 拟合曲线为:f(x)=定义函数:function f=fun(a,x)f=a(1)-(a(1)-a(2))*exp(-a(3)*x);主程序:clear allclcx=[0.5 1 2 3 4 5 7 9];y=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];a0=[1 1 1];a=lsqcurvefit('fun',a0,x,y);y1=a(1)-(a(1)-a(2))*exp(-a(3)*x);plot(x,y,'r*',x,y1,'b')V1=a(2)tei=1/a(3)Optimization terminated: relative function value changing by less than OPTIONS.TolFun.。

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。

Matlab最小二乘法曲线拟合

Matlab最小二乘法曲线拟合

最小二乘法在曲线拟合中比较普遍。

拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。

在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。

2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)];para=X\y3.多重回归(乘积回归)设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。

设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等!para=X\ypolyfit函数polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。

1.假设要拟合的多项式是:y=a+b*x+c*x^2p=polyfit(x,y,2)然后可以使用polyval在t处预测:y_hat=polyval(p,t)polyfit函数可以给出置信区间。

[p S]=polyfit(x,y,2) %S中包含了标准差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2)p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数。

曲线拟合的最小二乘法matlab举例

学院:光电信息学院 姓名:赵海峰 学号:1001一、曲线拟合的最小二乘法原理:由已知的离散数据点选择与实验点误差最小的曲线)(...)()()(1100x a x a x a x S n n ϕϕϕ+++=称为曲线拟合的最小二乘法。

若记),()()(),(0i k i j mi i k j x x x ϕϕωϕϕ∑==k i k i mi i k d x x f x f ≡=∑=)()()(),(0ϕωϕ上式可改写为),...,1,0(;),(n k d a k j noj j k -=∑=ϕϕ这个方程成为法方程,可写成距阵形式d Ga =其中,),...,,(,),...,,(1010T n T n d d d d a a a a ==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=),(),(),()(),(),(),(),(),(101110101000n n n n n n G ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕΛM M M ΛΛ。

它的平方误差为:.)]()([)(||||2022i i mi i x f x S x -=∑=ωδ二、数值实例:下面给定的是乌鲁木齐最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。

下面应用Matlab编程对上述数据进行最小二乘拟合三、Matlab程序代码:x=[1:1:30];y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1 ];a1=polyfit(x,y,3) %三次多项式拟合%a2= polyfit(x,y,9) %九次多项式拟合%a3= polyfit(x,y,15) %十五次多项式拟合%b1=polyval(a1,x)b2=polyval(a2,x)b3=polyval(a3,x)r1= sum((y-b1).^2) %三次多项式误差平方和%r2= sum((y-b2).^2) %九次次多项式误差平方和%r3= sum((y-b3).^2) %十五次多项式误差平方和%plot(x,y,'*') %用*画出x,y图像%hold onplot(x,b1, 'r') %用红色线画出x,b1图像%hold onplot(x,b2, 'g') %用绿色线画出x,b2图像%hold onplot(x,b3, 'b:o') %用蓝色o线画出x,b3图像%四、数值结果:不同次数多项式拟和误差平方和为:r1 =r2 =r3 =r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。

