高考物理能力梯级提升思维高效练习511电磁感应规律及其应用
新课标高考物理大二轮复习专题五电路与电磁感应第二讲电磁感应规律及其综合应用课件

MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量 不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出 磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电 流一定大于 I1,MN 受到安培力的作用,由于安培力与速度成正 比,则 MN 所受的安培力一定大于 MN 的重力沿斜面方向的分力, 所以 MN 一定做减速运动,回路中感应电流减小,流过 PQ 的电 流随时间变化的图像可能是 D,C 错误.
应用法拉第电磁感应定律求磁场变化产生的电动势时,公式
E=nΔΔBt ·S,其中 S 为线圈内磁场区的面积,不一定等于线圈的 面积.
热点考向二 电磁感应中的图像问题
【典例】 (多选)(2019·全国卷Ⅱ)如图,两条光滑平行金属 导轨固定,所在平面与水平面夹角为 θ,导轨电阻忽略不计.虚 线 ab、cd 均与导轨垂直,在 ab 与 cd 之间的区域存在垂直于导 轨所在平面的匀强磁场.将两根相同的导体棒 PQ、MN 先后自 导轨上同一位置由静止释放,两者始终与导轨垂直且接触良 好.已知 PQ 进入磁场时加速度恰好为零.从 PQ 进入磁场开始 计时,到 MN 离开磁场区域为止,流过 PQ 的电流随时间变化的 图像可能正确的是( AD )
第 4 步:进行数学分析.根据函数方程进行数学分析例如 分析斜率的变化、截距等;
第 5 步:得结果.画图像或判断图像.
迁移一 由给定的电磁感应过程选图像 1.(2019·江苏宜兴模拟)如图所示,在光滑水平面上,有一 个粗细均匀的单匝正方形闭合线框 abcd.t=0 时刻,线框在水平 外力的作用下,从静止开始向右做匀加速直线运动,bc 边刚进入 磁场的时刻为 t1,ad 边刚进入磁场的时刻为 t2,设线框中产生的 感应电流的大小为 I,ad 边两端电压大小为 U,水平拉力大小为 F,则下列 I、U、F 随时间 t 变化关系的图像正确的是( C )
高考物理提分特训专题培优第15讲电磁感应的规律应用

第十五讲电磁感应的规律应用电磁感应是电学的难点,是高中物理中综合性最强的部分。
这一章是高考必考内容之一。
如感应电流产生的条件、方向的判定、自感现象、电磁感应的图象问题,每年必考,题目多以选择题、填空题的形式出现,难度一般中档左右。
而感应电动势的计算、法拉第电磁感应定律,因与力学、电路、磁场、能量、动量等密切联系,涉及知识面广,综合性强,能力要求高,灵活运用相关知识综合解决实际问题。
本章知识应用,和生产、生活、高科技联系紧密,如日光灯原理、磁悬浮列车的确原理、电磁阻尼现象、延时开关、传感器的原理、超导技术的应用、电磁流量计等,要特别关注此类问题。
一、夯实基础知识1.深刻理解磁通量的概念及产生感应电流条件。
(1)磁通量:穿过某一面积的磁感线条数。
公式为φ=BS sinθ,其中θ是指回路平面与磁感强度方向的夹角。
(2)合磁通:若通过一个回路中有方向相反的磁场,则不能直接用公式φ=BS sinθ求φ,应考虑相反方向抵消以后所剩余的磁通量,亦即此时的磁通是合磁通。
(3)产生感应电流的条件:穿过闭合回路的磁通量发生的变化。
若电路不闭合,即使有感应电动势产生,也没有感应电流。
2.深刻理解楞次定律和右手定则。
(1)感应电流方向的判断有两种方法:楞次定律和右手定则。
当闭合电路中磁通量发生变化时,用楞次定律判断感应电流方向,但当闭合电路中一部分导体做切割磁感线运动时,则用右手定则就比较简便。
(2)楞次定律的内容:感应电流的磁场总是要阻碍引起感应电流的原磁通的变化。
可理解为:如原来磁场在增强,感应电流磁场与原磁场反向;如原来磁场在减弱,感应电流磁场就与原磁场方向一致。
“阻碍”不是“阻止”,线圈中的磁通量还是在改变的。
(3)应用楞次定律的基本程序是:(1)弄清原磁场是谁产生的(由磁体还是电流产生),画出穿过闭合回路的磁场方向和分析磁通量的变化情况(增或减);(2)判定感应电流磁场的方向;当磁通量增加时感应电流磁场与原磁场方向相反;当磁通量减少时感应电流的磁场与原磁场方向相同;(3)用安培定则(右手螺旋定则)确定感应电流的方向。
高考物理电磁学知识点之电磁感应技巧及练习题附解析

高考物理电磁学知识点之电磁感应技巧及练习题附解析一、选择题1.在水平桌面上,一个圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B1随时间t的变化关系如图甲所示,0~1 s内磁场方向垂直线框平面向下,圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,且与导轨接触良好,导体棒处于另一匀强磁场B2中,如图乙所示,导体棒始终保持静止,则其所受的摩擦力F f随时间变化的图像是下图中的(设向右的方向为摩擦力的正方向) ( )A.B.C.D.2.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。
