图论与代数结构
代数结构-图论

记作Nn,特别地,称N1为平凡图(Trivial graph)。 在图的定义中规定结点集V为非空集,但在图的运算
中可能产生结点集为空集的运算结果,为此规定结
点集为空集的图为空图(Empty Graph),并将空图
记为。阶为有限的图称为有限图(Finite Graph),
否则称为无限图(Infinite Graph)。结点没有标号
的图称为非标号图(Unlabeled Graph),否则为标
号图(Labeled heory
10.2 图与图模型
如果图中存在某两条边的端点都相同,则称该
图为多重图(Multigraph),该两条边称为平行边。
如果一条边关联的两个结点是相同的结点,则称该边 为圈或自环(Loop)。
请你思考?
如何找到物流运输的最优路径? 如何找到最优的网络通信线路? 如果你想周游全国所有城市,如何设计旅游线路? 化学化合物分析:结构是否相同? 程序结构度量:程序是否结构相似? 如何为考试分配教室,使得资源利用率最优? 如何安排工作流程而达到最高效率? 如何设计为众多的电视台频道分配最优方案? 如何设计通信编码以提高信息传输效率? 操作系统中,如何调度进程而使得系统效率最优?
图的类型:
(1)有向图/无向图;简单图/多重图/伪图;零图,平凡图,空图; 有限图/无限图;带权图、标记图;
(2)特殊图:环图(Cn)、轮图(Wn)、立方图(Qn)、网格、正则图 (r-图);偶图(G(V1,V2), 二分图/二部图, Bipartite graph) 、 完全偶图(Km,n);
(3)特殊图:子图、完全图、补图 (4)特殊图:Euler图、Hamilton图、树图、平面图
主要内容
8
中国地质大学计算机学院
清华大学计算机系本科生全部课程详细介绍

Introduct theme, equal emphasis on theory and practice. It also introduces the basic methods an
ion learning, simulated annealing, genetic algorithm and artificial neural network.
讲
姓名
职称
课
教
主要教学和科研领域
师
白晓颖
讲师 软件工程,软件测试
课号:00240042 学分: 2 课程名称 中文
课程属性: 全校任选 开课学期: 人工智能导论
书名
春季
作者
英文
Artificial Intelligence:
Stuart Russell and
A Modern Approach
Peter Norvig
程 法,主要的知识表示和推理方法,以及几个应用领域中所涉及的人工智能问题和求解方法。课程以智能体
简 设计为主线,将人工智能中相互分离的领域与内容统一起来,注重理论与实际应用相结合。同时还简单介
介 、人工神经网络等算法思想及相关成果与进展。
This course is an introduction course to offer the basic principles and methods of art
evolution. The purpose is to improve the students’ engineering capabilities and development Based on the major activities in software lifecycle, the course introduces the basic theory
数理逻辑的推理及形式证明

第一讲引言一、课程内容·数理逻辑:是计算机科学的基础,应熟练掌握将现实生活中的条件化成逻辑公式,并能做适当的推理,这对程序设计等课程是极有用处的。
·集合论:数学的基础,对于学习程序设计、数据结构、编译原理等几乎所有计算机专业课程和数学课程都很有用处。
熟练掌握有关集合、函数、关系等基本概念。
·代数结构:对于抽象数据类型、形式语义的研究很有用处.培养数学思维,将以前学过的知识系统化、形式化和抽象化。
熟练掌握有关代数系统的基本概念,以及群、环、域等代数结构的基本知识。
·图论:对于解决许多实际问题很有用处,对于学习数据结构、编译原理课程也很有帮助。
要求掌握有关图、树的基本概念,以及如何将图论用于实际问题的解决,并培养其使用数学工具建立模型的思维方式。
·讲课时间为两个学期,第一学期讲授数理逻辑与集合论,第二学期讲授代数结构和图论。
考试内容限于书中的内容和难度,但讲课内容不限于书中的内容和难度。
二、数理逻辑发展史1。
目的·了解有关的背景,加深对计算机学科的全面了解,特别是理论方面的了解,而不限于将计算机看成是一门技术或工程性的学科.·通过重要的历史事件,了解计算机科学中的一些基本思维方式和一些基本问题。
2. 数理逻辑的发展前期·前史时期—-古典形式逻辑时期:亚里斯多德的直言三段论理论·初创时期——逻辑代数时期(17世纪末)·资本主义生产力大发展,自然科学取得了长足的进步,数学在认识自然、发展技术方面起到了相当重要的作用。
·人们希望使用数学的方法来研究思维,把思维过程转换为数学的计算。
·莱布尼兹(Leibniz, 1646~1716)完善三段论,提出了建立数理逻辑或者说理性演算的思想: ·提出将推理的正确性化归于计算,这种演算能使人们的推理不依赖于对推理过程中的命题的含义内容的思考,将推理的规则变为演算的规则。
自学考试:离散数学复习(一)