Matlab最小二乘法曲线拟合

之杨若古兰创作最小二乘法在曲线拟合中比较普遍.拟合的模型次要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......普通对于LS成绩,通常利用反斜杠运算“\”、fminsearch 或优化工具箱提供的极小化函数求解.在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操纵.在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型.“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2]; 履行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这类方法对于系数是线性的模型也适应.2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是猜测变量,y是呼应变量.设计矩阵为X=[ones(size(x)) x t] %留意x,t大小相等!para=X\ypolyfit函数polyfit函数不须要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵.1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2)然后可以使用polyval在t处猜测:y_hat=polyval(p,t)polyfit函数可以给出相信区间. [p S]=polyfit(x,y,2) %S中包含了尺度差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处猜测在每个t处的95%CI为:(y_fit1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2) p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数.LS成绩的基本思想就是残差的平方和(一种范数,由此,LS发生了很多利用)最小,是以可以利用fminsearch函数进行曲线拟合. 假设要拟合:y = a+b*exp(x)+c*exp(x.?2) 首先建立函数,可以通过m文件或函数句柄建立:x=[......]';y=[......]';f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.?2) %留意向量化:p(1)=a;p(2)=b;p(3)=c; %可以根据须要选择是否优化参数%opt=options()p0=ones(3,1);%初值para=fminsearch(@(p) (yf(p,x)).^2,p0) %可以输出Hessian矩阵res=yf(para,x)%拟合残差曲线拟合工具箱提供了很多拟合函数,对大样本场合比较无效!非线性拟合nlinfit函数clear all; x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]'; x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]'; x=[x1 x2]; y=[0.517 0.509 0.44 0.466 0.479 0.309]'; f=@(p,x)2.350176*p(1)*(11/p(2))*(1(1x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(1 /p(2))1).^(p(2)).*x(:,1).^(1/p(2)0.5).*x(:,2);p0=[8 0.5]'; opt=optimset('TolFun',1e3,'TolX',1e3);%[p R]=nlinfit(x,y,f,p0,opt)例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子直线型例子2.多项式型的一个例子19002000年的总人口情况的曲线拟合clear all;close all; %cftool提供了可视化的曲线拟合!t=[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]'; y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.4220]'; %t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依.变换为[1 1]上s=(t1950)/50;%plot(s,y,'ro');%回归线:y=a+bx mx=mean(s);my=mean(y);sx=std(s);sy=std(y);r=corr(s,y);b=r*sy/sx;a=myb*mx;rline=a+b.*s;figure;subplot(3,2,[1 2]) plot(s,y,'ro',s,rline,'k');%title('多项式拟合'); set(gca,'XTick',s,'XTickLabel',sprintf('%d|',t));%hold on; n=4;PreYear=[ ];%猜测年份tPreYear=(PreYear1950)/50;Y=zeros(length(t),n);res=zeros(size(Y));delta=zeros(size(Y));PrePo=zeros(length(PreYear),n);Predelta=zeros(size(PrePo));for i=1:n[p S(i)]=polyfit(s,y,i);[Y(:,i) delta(:,i)]=polyval(p,s,S(i));%拟合的Y [PrePo(:,i) Predelta(:,i)]=polyval(p,tPreYear,S(i));%猜测res(:,i)=yY(:,i);%残差end% plot(s,Y);%a主动添加分歧色彩% legend('data','regression line','1st poly','2nd poly','3rd poly','4th poly',2)% plot(tPreYear,PrePo,'>'); % hold off % plot(Y,res,'o');%残差图r=corr(s,Y).^2 %R^2 %拟合误差估计CI YearAdd=[t;PreYear'];tYearAdd=[s;tPreYear'];CFtit={'一阶拟合','二阶拟合','三阶拟合','四阶拟合'}; for col=1:nsubplot(3,2,col+2);plot(s,y,'ro',s,Y(:,col),'g');%原始数据和拟合数据legend('Original','Fitted',2);hold on;plot(s,Y(:,col)+2*delta(:,col),'r:');%95% CIplot(s,Y(:,col)2*delta(:,col),'r:');plot(tPreYear,PrePo(:,col),'>');%猜测值plot(tPreYear,PrePo(:,col)+2*Predelta(:,col));%猜测95% CIplot(tPreYear,PrePo(:,col)2*Predelta(:,col));axis([1.2 1.8 0 400]);set(gca,'XTick',tYearAdd,'XTickLabel',sprintf('%d|',YearAdd));title(CFtit{col});hold off; endfigure;%残差图for col=1:nsubplot(2,2,col);plot(Y(:,i),res(:,i),'o'); end一个非线性的利用例子(多元情况)在百度晓得中,要拟合y=a*x1^n1+b*x2^n2+c*x3^n3%注:只是作为利用,模型纷歧定准确!!!%x2=x3!!!y=[1080.94 1083.03 1162.80 1155.61 1092.82 1099.26 1161.06 1258.05 1299.03 1298.30 1440.22 1641.30 1672.21 1612.73 1658.64 1752.42 1837.99 2099.29 2675.47 2786.33 2881.07]'; x1=[1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2]'; x2=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x3=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x=[x1 x2 x3]; f=@(p,x) p(1)*x(:,1).^p(2)+p(3)*x(:,2).^p(4)+p(5)*x(:,3).^p(6); p0=ones(6,1);p=fminsearch(@(p)sum(yf(p,x)).^2,p0)res=yf(p,x);res2=res.^2 %失败的模型。

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合一、本文概述在数据分析和科学计算中,曲线拟合是一种常见且重要的技术。

通过拟合,我们可以根据已知数据建立数学模型,预测未知数据,以及深入理解数据背后的规律。

最小二乘法是曲线拟合中最常用的一种方法,其原理是通过最小化预测值与实际值之间的平方误差来寻找最佳拟合曲线。

本文旨在介绍如何使用Matlab这一强大的数学计算软件,实现最小二乘曲线拟合,包括其理论基础、实现步骤以及实际应用案例。

通过本文的学习,读者将能够掌握在Matlab环境中进行最小二乘曲线拟合的基本方法,提高数据处理和分析能力。

二、最小二乘曲线拟合原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。

在曲线拟合中,最小二乘法被广泛应用于通过一组离散的数据点来估计一个连续函数的形状。

这种方法的基本思想是通过选择一个模型函数(通常是多项式、指数函数、对数函数等),使得该模型函数与实际数据点之间的差距(即残差)的平方和最小。

假设我们有一组数据点 ((x_1, y_1), (x_2, y_2), \ldots,(x_n, y_n)),我们希望通过一个模型函数 (y = f(x, \mathbf{p})) 来拟合这些数据点,其中 (\mathbf{p}) 是模型的参数向量。