这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理3.如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下。
一飞机在北半球的上空以速度v水平飞行,飞机机身长为a,翼展为b;该空间地磁场磁感应强度的水平分量为B1,竖直分量为B2;驾驶员左侧机翼的端点用A表示,右侧机翼的端点用B表示,用E表示飞机产生的感应电动势,则A .E =B 2vb ,且A 点电势高于B 点电势B .E =B 1vb ,且A 点电势高于B 点电势C .E =B 2vb ,且A 点电势低于B 点电势D .E =B 1vb ,且A 点电势低于B 点电势4.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。
两板间有一个质量为m 、电荷量为+q 的油滴恰好处于平衡状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( )A .正在增强;t φ∆∆dmg q =B .正在减弱;dmg t nqφ∆=∆ C .正在减弱;dmg t qφ∆=∆ D .正在增强;dmg t nqφ∆=∆ 5.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v 0刷卡时,在线圈中产生感应电动势,其E -t 关系如图所示.如果只将刷卡速度改为02v ,线圈中的E -t 关系图可能是( )A .B .C .D.6.如图所示,一闭合直角三角形线框abc以速度v匀速向右穿过匀强磁场区域,磁场宽度大于ac边的长度.从bc边进入磁场区,到a点离开磁场区的过程中,线框内感应电流的情况(以逆时针方向为电流的正方向)是下图中的()A.B.C.D.7.如图甲所示,一根电阻R=4 Ω的导线绕成半径d=2 m的圆,在圆内部分区域存在变化的匀强磁场,中间S形虚线是两个直径均为d的半圆,磁感应强度随时间变化如图乙所示(磁场垂直于纸面向外为正,电流逆时针方向为正),关于圆环中的感应电流—时间图象,下列选项中正确的是( )A. B.C.D.8.如图甲所示,光滑的平行金属导轨(足够长)固定在水平面内,导轨间距为l=20cm,左端接有阻值为R=1Ω的电阻,放在轨道上静止的一导体杆MN与两轨道垂直,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度大小为B=0.5T.导体杆受到沿轨道方向的拉力F做匀加速运动,测得力F与时间t的关系如图2所示。
2025高考物理步步高同步练习必修3第十三章电磁感应现象及应用含答案

2025高考物理步步高同步练习必修3第十三章3电磁感应现象及应用[学习目标] 1.知道什么是电磁感应现象.2.通过实验探究感应电流产生的条件.3.了解电磁感应现象的应用.一、划时代的发现1.“电生磁”的发现:1820年,奥斯特发现了电流的磁效应.2.“磁生电”的发现1831年,法拉第发现了电磁感应现象.3.电磁感应:法拉第把他发现的磁生电的现象叫作电磁感应,产生的电流叫作感应电流.二、产生感应电流的条件1.实验:探究感应电流产生的条件探究一:如图甲实验中,让导体棒在磁场中保持相对静止时或者平行于磁场运动时,无论磁场多强,闭合回路中都没有电流,当导体ab做切割磁感线运动时,闭合回路中有电流产生.探究二:如图乙,当线圈A的电流不变时,线圈B所在的回路中没有电流产生;当线圈A 的电流变化时,线圈B所在回路中就有了电流.2.产生感应电流的条件:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流.三、电磁感应现象的应用生产、生活中广泛使用的变压器、电磁炉等都是根据电磁感应制造的.1.判断下列说法的正误.(1)只要闭合电路内有磁通量,闭合电路中就有感应电流产生.(×)(2)穿过闭合线圈的磁通量发生变化时,线圈内部就一定有感应电流产生.(√)(3)闭合电路的一部分导体做切割磁感线运动时,电路中会产生感应电流.(√)(4)不论电路是否闭合,只要电路中磁通量发生变化,电路中就有感应电流.(×)2.如图所示,条形磁体A沿竖直方向插入线圈B的过程中,电流表G的指针(选填“不偏转”或“偏转”);若条形磁体A在线圈B中保持不动,电流表G的指针(选填“不偏转”或“偏转”).答案偏转不偏转一、磁通量的变化磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图(a)所示.(2)面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和面积S都不变,它们之间的夹角发生变化.如图(c)所示.例1(2022·普洱市景东一中高二月考)如图所示,在条形磁体外面套着一圆环,当圆环由磁体N极向下平移到磁体S极的过程中,圆环所在处的磁感应强度和穿过圆环的磁通量变化的情况是()A.磁感应强度和磁通量都逐渐增大B.磁感应强度和磁通量都逐渐减小C.磁感应强度先减弱后增强,磁通量先增大后减小D.