多元函数的极值与最优化问题

合集下载

7(10)无约束最优化问题

7(10)无约束最优化问题
6
无约束最优化问题
三,极值的充分条件
定理2 充分条件) 定理2 (充分条件) 设函数 z = f ( x , y )在点( x0 , y0 ) 的某邻域内连续, 有一阶及二阶连续偏导数, 的某邻域内连续 有一阶及二阶连续偏导数 又 f x ( x0 , y0 ) = 0, f y ( x0 , y0 ) = 0, 令 fxx ( x0 , y0 ) = A, fxy ( x0 , y0 ) = B, f yy ( x0 , y0 ) = C,
18
无约束最优化问题
作业
习题7.10 (112页 习题7.10 (112页) (A)2. 3.(2) 6. (B) 1. 2. 6.
19

一元函数 f ( x , y0 ) 在点 x0 处取得有极小值 处取得有极小值, 表示动点 P ( x , y ) ∈ U ( P0 , δ ),且 P ( x , y )沿直线
17
无约束最优化问题
y = y0上, 并沿该直线 即沿平行于 轴的正负 并沿该直线(即沿平行于 即沿平行于Ox轴的正负
方向)趋向于 方向 趋向于P0 ( x0 , y0 )时, f ( x, y) > f ( x0 , y0 ). 它们的关系是: 它们的关系是 取得极大(小 值 f ( x , y ) 在点 ( x0 , y0 ) 取得极大 小)值 f ( x0 , y )和f ( x , y0 )分别在 y0点和x0点 取得极大(小 值 取得极大 小)值.
下半个圆锥面
x
点取极大值. 也是最大值). 在(0,0)点取极大值 (也是最大值 点取极大值 也是最大值 马鞍面
z
O
y
O
x
y
4
无约束最优化问题

多元函数的极值点与最值问题

多元函数的极值点与最值问题

多元函数的极值点与最值问题一、引言在数学中,多元函数的极值点与最值问题是一个重要且常见的研究课题。

通过寻找函数取得极值的点以及确定函数的最值,可以帮助我们更好地理解和分析多元函数的特性。

本文将介绍多元函数的极值点与最值问题的基本概念和方法。

二、多元函数的极值点1. 极值点的定义对于一个多元函数而言,极值点是指在定义域内存在的局部极大值或局部极小值点。

具体地说,设函数f(x₁, x₂,..., xₙ)在点(a₁, a₂,..., aₙ)处有定义,如果存在一个邻域N(a₁, a₂,..., aₙ),对于任意点(x₁, x₂,..., xₙ)∈N(a₁, a₂,..., aₙ),有f(x₁, x₂,..., xₙ)≤f(a₁, a₂,..., aₙ)或f(x₁, x₂,..., xₙ)≥f(a₁, a₂,..., aₙ),则称点(a₁, a₂,..., aₙ)是函数f(x₁, x₂,..., xₙ)的一个极值点。

2. 寻找极值点的方法(1)求偏导数为了确定函数的极值点,我们可以先求出函数的偏导数。

对于一个具有n个自变量的函数,可以分别对每个自变量求偏导数,将得到的偏导数方程组称为梯度向量。

(2)解偏导数方程组接下来,我们需要解偏导数方程组,即找到梯度向量的零点。

这些零点就是函数可能的极值点。

3. 极值点的分类根据二阶偏导数的符号,可以将极值点分为以下几种情况:(1)二阶偏导数恒正:该点为局部极小值点;(2)二阶偏导数恒负:该点为局部极大值点;(3)二阶偏导数存在正负交替:该点即可能为局部极小值点,也可能为局部极大值点;(4)二阶偏导数不存在:需要通过额外的分析判断。

三、多元函数的最值问题1. 最值的定义对于一个多元函数而言,最大值和最小值是函数在定义域内取得的极值中的特殊点。

具体地说,设函数f(x₁, x₂,..., xₙ)在定义域D内有定义,如果对于任意(x₁, x₂,..., xₙ)∈D,有f(x₁, x₂,..., xₙ)≤f(a₁,a₂,..., aₙ),则称函数f(x₁, x₂,..., xₙ)在点(a₁, a₂,..., aₙ)处取得最大值。