最小二乘法的目标就是找到最优的参数向量 (\mathbf{p}^*),使得残差平方和 (S(\mathbf{p})) 最小:S(\mathbf{p}) = \sum_{i=1}^{n} [y_i - f(x_i,\mathbf{p})]^2]为了使 (S(\mathbf{p})) 达到最小,我们需要对(S(\mathbf{p})) 求偏导数,并令其等于零。

这样,我们就得到了一个关于 (\mathbf{p}) 的方程组。

解这个方程组,就可以得到最优的参数向量 (\mathbf{p}^*)。

matlab 最小二乘法拟合曲线

matlab 最小二乘法拟合曲线最小二乘法(Least Squares Method)是一种常用的数据拟合技术,在数学建模、统计学以及工程领域中被广泛应用。

该方法通过最小化实际观测值与拟合模型之间的平方误差和,从而找到一个最佳的拟合曲线。

首先,我们来了解一下最小二乘法的基本原理。

假设我们有一组n组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},我们希望找到一个函数f(x)来拟合这些数据。

为了简便计,我们假设函数f(x)是一个线性函数,即f(x) = ax + b。

要使用最小二乘法来进行拟合,我们需要构造一个目标函数,该函数是残差平方和(Sum of Squared Residuals,SSR)。

残差表示实际数据点与拟合曲线之间的差异,而残差平方和则是将所有残差平方相加得到的一个值。

目标函数可以表示为:SSR = Σ(yi - f(xi))^2最小二乘法的核心思想就是通过调整拟合函数中的参数a和b,使得目标函数SSR达到最小值。

为了实现这一目标,我们需要对目标函数求导,并令导数为0。

这样做可以得到一组线性方程组,可以使用线性代数中的方法求解这个方程组,从而得到a和b的值。

推导过程略去不表,最终我们可以得到最佳的拟合曲线方程:f(x) = (Σxiyi - n * x_mean * y_mean) / (Σxi^2 - n *x_mean^2) * x + (y_mean - (Σxiyi - n * x_mean * y_mean) / (Σxi^2 - n * x_mean^2) * x_mean)其中,x_mean和y_mean分别表示x和y的平均值,n表示数据点的数量。

通过以上公式,我们可以得到一个最佳的线性拟合曲线,该曲线可以最小化数据点与拟合曲线之间的距离。

当然,在实际应用中,我们会遇到更复杂的拟合函数,而不仅仅是线性函数。

但不论函数形式如何,最小二乘法的思想都是相同的——将观测值与模型之间的误差最小化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线拟合的最小二乘法
学院:光电信息学院 姓名:赵海峰 学号: 200820501001
一、曲线拟合的最小二乘法原理:
由已知的离散数据点选择与实验点误差最小的曲线
S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。

若记
m
( j , k )
i
(x i ) j (x i ) k (x i ), 0
m
(f , k )
i0
(x i )f (x i ) k (x i ) d k
n
上式可改写为 ( k ,
jo
j
)a j d k ; (k
0,1,..., n) 这个方程成为法方程,可写成距阵
形式
Ga d
其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T ,
、 数值实例:
下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。

它的平方误差为: ||
2
|
2
] x ( f
(2008 年 10 月 26~11 月 26)
F 面应用Matlab 编程对上述数据进行最小二乘拟合
三、Matlab 程序代码:
x=[1:1:30];
y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1];
%三次多项式拟合% %九次多项式拟合%
%十五次多项式拟合%
%三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像%
%用红色线画出x,b1图像% %用绿色线画出x,b2图像%
%用蓝色o 线画出x,b3图像%
四、数值结果:
不同次数多项式拟和误差平方和为:
r1 = 67.6659 r2 = 20.1060 r3 = 3.7952
r1、r2、r3分别表示三次、九次、十五次多项式误差平方和
拟和曲线如下图:
a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A
2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on
plot(x,b2, 'g') hold on plot(x,b3, 'b:o')
14
0 8 6 4 2 0
n
»

30
上图中*代表原始数据,红色曲线代表三次多项式拟合曲线,绿色曲线代表九次多项式拟合曲线,蓝色0线代表十五次多项式拟合曲线。

五、结论:
以上结果可以看到用最小二乘拟合来求解问题时,有时候他的结果很接近实际情况,有时候跟实际情况里的太远,因为所求得多项式次数太小时数据点之间差别很大,次数最大是误差最小但是有时后不符合实际情况,所以用最小二乘法时次数要取合适一点。

从上面的拟合中也可以得到多项式拟合误差平方和随着拟合多项式次数的增加而逐渐减小,拟合的曲线更靠近实际数据。

拟合更准确。

相关文档
最新文档