磁感应强度先增强后减弱,磁通量先减小后增大答案C解析当圆环由磁体N极向下平移到磁体S极的过程中,磁感应强度先减弱后增强;磁铁内部磁感线与外部磁感线的总数相等,所以穿过圆环的磁感线条数一定是内部大于外部,则外部磁感线条数越多,总磁通量越小,所以穿过圆环的磁通量先增大后减小.故选C.针对训练1如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.逐渐增大B.逐渐减小C.保持不变D.不能确定答案B解析线框远离导线时,穿过线框的磁感应强度减小,线框的面积不变,所以穿过线框的磁通量减小.故选B.二、产生感应电流的条件1.实验:探究感应电流产生的条件(1)实验一:如图所示,导体棒AB做切割磁感线运动时,线路中电流产生,而导体棒AB顺着磁感线运动时,线路中电流产生.(均选填“有”或“无”)(2)实验二:如图所示,当条形磁体插入或拔出线圈时,线圈中电流产生,但条形磁体在线圈中静止不动时,线圈中电流产生.(均选填“有”或“无”)(3)实验三:如图所示,将小线圈A插入大线圈B中不动,当开关S闭合或断开时,电流表中电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中电流通过;而开关S一直闭合,滑动变阻器的滑动触头不动时,电流表中电流通过.(均选填“有”或“无”)(4)归纳总结:实验一:导体棒做切割磁感线运动,回路的有效面积发生变化,从而引起了磁通量的变化,产生了感应电流.实验二:磁体插入或拔出线圈时,线圈中的磁场发生变化,从而引起了磁通量的变化,产生了感应电流.实验三:开关闭合、断开或滑动变阻器的滑动触头移动时,小线圈A中电流变化,从而引起穿过大线圈B的磁通量变化,产生了感应电流.三个实验共同特点是:产生感应电流时闭合回路的磁通量都发生了变化.答案(1)有无(2)有无(3)有有无2.感应电流产生条件的理解不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然会产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,且穿过该电路的磁通量也一定发生了变化.例2(多选)(2021·北京四中期中)如图所示,下列情况能产生感应电流的是()A.如图甲所示,导体棒AB顺着磁感线运动B.如图乙所示,条形磁体插入或抽出线圈C.如图丙所示,小螺线管A插入大螺线管B中不动,开关S一直闭合D.如图丙所示,小螺线管A插入大螺线管B中不动,开关S一直闭合,改变滑动变阻器接入电路的阻值答案BD解析导体棒顺着磁感线运动,没有切割磁感线,穿过闭合电路的磁通量没有发生变化,无感应电流,故选项A错误;条形磁体插入线圈时线圈中的磁通量增加,抽出线圈时线圈中的磁通量减少,都产生感应电流,故选项B正确;开关S一直闭合,回路中为恒定电流,螺线管A产生的磁场稳定,螺线管B中的磁通量无变化,线圈中不产生感应电流,故选项C错误;开关S一直闭合,滑动变阻器接入电路的阻值变化,回路中的电流变化,螺线管A产生的磁场发生变化,螺线管B中磁通量发生变化,产生感应电流,故选项D正确.例3(多选)下图中能产生感应电流的是()答案BD解析A选项中,电路没有闭合,无感应电流;B选项中,面积增大,通过闭合电路的磁通量增大,有感应电流;C选项中,穿过圆环的磁感线相互抵消,磁通量恒为零,无感应电流;D选项中,穿过闭合电路的磁通量减小,有感应电流.判断是否产生感应电流的技巧1.电路闭合和磁通量发生变化是产生感应电流的两个条件,二者缺一不可.2.磁通量发生变化,其主要内涵体现在“变化”上,磁通量很大,若没有变化,也不会产生感应电流.若开始时磁通量虽然是零,但是磁通量是变化的,仍然可以产生感应电流.针对训练2(2021·衡水中学期中)如图所示,条形磁体正上方放置一矩形线框,线框平面水平且与条形磁体平行,则线框由N极匀速平移到S极的过程中,线框中的感应电流的情况是()A.线框中始终无感应电流B.线框中始终有感应电流C.线框中开始有感应电流,当线框运动到磁体中部时无感应电流,过中部后又有感应电流D.线框中开始无感应电流,当线框运动到磁体中部时有感应电流,过中部后又无感应电流答案B解析条形磁体周围的磁感线如图所示,由线框位置可知,线框从N极的正上方向右移动至S极正上方过程中,在N极正上方时,有磁感线穿过线框,在磁体正中间时,穿过线框的磁通量为零,在S极正上方时,又有磁感线穿过线框,所以,在线框向右运动的过程中,磁通量始终在变化,所以线框中始终有感应电流.故选B.考点一电磁感应现象的发现及认识1.(多选)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是()A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.楞次发现了电流的磁效应,拉开了研究电与磁相互关系的序幕C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系答案ACD解析奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系,故A正确,B错误;法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系,故C正确;焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系,故D正确.2.