第8章 多元函数微分法及其应用 习题 8- (9)

第8章  多元函数微分法及其应用 习题  8- (9)

1 1 1 , y = , z = − , 代入式(8)解得 λ λ 2λ
λ=
当λ =
3 3 或λ = − , 2 2
3 1 2 2 时, 可得 x = − , y = , z = − , 2 3 3 3
3 1 2 2 当 λ = − 时, 可得 x = , y = − , z = . 2 3 3 3
第九节
多元函数的极值与最优化问题
习题 8-9
1. (1) 解
求下列函数的极值: f ( x, y ) = (6 x − x 2 )(4 y − y 2 ) ; (1) 先求函数的驻点. (2) f ( x, y ) = e 2 x ( x + y 2 + 2 y ) .
2 ⎧ ⎪ f x = (6 − 2 x)(4 y − y ) = 0, 求得五组解 解方程组 ⎨ 2 f = (6 x − x )(4 − 2 y ) = 0, ⎪ y ⎩
f ( x, y ) = 1 − 2 y + 3 y 2 (1 ≤ y ≤ 2) ,
由 f ′( x, y ) = −2 + 6 y = 0 , 得 y =
1 (舍去). 3
f ( x, y ) = 1 − 2 y + 3 y 2 对应于 y = 1, y = 2 处的值分别为 2,9.
因此通过比较可知, f ( x, y ) 在闭区域 D 上的最大值为 11, 最小值为 2. 注意 如果二元函数在有界闭区域 D 上连续, 在 D 内可微分, 且只有有限个驻 点, 那么求二元函数在 D 上的最值的一般方法是, 先求函数在 D 内的所有驻点处的 函数值, 再考虑函数在 D 的边界上的最大值和最小值, 把它们加以比较, 其中最大 的就是最大值, 最小的就是最小值.

多元函数的极值与最优化

多元函数的极值与最优化

多元函数的极值与最优化多元函数是指具有多个自变量的函数,它在数学及实际问题中都扮演着重要的角色。

在求解多元函数的极值及最优化问题中,需要运用一系列数学方法和工具,如导数、梯度、约束条件等。

本文将简要介绍多元函数的极值和最优化,并探讨其在实际应用中的重要性。

一、多元函数的极值多元函数的极值是指在一定范围内,函数取得最大值或最小值的点。

对于多元函数f(x1, x2, ..., xn),常用的求得其极值的方法是求导。

假设函数的各个偏导数存在,则需要解方程组∂f/∂xi = 0 (i = 1, 2, ..., n)来求得驻点。

进一步,可以通过二阶偏导数的符号来判断该点是否为极值点。

通过求解多元函数极值问题,可以帮助我们找到函数的最大值或最小值,从而指导实际问题的决策。

例如,在经济学中,利润函数可以看作是一个多元函数,通过求解其极值,可以帮助企业寻找最佳的经营策略。

二、多元函数的最优化多元函数的最优化问题是指在一定范围内,寻找使得函数取得最大值或最小值的自变量的值。

在最优化问题中,除了极值点外,还需要考虑约束条件。

最优化问题可以通过无约束最优化和约束最优化两种情况来进行求解。

无约束最优化问题是指在没有约束条件下,寻找函数的最大值或最小值。

常用的求解方法有梯度下降法、牛顿法、拟牛顿法等。

这些方法通过迭代的方式逐步接近最优解。

约束最优化问题是指在一定的约束条件下,寻找函数的最大值或最小值。

常用的求解方法有拉格朗日乘数法、KKT条件等。

这些方法通过引入拉格朗日乘子来将约束条件融入目标函数,从而转化为无约束最优化问题进行求解。

最优化问题在现实中有着广泛的应用,如在工程设计中,需要优化设备的性能指标,可以利用最优化方法找到最佳的设计参数值。

三、多元函数的极值与最优化的实际应用多元函数的极值和最优化在实际中有着广泛的应用。

以下是一些常见的应用场景:1. 经济学:在经济学中,通过求解效用函数的最大值问题,可以帮助消费者做出最优的消费决策;求解利润函数的最大值问题,可以帮助企业找到最佳的生产策略。