自学考试:离散数学复习(一)自学考试是一种能够让没有条件参加全日制学习的人继续学习的方式。
与传统的大学学习相比,它更为灵活和自由。
在自学考试中,离散数学是一门必修的科目,也是考试难点之一。
本文将从离散数学的定义、内容、复习方法以及注意事项等方面进行讲解。
一、离散数学的定义离散数学是研究数量的离散性质的数学分支学科,主要研究对象是离散的集合、函数、算法、逻辑、图论等。
它的研究对象并不是连续的,而是由一些个别的、离散的数量组成的。
二、离散数学的内容离散数学主要包括以下几个方面:1. 逻辑与集合论:又称数理逻辑,是离散数学的重要组成部分。
它主要涉及命题逻辑、谓词逻辑、逻辑推理等内容。
2. 离散数学的代数结构:主要包括半群、群、环、域等内容。
3. 布尔代数与逻辑设计:主要涉及布尔运算、代数基本定理、逻辑电路设计等方面。
4. 图论:涉及图的定义、图的类型、基本概念和定理、图的遍历等方面。
5. 计算机科学中的重要应用:涉及图论和逻辑设计等方面。
三、离散数学的复习方法1. 系统地复习课本,强调对每个概念和定理的理解和记忆。
2. 刻意练习,做大量的练习题,以此巩固知识点。
3. 找到与离散数学相关的书籍,进行阅读和学习,补充知识点。
4. 制定学习计划并严格执行,不断检查自己的学习进度。
四、注意事项1. 离散数学比较抽象,需要认真思考并理解其概念和定理。
2. 多做题,不要死记硬背,应该结合题目进行思考,理解知识点。
3. 有时间限制的考试需要注重时间管理,做题的时候应该合理分配时间。
4. 总结每次考试的弱点,找到自己的不足之处,并及时进行复习和巩固。
总之,离散数学是一门重要的学科,它具有广泛的应用领域,并且在计算机科学领域中具有重要地位。
对于自学考试的学生而言,掌握好离散数学的知识点是非常重要的。
希望本文对自学考试的离散数学复习有所帮助。
图论与代数结构 1.1 基本概念

V={a, b, c, d} E={e1,e2,e3,e4,e5,e6} |V|称为结点数,记为n 该值有限,有限图 |E|称为边数,记为m.该值有限。
有向图 无向图
如果每条边都有方向的,则为有向图。 如果每条边都没有方向,则为无向图。 某些边有方向,某些边没有方向,混合图
邻接 e1 A
e4
B
图论与代数结构
清华大学 戴一奇 胡冠章等
图的概念-直观定义
• 由结点和连结两个结点的连线所组成的对象 称为“图”。 • 至于结点的位置及连线的长度无紧要
A
e4 B
e1 e3 e2
D
e5
C
形式定义:三元组(V(G),E(G),M(E,V))称为图。 其中V(G)为点的集合(非空集),E(G)是边集, M(E,V)=边与点连接关系。 常简化为二元组 (V(G),E(G))称为图。简记为 G=(V,E)。
边数=
n(n-1)/2
非空简单图一定存在度相同的结点
证明:图G的结点数记为n。 由于它是简单图,无重复边与自环, 每点的度 数取值范围是0~n-1. 当没有度数为0的结点时,每点度数的取值范 围是1~n-1,根据鸽巢原则,这n个点中至少有 2个点的度数相同。 当有度数为0的结点时,剔除所有度数为0的结 点,对剩下来的结点所组成的图使用前面的证明.
U3
1、可构作双射g: V(c)→V(d),其中g(a)=u3, g(b)=u1,g(c)=u4,g(d)=u2。 2、<a,b>→<u3,u1>,<b,d>→<u1,u2>, <a,c>→<u3,u4>,<c,d>→<u4,u2>
e5 e2
离散数学 第三-四章