(多选)下面属于电磁感应现象的是()A.闭合电路的一部分导体做切割磁感线运动时,在电路中产生电流的现象B.通电导体周围产生磁场C.变化的磁场使闭合电路中产生电流D.电荷在电场中定向移动形成电流答案AC解析闭合电路的一部分导体做切割磁感线时,在电路中产生电流的现象是电磁感应现象,故A正确;通电导体周围产生磁场属于电流的磁效应,故B错误;变化的磁场使闭合电路中产生电流是因磁通量的变化形成感应电流,属于电磁感应现象,故C正确;电荷在电场中定向移动形成电流不是电磁感应产生的电流,不属于电磁感应现象,故D错误.考点二磁通量变化情况的判断3.(多选)闭合线圈按如图所示的方式在磁场中运动,则穿过闭合线圈的磁通量发生变化的是()答案AB解析A图中,图示状态Φ=0,转动过程中Φ不断变化,因此磁通量发生变化;B图中线圈离直导线越远磁场越弱,磁感线越疏,所以当线圈远离导线时,线圈中磁通量不断变小;C图中线圈中的磁通量为零,在向下移动过程中,线圈的磁通量一直为零,磁通量不变;D 图中,随着线圈的转动,B与S都不变,B又垂直于S,所以Φ=BS始终不变,故A、B正确.4.如图所示,在同一平面内有四根彼此绝缘的直导线,分别通有大小相同、方向如图所示的电流,要使由四根直导线所围成的面积内的磁通量增加,则应切断哪一根导线中的电流()A.切断i1B.切断i2C.切断i3D.切断i4答案D解析根据安培定则判断出四根通电直导线中电流在所围面积内产生的磁场方向,可知只有i4中电流产生的磁场垂直于纸面向外,则要使磁通量增加,应切断i4,故选D.5.如图所示,一环形线圈沿条形磁铁的轴线,从磁铁N极的左侧A点运动到磁铁S极的右侧B点,A、B两点关于磁铁的中心对称,则在此过程中,穿过环形线圈的磁通量将()A.先增大,后减小B.先减小,后增大C.先增大,后减小、再增大,再减小D.先减小,后增大、再减小,再增大答案A解析穿过线圈的磁通量应以磁铁内部磁场为主的,而内部的磁感线是一定值,在A、B点时,外部磁感线比较密,即与内部相反的磁感线多,相抵后剩下的内部的磁感线就少;中间位置时,外部磁感线比较疏,即与内部相反的磁感线少,相抵后剩下的内部的磁感线就多.所以两端磁通量小,中间磁通量大,A正确.考点三有无感应电流的判断6.(2021·哈尔滨市宾县月考)法拉第在1831年发现了“磁生电”现象.如图所示,他把两个线圈绕在同一个软铁环上,线圈A和电池连接,线圈B用长直导线连通,在长直导线正下方平行于导线放置一个小磁针,下列有关实验现象的说法中正确的是()A.只要线圈A中电流足够大,小磁针就会发生偏转B.线圈A闭合开关电流稳定后,线圈B匝数较少时小磁针不偏转,匝数足够多时小磁针偏转C.线圈A和电池接通瞬间,小磁针会偏转D.线圈A和电池断开瞬间,小磁针不会偏转答案C解析小磁针会不会偏转取决于线圈B中有没有电流,而线圈B中有没有电流取决于线圈B 中的磁通量是否发生变化,当线圈A中电流足够大,但不变化时,线圈B中无感应电流,小磁针不会发生偏转,A错误;当线圈A闭合开关电流稳定后,穿过线圈B的磁通量不发生变化,所以小磁针也不会发生偏转,故B错误;线圈A和电池接通或断开的瞬间,穿过线圈B 的磁通量发生变化,所以线圈B中有感应电流,则小磁针会偏转,故C正确,D错误.7.(多选)下列情况中都是线框在磁场中做切割磁感线运动,其中线框中有感应电流的是()答案BC解析A中导体虽然“切割”了磁感线,但穿过闭合线框的磁通量并没有发生变化,没有感应电流.B中线框的一部分导体“切割”了磁感线,穿过线框的磁感线条数越来越少,线框中有感应电流.C中虽然与A近似,但由于是非匀强磁场,运动过程中,穿过线框的磁感线条数增加,线框中有感应电流.D中线框尽管是部分切割,但磁感线条数不变,无感应电流.故选B、C.8.(2021·哈尔滨市南岗区期中)某实验装置如图所示,在铁芯P上绕着两个线圈A和B.如果线圈A中电流i随时间t的关系有如图所示的A、B、C、D四种情况,那么在t1到t2这段时间内,哪种情况线圈B中没有感应电流()答案A解析通过线圈A的电流发生变化,电流产生的磁感应强度发生变化,穿过线圈B的磁通量发生变化,才能产生感应电流,在t1到t2这段时间内,B、C、D图中线圈A中的电流发生变化,线圈B中会产生感应电流,而A图中电流不变,在线圈B上不产生感应电流,故选A.9.(多选)(2022·贺州市平桂高级中学高二月考)如图所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流产生的是()A.开关S闭合或断开的瞬间B.开关S是闭合的,但滑动触头向左滑C.开关S是闭合的,但滑动触头向右滑D.开关S始终闭合,滑动触头不动答案ABC解析导线cd中有电流产生的原因是回路中的磁通量发生变化,上半部分中的磁场是由导线ab中的电流激发的,如果想让磁感应强度变化,导线ab中的电流应发生变化,开关闭合或断开瞬间,电流从无到有或从有到无,发生了变化;开关闭合,滑动触头向左滑,电流减小;开关闭合,滑动触头右滑,电流变大;开关闭合,滑动触头不变,电流不变.