多元函数极值判定及应用

多元函数极值判定及应用

多元函数极值判定及应用多元函数的极值判定是求解多元函数在给定约束条件下的最大值或最小值的问题。

在数学分析中,通常利用求导和二阶导数的方法来判定多元函数的极值。

下面将详细介绍多元函数极值判定以及其应用。

一、多元函数的极值判定方法:1. 首先,对于多元函数f(x1, x2, ..., xn),我们需要找到其取得极值的条件。

由于计算多元函数的极值需要对每个自变量求偏导,所以要求多元函数在定义域内函数有定义并且可偏导。

2. 其次,求取多元函数的一阶偏导数并令其等于零,得到方程组。

设f 的极值点为(x1*, x2*, ..., xn*),则方程组为:∂f/∂x1 = 0, ∂f/∂x2 = 0, ..., ∂f/∂xn = 0。

3. 解方程组,求得极值点(x1*, x2*, ..., xn*)。

4. 接下来,根据二阶求导的结果来判定极值类型:(1)若二阶偏导数的行列式大于零且二阶偏导数主对角线元素大于零,则多元函数在极值点(x1*, x2*, ..., xn*) 处取得极小值;(2)若二阶偏导数的行列式大于零且二阶偏导数主对角线元素小于零,则多元函数在极值点(x1*, x2*, ..., xn*) 处取得极大值;(3)若二阶偏导数的行列式小于零,则多元函数在该点处不存在极值。

二、多元函数极值的应用:多元函数的极值判定在经济学、物理学、工程学等各个领域都有重要的应用。

下面以几个具体例子来介绍多元函数极值的应用。

1. 最小二乘法:在统计学中,我们常用最小二乘法来拟合数据,即通过拟合直线或曲线来描述数据的趋势。

最小二乘法的基本思想是选择一个合适的函数模型,使得模型与实际数据之间的残差平方和最小。

这就可以看作是一个多元函数极值的问题,利用极值点来确定最佳拟合曲线。

2. 生产优化问题:在工程学中,我们常遇到生产优化的问题,即如何在有限的资源条件下获得最大的产出。

这个问题可以用多元函数的极值来解决。

我们设生产函数为f(x1, x2, ..., xn),表示产出与各个生产因素之间的关系,然后根据生产约束条件求函数的最大值或最小值,得到生产过程中的最优方案。

多元函数的极值与最优化问题

多元函数的极值与最优化问题

设每张CD 28 元,每个U盘 80 元,问他如何分配这 2000 元以达到最佳效果.
一般地,所谓条件极值,就是求 在附加条件: 问题的实质:求
求条件极值的方法主要有两种:
01
的无条件极值.
02
拉格朗日乘数法
03
将条件极值转化为无条件极值
04
下的可能极值点.
05
步骤:
1 构造函数
)
,
(
)
,
求函数
解 第一步 求驻点.
得驻点: (1, 0) , (1, 2) , (–3, 0) , (–3, 2) .
第二步
解方程组
的极值.
求A、B、C的值,并列表判别
12
0
6
极小,
72
-5

例5
P

01
驻点为
02
(
03
1
04
1
05
)
06
函数在 P 有极值 故
二、多元函数的最值
依据 (这实际上是条件极值问题,边界方程即为条件方程)
要设计一个容量为
则问题为求

解方程组
解 设 x , y , z 分别表示长、宽、高,
下水箱表面积
最小.
x , y , z 使在条件
试问水箱长、宽、高等于多少时所用材料最省?
的长方体开口水箱,
例8-4
得唯一驻点
因此 , 当高为 思考: 提示: 利用对称性可知, 提示: 长、宽、高尺寸相等 .
由题意可知合理的设计是存在的, 长、宽为高的 2 倍时,所用材料最省.
2x,
故长方体的体积
2y,
h - z.