Ai
(f) A (A∪B ), B (A∪B )
集合与关系 >集合的运算
交与 并的关系 定理3-2.1 设A、B、C为三个集合,则下列分配律 成立。 a) A∩(B∪C)=(A∩B)∪(A∩C) b) A∪(B∩C)=(A∪B)∩(A∪C) 定理3-2.2 设A、B为任意两个集合,则下列吸收律 成立 a) A∪(A∩B)=A b) A∩(A∪B)=A 定理3-2.3 A B 当且仅当 A∪B=B 或 A∩B=A。
集合与关系 > 集合的运算
本节重点掌握的概念: 集合, 集合相等,集合包含, 幂集。
本节重点掌握的方法: 集合的表示, 求幂集.
作业
3-1 (1)(a),(c) ,(e)
(3) (4) (a),(c) ,(e) (5) (6) (a),(c) ,(e) (9)
集合与关系 >集合的概念和表示法
上节知识点: 1. 集合的概念 2. 集合的表示 3 集合之间的关系 4 空集和全集 5 幂集(power set)
A-B
E B
A
集合与关系 >集合的运算
• 绝对补 定义3-2.4 设E为全集,任一集合A关于E的补 E-A, 称为集合A的绝对补,记作~A。
即 ~ A={ x| xE ∧ xA}
集合与关系 >集合的运算
(3) 集合的补(complement) 定义3-2.3 设A、B为任意两个集合,所有属于A而 不属于B的一切元素组成的集合S称为B对于A的 补集,或相对补,记作A-B。 即 A-B={ x| xA ∧ xB} 或 xA-B xA但 xB
例如 A={2, 5, 6} B={1, 2, 4, 7, 9} A-B={5, 6} B-A={1,4,7,9} E - A?
图论和代数结构

欧拉道路与回路
欧拉道路与回路
定义2.3.1
无向连通图 GV,E中的一条经过所有边的简单
回路(道路)称为G的欧拉回路(道路)。 定理2.3.1
无向连通图G存在欧拉回路的充要条件是 G中各结 点的度都是偶数。
欧拉道路与回路
定理2.3.1的证明: 1. 必要性:若G中有欧拉回路 C,则C过每条边一
次且仅一次。对任一结点 v来说,如果 C经过 e i 进 入v,则一定通过另一条边 e i从 v离开。因此结点 v的度是偶数。
2. 充分性:由于G是有穷图,因此可以断定,从G 的任一结点 v 0 出发一定存在G的一条简单回路 C。 这是因为各结点的度都是偶数,所以这条简单道 路不可能停留在 v 0 以外的某个点,而不能再向前 延伸以致构成回路 C。
欧拉道路与回路
推论2.3.1 若无向连通图 G 中' 只有2个度为奇的结点。则 G 存' 在欧拉道路。
证明:设 v i 和 v j 是两个度为奇数的结点。作 G' G(vi,vj),则 G '中各点的度都是偶数。由定 理2.3.1,G ' 有欧拉回路,它含边 (vi , v j ) ,删去该 边,得到一条从 v i 到 v j 的简单道路,它恰好经过 了 G的所有边,亦即是一条欧拉道路。
哈密顿回路是初级回路,是特殊的简单回路,因此它与欧拉 回路不同。当然在特殊情况下,G的哈密顿回路恰好也是其欧 拉回路。鉴于H回路是初级回路,所以如果G中含有重边或自 环,删去它们后得到的简单图G’,那么G和G’关于H回路(道 路)的存在性是等价的。因此,判定H回路存在性问题一般是 针对简单图的。
大学_《离散数学》课后习题答案