故A、B、C 正确,D错误.10.(多选)(2021·黄冈中学期中)如图所示,是一水平放置的矩形线圈abcd,在细长的磁体的N 极附近竖直下落,整个下落过程中线圈保持水平,由图中的位置A经过位置B到位置C,这三个位置都靠得很近且位置B刚好在条形磁体的中心轴线上.在这个过程中,下列说法正确的是()A.由位置A到位置B,线圈内不产生感应电流B.由位置A到位置B,线圈内产生感应电流C.由位置B到位置C,线圈内产生感应电流D.由位置B到位置C,线圈内不产生感应电流答案BC解析如图所示,作出线圈下落过程示意图,由图可知,从位置A到位置B的过程中,从线圈下面向上穿过线圈的磁通量减少(B位置时,Φ=0);而从位置B到位置C时,从线圈上面向下穿过线圈的磁通量增加,故由位置A到位置B和位置B到位置C的两个过程中,穿过线圈的磁通量都发生变化,线圈中都会产生感应电流,故B、C正确,A、D错误.11.如图所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心线恰好和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有()A.使螺线管在线圈a所在平面内转动B.使螺线管中的电流发生变化C.使线圈a以MN为轴转动D.使线圈a以与MN垂直的直径为轴转动答案D解析题图所示位置,线圈a所在平面与磁感线平行,穿过线圈的磁通量为零,当按A、B、C所述方式变化时,磁通量不变,不产生感应电流;按D所述方式变化时,由于线圈a与磁场夹角变化引起磁通量变化,能够产生感应电流,故选D.12.(多选)在匀强磁场中有两根平行的金属导轨,磁场方向与导轨平面垂直,导轨上有两根可沿导轨平动的导体棒ab、cd,两根导体棒匀速移动的速度大小分别为v1和v2,如图所示,则下列情况可以使回路中产生感应电流的是()A.ab、cd均向右运动,且v1=v2B.ab、cd均向右运动,且v1>v2C.ab、cd均向左运动,且v1>v2D.ab向右运动,cd向左运动,且v1=v2答案BCD解析ab、cd均向右运动,当v1=v2时,闭合回路的磁通量不变,故无感应电流产生,A项错误;B、D两项所述情况,闭合回路的磁通量增加,C项所述情况,闭合回路的磁通量减少,均有感应电流产生,故B、C、D正确.13.(多选)如图所示,水平面内有两条相互垂直且彼此绝缘的通电长直导线,以它们为坐标轴构成一个平面直角坐标系.四个相同的圆形闭合线圈在四个象限内完全对称地放置,两直导线中的电流大小与变化情况相同,电流方向如图所示,当两直导线中的电流都增大且变化量相同时,四个线圈a 、b 、c 、d 中感应电流的情况是( )A .线圈a 中有感应电流B .线圈b 中有感应电流C .线圈c 中无感应电流D .线圈d 中无感应电流答案 AD解析 由安培定则可判断出两通电直导线产生的磁场在第Ⅰ、Ⅲ象限中方向均相同,当两直导线中的电流都增大时,线圈a 、c 中磁通量增大,产生感应电流,选项A 正确,C 错误;利用对称性和安培定则可判断出两通电直导线产生的磁场在第Ⅱ、Ⅳ象限中方向均相反,且线圈b 、d 中的磁通量为零,当两直导线中的电流都增大且变化量相同时,线圈b 、d 中的磁通量仍为零,线圈b 、d 中无感应电流,选项B 错误,D 正确.14.如图所示,一有界匀强磁场,宽度为d ,使一边长为l 的正方形导线框以速度v 向右匀速通过磁场区域,若d >l ,则导线框通过磁场过程中,导线框中不产生感应电流的时间应等于( )A.d vB.lv C.d -l v D.d -2l v 答案 C解析 当导线框刚好完全进入磁场时至导线框刚好要出磁场时,穿过导线框的磁通量不发生变化,导线框中不会产生感应电流,对应的位移为d -l ,所以时间为t =d -lv ,选项C 正确.4电磁波的发现及应用[学习目标] 1.了解麦克斯韦电磁场理论,知道电磁场的概念.2.知道电磁波的特点,掌握电磁波波长、频率、波速之间的关系.3.知道电磁波谱中各种电磁波的排列顺序,了解各种电磁波的应用,了解电磁波的能量.一、电磁场1.麦克斯韦电磁场理论(1)变化的磁场产生电场①在变化的磁场中放入一个闭合电路,由于穿过电路的磁通量发生变化,电路中会产生感应电流.这个现象的实质是变化的磁场在空间产生了电场.②即使在变化的磁场中没有闭合电路,也同样会在空间产生电场.(2)变化的电场产生磁场变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场.2.电磁场:变化的电场和磁场互相联系,所形成的不可分割的统一体.二、电磁波1.产生:周期性变化的电场和周期性变化的磁场交替产生,由近及远地向周围传播,形成电磁波.2.特点(1)电磁波可以在真空中传播.(2)电磁波的传播速度等于光速.(3)光在本质上是一种电磁波.即光是以波动形式传播的一种电磁振动.三、电磁波谱电磁波的能量电磁波通信1.电磁波谱(1)概念:按电磁波的波长或频率大小的顺序把它们排列起来,就是电磁波谱.(2)电磁波的波速c与波长λ、频率f的关系是c=λf.(3)电磁波在真空中的速度c=3×108 m/s.