多元函数的极值概念及其应用

多元函数的极值概念及其应用

多元函数的极值概念及其应用在微积分领域中,极值是函数理论中一个重要的概念。

当我们研究多元函数时,我们也需要理解多元函数的极值概念以及应用。

本文将介绍多元函数的极值概念,并探讨其在实际问题中的应用。

一个多元函数可以定义为一个以多个变量为自变量的函数,通常表示为f(x₁, x₂, ..., xn)。

多元函数的极值概念是指函数取得的最大值或最小值。

对于单变量函数,我们可以使用导数来判断其极值点;而对于多元函数,我们可以利用偏导数和二阶偏导数来判断其极值。

在多元函数的极值问题中,我们首先要找到函数的临界点。

临界点是函数的偏导数等于零或者不存在的点。

对于一个具有n个自变量的多元函数,我们需要计算出这n个自变量的偏导数,然后令其等于零来求解各个自变量的值。

只有在这些值处取得的函数值才有可能是极值。

接下来,我们需要对求解得到的临界点进行判断,以确定是否为极值点。

我们可以使用二阶偏导数来判断这些点的性质。

如果所有二阶偏导数都存在且满足一定条件,我们可以通过计算二阶偏导数的行列式(即海森矩阵)来判断这些点是极小值、极大值还是鞍点。

除了求解多元函数的极值点,我们还可以利用极值概念来解决一些实际问题。

例如,在经济学中,我们可以利用多元函数的极值概念来最大化或最小化一个经济指标。

假设我们有一个多元函数表示一个企业的成本,我们可以通过求解该函数的最小值来确定最佳生产策略。

类似地,我们也可以利用多元函数的极值概念来解决最优控制问题、最优化问题等多个领域的实际问题。

此外,在物理学和工程学中,多元函数的极值概念也具有广泛的应用。

例如,在物理学中,我们可以通过求解多元函数的最小值来确定物体在重力作用下的平衡位置;在工程学中,我们可以利用多元函数的极大值来确定最优设计方案。

总之,多元函数的极值概念在数学和其他学科中都具有广泛的应用。

通过理解多元函数的极值概念,我们可以更好地解决实际问题,并优化我们的决策和设计。

因此,对于任何研究多元函数的学生或研究人员来说,深入理解和应用多元函数的极值概念是非常重要的。

多元函数的极值与最值

多元函数的极值与最值

多元函数的极值与最值多元函数是指含有多个变量的函数。

在数学中,多元函数的极值和最值是研究函数在定义域内取得的最大值或最小值的问题。

本文将探讨多元函数的极小值与极大值,以及如何确定极值的方法。

1. 极值的定义和判断方法多元函数的极大值和极小值定义如下:对于函数f(x1, x2, ..., xn),若存在一个点P(x1, x2, ..., xn)使得在点P的某个邻域内,对于任意(x1', x2', ..., xn'),f(x1', x2', ..., xn') ≤ f(x1, x2, ..., xn),则称f(x1, x2, ..., xn)在点P取得极小值;若存在一个点Q(x1, x2, ..., xn)使得在点Q的某个邻域内,对于任意(x1', x2', ..., xn'),f(x1', x2', ..., xn') ≥ f(x1, x2, ..., xn),则称f(x1, x2, ..., xn)在点Q取得极大值。

判断函数极值的方法常用的有以下几种:- 一阶导数法:求出函数的所有一阶偏导数,并解方程组求出所有临界点,再通过二阶偏导数或利用一阶导数的符号变化判断临界点的性质(极大值或极小值)。