《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。
教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假如 G1 G2 ,则必须满足: (1) | V (G1) || V (G2 ) |, | E(G1 ) || E(G2 ) | . (2) G1 和 G2 结点度的非增序列相同. (3)存在同构的导出子图.
图的概念
性质1.1.5 非空简单图G中一定存在度相同的结点. 证明:设在G中不存在孤立结点,则对n个结 点的简单图,每个结点度d(v)的取值范围是 1~(n-1),由抽屉原理,一定存在两个度相同的 结点.若存在一个孤立的结点,亦类似可证.
图的概念
定义1.1.4 如果图G=(V,E)的每条边 ek (vi , v j ) 都赋以一 个实数wk 作为该边的权,则称G是赋权图.特别 地,如果这些权都是正实数,就称G是正权图. 图1.5就是一个正权图.权可以表示该边的长度, 时间,费用或者容量等.
图的概念
性质1.1.1 设G=(V,E)有n个结点,m条边,则
v V (G )
d (v) 2m
证明:由于每条边e=(u,v)对结点u和v度的贡献 各为1,因此m条边对全部结点的总贡献率为 2m.
图的概念
性质1.1.2 G中度为奇数的结点必为偶数个. 证明: G中任一结点的度或为偶数或为奇数,设 Ve是度为偶 的结点集,Vo 是度为奇的结点集,于是有
vVe
d (v) d (v) 2m
vV0
因此上式左边第二项也为偶数,也即度为奇数的结点 必为偶数个
图的概念
性质1.1.3 有向图G中正度之和等于负度之和.这是因 为每条边对结点的正,负度贡献各为1. 性质1.1.4 K n 的边数是n(n-1)/2. 证明:K n 中各结点的度都是(n-1),由性质 1.1.1就可以得到
(v1 ) {v1, v4}, (v2 ) {v1, v3}.
而图1.5中:
(v1 ) {v2 , v3 , v4 , v5}, (v2 ) {v1, v3 , v5}.
图的概念
定义1.1.8 两个图 G1 (V1, E1 ),G2 (V2 , E2 ), 如果V1 和 V2 之间存 在双射f,而且 (u, v) E1 ,当且仅当 ( f (u), f (v)) E2 ,称 G1 和 G2 同构.记
图的概念
定义1.1.7 设v是有向图G的一个结点,则 (v) {u | (v, u) E} 称为v的直接后继集或者外邻集;相应地
(v) {u | (u, v) E}称为v的直接前趋集来自者内邻集.图的概念
在图1.6(a)中:
(v1 ) {v1, v2 , v5}, (v2 ) {v5};
图论
第一章 1.1
基本概念 图的概念
世界上许多事物以及他们之间的联系可以用图 形直观地表示.这时人们往往用结点表示事物, 用边表示它们之间的联系.这种结点和边构成 的图形就是图论所研究的对象.
图的概念
定义1.1.1 二元组(V(G),E(G))称为图。其中V(G)是非空 集合,称为结点集,E(G)是V(G)诸结点之间 边的集合。常用G=(V,E)表示图。 我们只讨论有限图,即V和E都是有限集.给定 某个图G=(V,E),如果不加特殊说名,就认为: V {v1, v2 ,...,vn }, E {e1 , e2,,...,em} 即结点数,| v | n 边数 |.E | m
图的概念
定义1.1.5 给定G=(V,E),如果存在另一个G’=(V’,E’), 满足V’V,E’ E,则称G’是G的一个子图.特 别地,如果V’=V,就称G’是G的支撑子图或者生 成子图;如果V’V,且E’包含了G在节点子集V’ 之间的所有边,则称G’是G的导出子图.
图的概念
定义1.1.6 给定两个图G1=(V1,E1),G2=(V2,E2).令 G1G2=(V,E),其中V=V1V2,E=E1E2; G1G2=(V,E),其中V=V1V2,E=E1E2; G1G2=(V,E),其中V=V1 V2,E=E1E2; 分别称为G1和G2的并,交和对称差.
图的概念
定义1.1.2 G=(V,E)的某结点v所关联的边数称为该结点的 度,用d(v)表示。如果v带有自环,则自环对 d(v)的贡献为2。
图的概念
定义1.1.3 任意两结点间最多只有一条边,且不存在自环 的无向图称为简单图。 没有任何边的简单图叫空图,用 N n 表示;任何 两个结点间都有边的简单图称为完全图,用 K n 表示. K n 中每个结点的度都是n-1.