(4)各种电磁波按波长由大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线.(5)各种电磁波的特性①无线电波:用于广播、卫星通信、电视等的信号传输.②红外线:用来加热理疗等.③可见光:照亮自然界,也可用于通信.④紫外线:用于消毒.⑤X射线:用于诊断病情.⑥γ射线:可以摧毁病变的细胞.2.电磁波的能量(1)光是一种电磁波,光具有能量.(2)电磁波具有能量,电磁波是一种物质.判断下列说法的正误.(1)变化的磁场可以产生电场,但变化的电场不能产生磁场.(×)(2)电磁波在空气中可以传播,在真空中不能传播.(×)(3)光在真空中的速度与电磁波在真空中的速度相同,光是一种电磁波.(√)(4)无线电波、红外线、可见光、紫外线都属于电磁波.(√)一、麦克斯韦电磁场理论1.麦克斯韦电磁场理论(1)变化的磁场周围会产生电场麦克斯韦提出,在变化的磁场周围会激发出一种电场,不管有无闭合电路,变化的磁场激发的电场总是存在的,如图所示.(2)变化的电场周围会产生磁场麦克斯韦从场的观点得出,即使没有电流存在,只要空间某处的电场发生变化,就会在其周围产生磁场.2.对麦克斯韦电磁场理论的理解恒定的磁场不产生电场恒定的电场不产生磁场均匀变化的磁场在周围空间产生恒定的电场均匀变化的电场在周围空间产生恒定的磁场不均匀变化的磁场在周围空间产生变化的电场不均匀变化的电场在周围空间产生变化的磁场周期性变化的磁场在周围空间产生同频率的周期性变化的电场周期性变化的电场在周围空间产生同频率的周期性变化的磁场例1(2021·南宁一中月考)关于麦克斯韦电磁场理论,下列说法正确的是()A.电场周围一定产生磁场,磁场周围一定产生电场B.稳定的电场周围产生稳定的磁场,稳定的磁场周围产生稳定的电场C.均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化的电场D.周期性变化的电场周围产生周期性变化的磁场,周期性变化的磁场周围产生周期性变化的电场答案D解析稳定的电场不能产生磁场,稳定的磁场不能产生电场,A、B错误;均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场,C错误;根据麦克斯韦电磁场理论,可知周期性变化的电场周围产生周期性变化的磁场,周期性变化的磁场周围产生周期性变化的电场,D正确.二、电磁波1.电磁波的形成周期性变化的电场和磁场交替产生,形成电磁场,电磁场由近及远传播,形成电磁波.2.电磁波的特点(1)在传播方向上,任意一点的E和B都随时间周期性变化,E和B相互垂直,且与电磁波的传播方向垂直.如图.(2)电磁波可以在真空中传播.电磁波在真空中传播速度等于光速c=3×108 m/s.(3)电磁场储存电磁能,电磁波的发射过程就是辐射能量的过程.(4)只有周期性变化的电场和磁场相互激发才能形成电磁波.(5)电磁波是电磁场在空间中的传播,电磁场是一种客观存在的物质——场物质.3.电磁波的波速对于电磁波,用λ表示电磁波的波长、f表示频率、c表示波速,则有c=λf.例2(多选)关于电磁波,下列说法中正确的是()A.只要电场或磁场发生变化,就能产生电磁波B.麦克斯韦首先预言了电磁波的存在,赫兹最先用实验证实了电磁波的存在C.电磁波和机械波都依赖于介质才能传播D.电磁波具有能量,电磁波的传播是伴随着能量向外传递的答案BD解析要想产生电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是周期性变化的,A错误;麦克斯韦首先预言了电磁波的存在,赫兹最先用实验证实了电磁波的存在,选项B正确;电磁波可以在真空中传播,选项C错误;电磁波具有能量,电磁波的传播过程,也就是能量的传播过程,D正确.例3电磁波在真空中传播的速度c=3×108 m/s,有一个广播电台的频率f=90.0 MHz,这个电台发射的电磁波的波长λ为()A.2.70 m B.270 mC.3.00 m D.3.33 m答案D解析根据c=λf可得,λ=3×10890.0×106m≈3.33 m.故选D.三、电磁波谱1.电磁波谱电磁波按波长由大到小排列顺序为无线电波、红外线、可见光、紫外线、X射线、γ射线.它们共同构成了范围广阔的电磁波谱.2.不同电磁波的特性和用途种类波长范围特性应用无线电波大于1 mm波动能力强通信、广播、射电望远镜红外线760~106 nm热作用强烘干、红外遥感、测温、夜视仪可见光400~760 nm感光性强照明、照相紫外线10~400 nm化学作用、荧光作用消毒、荧光效应、促使人体合成维生素DX射线0.001~10 nm较强的穿透能力透视人体、检查金属零件的质量γ射线小于10-3 nm穿透能力最强医学上的γ刀技术、探测金属内部的缺陷例4下面列出一些医疗器械的名称和这些器械运用的物理现象.请将相应的字母填写在运用这种现象的医疗器械后面的空格上.。
高考物理练习题及答案-电磁感应规律及其应用.doc

高考物理练习题及答案-电磁感应规律及其应用电磁感应现象是指放在变化磁通量中的导体,会产生电动势,下面是高考物理练习题及答案-电磁感应规律及其应用,请考生认真练习。
一、选择题(共8小题,每小题4分,共32分。