- 二阶导数法:计算函数的所有二阶偏导数,并判断二阶导数的符号确定临界点的性质。

- 极值判别法:利用Hessian矩阵来判断函数的极值,若Hessian矩阵是正定的,则函数取得极小值;若Hessian矩阵是负定的,则函数取得极大值。

2. 寻找多元函数的最值寻找多元函数的最值的方法有以下几种:- 符号法:将函数在定义域边界上的取值代入函数,通过比较得到最大值和最小值。

- 拉格朗日乘数法:当函数的自变量受到一定的限制条件时,可以利用拉格朗日乘数法来求解函数的最值。

- 最优化算法:通过迭代计算的方式,利用数值优化算法来求解函数的最值,例如梯度下降法、牛顿法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P0 ,
P
Rn
)
例1 函数 z 3x2 4 y2
(1)
在 (0,0) 处有极小值.
例2 函数 z x2 y2
(2)
在 (0,0) 处有极大值.
例3 函数 z xy
(3)
在 (0,0) 处无极值.
2. 多元函数取得极值的条件 定理8.10 (必要条件)
设函数 且在该点取得极值,则有
具有偏导数,
f x ( x0, y0 ) 0 ,
f
y
(
x0
,
y0
)
0.
证 不妨设z f ( x, y)在点 P ( x0 , y0 ) 处有极大值,
即 f ( x, y) f ( x0 , y0 ), ( ( x, y) U(P))
f ( x, y0 ) f ( x0 , y0 ) ( ( x, y0 ) U ( P ))
P0( x0 , y0 ), y ( x0 , y0 ) 0.
z
f ( x,
(x, y) y) 0
在点(
x0
,
y0
)处取得


z f [ x, y( x)]在x x0处取得极值.
dz dx
x x0
(
fx
fy
d d
y) x x x0
0
而 dy
x ( x0 , y0 )
d x x x0 y ( x0 , y0 )


:f
(
函数( xfi xi , yi )
,在y(i该i)区1(,域i2,D1上,,2n一,);定, n取) 得最值
2 求 f ( x, y)在D的边界上的最值m0 , M0;
(这实际上是条件极值问题,边界方程即为条件
方程)
3 比较函数值 f ( xi , yi ) (i 1,2,, n) 与 m0 , M0的大小,则最大者为最大值M,
令 ( x) f ( x, y0 ), 则
( x) ( x0 ) ( x U ( x0 )) ( x) f ( x, y0 )在x x0处可导
( x0 ) 0
即 f x ( x0 , y0 ) 0;
类似地可证 f y ( x0 , y0 ) 0.
注 1º 推广: 如果三元函数u f ( x, y, z)在点 P( x0 , y0 , z0 )具有偏导数,则它在点 P( x0 , y0 , z0 )处有极值的必要条件为:
x y
3x2 3 y2
3ay 3ax
0 0
① ②
当 a=0 时,有唯一驻点:(0,0)
当 a 0 时, ① – ②:( x2 y2 ) a( x y) 0
( x y)( x y a) 0
x ya0
否则 x y a 0
x y 代入①,
z x 3[ x2 a( x a)]
A<0 时是极大值;
A>0 时是极小值.
2) 当 AC B2 0 时,
不是极值.
3) 当 AC B2 0 时, 不能判定 , 需另行讨论.
即有
f ( x0 , y0 )
A 0, 极小值
0
A 0, 极大值 是极值
0
非极值
0
不定(需用其他方法确定)
( AC B2 )
求函数z f ( x, y)极值的一般步骤: 1 求极值可疑点:驻点、偏导数不存在的点; 2 判断
2x 4y
2xy2 2x2 y
0, 0.
-2 O
2x
得D内驻点为:( 2,1), ( 2,1),
且 f ( 2,1) 2.
2 再求 f (x, y)在D边界上的最值
在边界L1 : y 0 (2 x 2)上,记 g( x) f ( x,0) x2
在L1上, f (x, y) 的最大值为
第九节
第八章
多元函数的极值
与最优化问题
一、多元函数的无条件极值 二、多元函数的最值
三、多元函数的条件极值—— 拉格朗日乘数法
一、 多元函数的无条件极值
观察二元函数
z
xy ex2 y2
的图形
1. 极值定义
定义8.10 若函数
的某
邻域内有定义且满足
f ( x, y) f ( x0, y0 ) ( ( x, y) U (P ))
x4 5x2 8 (2 x 2)
三、条件极值、拉格朗日乘数法
实例 小王有200元钱,他决定用来购买两种 急需物品:计算机磁盘和录音磁带, 设他购买 x 张磁盘,y 盒录音磁带达 到最佳效果,效果函数为:
U ( x, y) ln x ln y
设每张磁盘 8 元,每盒磁带 10 元,问他 如何分配这 200 元以达到最佳效果.
(1) 当a 0 时,
驻点
A
(0,0) 9a2 0
z(x, y) 非极值
(a, a)
27a2 0
6a
(a 0) (a 0)
极小值 极大值
即当a 0时,z x3 y3 3axy 在(0,0)不
取得极值. 当a 0时,z x3 y3 3axy 在(a,a)取
得极小值:z(a,a) a3; 当a 0时,z x3 y3 3axy 在(a,a)取
得 x2 ax 0, x 0, x a
有驻zz点xy :
3x2 3(0y,20),
3ay 3(aa,xa
)
0 0
① ②
3( x2 ax a2 ) 0
2º判断 zx 3 x 2 3ay , z y 3 y2 3ax A zxx 6x, B zxy 3a, C zyy 6 y, AC B2 36xy 9a2
定理8.11(充分条件)
若函数z f ( x, y) 在点 ( x0 , y0 ) 的 某邻域内
具有二阶连续偏导数, 且
f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 记 A f x x ( x0 , y0 ) , B f x y ( x0 , y0 ) , C f y y ( x0 , y0 ) 则 1)当 AC B2 0 时,
1. 将条件极值转化为无条件极值
即由 ( x, y) 0, 解出y y( x),
再代入 f ( x, y)中,转化成求
z f [x, y( x)]
的无条件极值.
2. 拉格朗日乘数法
找函数 z f ( x, y)在条件 ( x, y) 0
下的极值可疑点.
步骤: 1 构造函数
拉格朗日乘子
F ( x , y ) f ( x , y ) ( x , y )
y ( x0 , y0 )
fx ( x0 , y0 ) x ( x0 , y0 ) 0
f y ( x0 , y0 ) y ( x0 , y0 ) 0
( x0 , y0 ) 0
这正是(1)式.
条件极值的 必要条件
例6 在xOy平面上求一点, 使它到x 0, y 0及
x 2 y 16 0三直线的距离平方之和最小.
解 所求点一定在 x=0, y=0, x+2y-16=0 三直线
所围三角形的内部. 设(x,y)为该三角形内任一点,
则它到三直线的距离平方和为:
D x2 y2 ( x 2 y 16 )2
(1) 利用极值的充分条件判定,
(2) 若充分条件不满足,则利用极值的定义.
例4 z x2 y2
zx (0,0), z y (0,0)均不存在,
但 z x2 y2在(0,0)处取得极小值 z(0,0) 0.
例5 求 z x3 y3 3axy (a为常数)的极值.
解 1º求驻点
z z
其中为某一常数.
2º解方程组
拉格朗日函数
FFxy
fx(x, y) x (x, y) 0 fy(x, y) y(x, y) 0
(1)
F ( x, y) 0
解出 x0, y0, ,得极值可疑点:( x0 , y0 )
3º判断 ( x0 , y0 )是否为极值点.
原理:设 f , 在某U (P0 )内有连续的一阶偏导数,
由 h( x) 4 x3 10x 0 (2 x 2)得驻点:
x1 0, x2
5, 2
x3
5, 2
y L2
h(0) f (0,2) 8
h( 5) f ( 5, 3) 7 .
2
22 4
-2 O
在L2上,
f (x, y) 的最大值为8,最小值为 7 . 4
L1 2 x
综上, f (xh,(yx))在 Df 上( x的, 最4 大x值2 )为8,最小值为0.
dz dx
x x0
(
fx
fy
d y) d x x x0
fx ( x0 ,
y0 )
fy ( x0 ,
y0
)
[
x y
( (
x0 x0
, ,
y0 y0
) )
]
fx ( x0 ,
y0
)
[
f
y y
( (
x0 x0
, ,
y0 y0
) )
]
x
(
x0
,
y0
)
0
令λ f y ( x0 , y0 ),则 f y ( x0 , y0 ) y ( x0 , y0 ) 0
得极大值:z(a,a) a3.
(2) 当a =0 时,在唯一驻点(0,0)处,
AC B2 (36xy 9a2 ) 0
(0,0)
充分判别法失效!
此时,z x3 y3 , z(0,0) 0
当 x 0时,z( x,0) x3 0 z(0,0) 当 x 0时,z( x,0) x3 0 z(0,0) y
最小者为最小值m.
相关文档
最新文档