在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~8题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1.(2015新课标全国卷,15)如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上。
当金属框绕ab边以角速度逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc。
已知bc边的长度为l。
下列判断正确的是()A.UaUc,金属框中无电流B.UbUc,金属框中电流方向沿a-b-c-aC.Ubc=-Bl2,金属框中无电流D.Ubc=Bl2,金属框中电流方向沿a-c-b-a2.(2015重庆理综,4)图为无线充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S。
若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差a-b(A.恒为B.从0均匀变化到C.恒为-D.从0均匀变化到-3.(2015安徽理综,19)如图所示,abcd为水平放置的平行形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。
则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的发热功率为4.(2015福建理综,18)如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中。
一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦。
高中物理:电磁感应规律及其应用 练习(含答案)

高中物理:电磁感应规律及其应用 练习(含答案)满分:100分 时间:60分钟一、 单项选择题(本题共5小题,每小题6分,共30分.每小题只有一个选项符合题意.)1.有一个磁悬浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压恒定,可变电阻为一可随意改变电阻大小的装置,则下列叙述正确的是( ) A .电路中的电源必须是交流电源 B .电路中的a 端须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度2.如图所示,一导线弯成直径为d 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列说法中正确的是( ) A .感应电流方向为顺时针方向 B .CD 段直导线始终不受安培力 C .感应电动势的最大值E = Bd vD .感应电动势的平均值E -=18πBd v3.(唐山一模)如图所示,一呈半正弦形状的闭合线框abc ,ac =l ,匀速穿过边界宽度也为l 的相邻磁感应强度大小相同的匀强磁场区域,整个过程中线框中感应电流图象为(取顺时针方向为正方向)( )4.(长春质量监测)如图所示,用一根横截面积为S的粗细均匀的硬导线做成一个半径为R的圆环,把圆环一半置于均匀变化的磁场中,磁场方向垂直纸面向外,磁感应强度大小随时间的变化率ΔBΔt=k(k>0),ab为圆环的一条直径,导线的电阻率为ρ,则下列说法中正确的是() A.圆环具有扩张的趋势B.圆环中产生逆时针方向的感应电流C.图中ab两点间的电压大小为12kπR2D.圆环中感应电流的大小为kRS 4ρ5.(姜堰市模拟)如图所示,两相同灯泡A1、A2,A1与一理想二极管D连接,线圈L的直流电阻不计.下列说法正确的是()A.闭合开关S后,A1会逐渐变亮B.闭合开关S稳定后,A1、A2亮度相同C.断开S的瞬间,A1会逐渐熄灭D.断开S的瞬间,a点的电势比b点低二、多项选择题(本题共3小题,每小题7分,共计21分.每小题有多个选项符合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)6.如图所示的正方形导线框abcd,电阻为R,现维持线框以恒定速度v沿x轴运动,并穿过图中所示的匀强磁场区域.如果以x轴正方向为力的正方向,线框在图示位置的时刻作为计时零点,则磁场对线框的作用力F、线框ab边两端的电势差U ab随时间变化的图象正确的是()7.如图所示,质量为3m的重物与一质量为m的导线框用一根绝缘细线连接起来,挂在两个高度相同的定滑轮上,已知导线框电阻为R,横边边长为L.有一垂直纸面向里的匀强磁场,磁感应强度为B,磁场上下边界的距离、导线框竖直边长均为h.初始时刻,磁场的下边缘和导线框上边缘的高度差为2h,将重物从静止开始释放,导线框加速进入磁场,穿出磁场前已经做匀速直线运动,滑轮质量、摩擦阻力均不计,重力加速度为g.则下列说法中正确的是()A.导线框进入磁场时的速度为2ghB.导线框进入磁场后,若某一时刻的速度为v,则加速度为a=12g-B2L2v4mRC.导线框穿出磁场时的速度为mgR B2L2D.导线框通过磁场的过程中产生的热量Q=8mgh-8m3g2R2 B4L48.(苏州一模)两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻.将质量为m、电阻也为R的金属棒悬挂在一个固定的轻弹簧下端,金属棒与导轨接触良好,导轨所在的平面与磁感应强度为B的磁场垂直,如图所示,除金属棒和电阻R外,其余电阻不计.现将金属棒从弹簧的原长位置由静止释放,则以下结论正确的是()A.金属棒向下运动时,流过电阻R的电流方向为b→aB.最终弹簧的弹力与金属棒的重力平衡C.金属棒的速度为v时,所受的安培力大小为B2L2v RD.金属棒的速度为v时,金属棒两端的电势差为BL v 2三、计算题(本题共2小题,共计49分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)9.(24分)如图所示,竖直平面内有两根光滑且电阻不计的长平行金属导轨,间距L =0.2 m,导轨的上端接一个阻值R=1.5 Ω的电阻,导轨间的空间内存在垂直导轨平面的匀强磁场,将一质量m=5 g、长为L=0.2 m、电阻r=0.5 Ω的金属棒垂直放在导轨上,与导轨接触良好.(1)若磁感应强度随时间变化满足B=(0.5t+2) T,t=0时刻,金属棒在距离导轨顶部L=0.2 m处释放,此时金属棒的加速度是多大?如果金属棒延迟释放,何时开始释放,金属棒不会向下运动?(2)若磁感应强度随时间变化满足B=21+0.5t2T,为使金属棒中没有感应电流产生,从t=0时刻起,金属棒应在距离导轨顶部L=0.2 m处开始在外力作用下做怎样的运动?10.(25分)如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef 和gh 的距离s =11.4 m,(取g =10 m/s 2),求: (1)线框进入磁场前重物的加速度; (2)线框进入磁场时匀速运动的速度v ;(3)ab 边由静止开始到运动到gh 处所用的时间t ;(4)ab 边运动到gh 处的速度大小及在线框由静止开始运动到gh 处的整个过程中产生的焦耳热.答案1.C [同名磁极相互排斥使玩偶飘浮,所以电磁铁上端必须是N 极,根据安培定则,必须是直流电源,a 端接正极,故选项A 、B 错误;增加线圈匝数,可以增大电磁铁磁性,增大玩偶飘浮的最大高度,故选项C 正确;增大电阻,则电流减小,电磁铁磁性减小,玩偶最大飘浮高度减小,故选项D 错误.]2.D [线圈进磁场过程,垂直平面向里的磁通量逐渐增大,根据楞次定律“增反减同”,感应电流方向为逆时针方向,选项A 错误;根据左手定则判断,CD 段导线电流方向与磁场垂直,安培力竖直向下,选项B 错误;线圈进磁场切割磁感线的有效长度是线圈与MN 交点的连线,进磁场过程,有效切割长度最长为半径,所以感应电动势最大为12Bd v ,选项C 错误;感应电动势平均值E -=ΔΦΔt =B ·12π(d 2)2d v=Bd πv 8选项D 正确.]3.B [当b 点到左边界时,切割磁感线有效长度最大,故此时感应电流为I max ,方向为顺时针方向;当b 点到达两磁场边界时,在左、右两部分磁场中线框有效长度均有最大值,由右手定则可知,左、右磁场在线框中产生的感应电流方向均为逆时针方向,故感应电流最大值为2I max ,B项正确.]4.D [由题意,通过圆环的磁通量变大,由楞次定律可知,圆环有收缩的趋势,且产生顺时针的感应电流,故A 、B 项错误;ab 之间的电压是路端电压,不是感应电动势,U ab =12E =14k πR 2,故C 项错误;感应电流I =E r ,E =12k πR 2,r =ρ2πR S ,可得:I =kRS4ρ,故D 项正确.]5.D [闭合开关S 后,因线圈自感,但两灯和线圈不是串联的关系,则两灯立刻亮,故A 错误;闭合开关S 稳定后,因线圈L 的直流电阻不计,所以A 1与二极管被短路,导致灯泡A 1不亮,而A 2将更亮,因此A 1、A 2亮度不同,故B 错误;断开S 的瞬间,A 2会立刻熄灭,线圈L 与灯泡A 1及二极管构成回路,因线圈产生感应电动势,a 端的电势低于b 端,但二极管具有单向导电性,所以回路没有感应电流,A 1不亮;故C 错误,D 正确.]6.BD [根据楞次定律的推广含义可判定线框所受安培力F 总是沿x 轴负方向,故A 错误,B 正确;当线框进入磁场的过程中有U ab =34Bl v ,线框完全进入磁场后有,U ab =Bl v ,线框离开磁场的过程中有U ab =14Bl v ,故C 错误,D 正确.]7.ABD [对重物和线框整体应用能量的转化和守恒定律可得:3mg ·2h -mg ·2h =12×4 m v 2,v=2gh ,A 正确;线框进入磁场中某一时刻对重物有3mg -F T =3ma ,对线框有F T -mg -B 2L 2v R =ma ,解得a =12g -B 2L 2v 4mR ,B 正确;线框出磁场时,对重物3mg =F T ,对线框F T =mg +B 2L 2v R ,解得v =2mgRB 2L 2,C 错误;导线框通过磁场的整个过程中,根据能量守恒定律可得:Q =3mg ×4h -mg ×4h -12×4m ×4m 2g 2R 2B 4L 4=8mgh -8m 3g 2R 2B 4L 4,D 正确.]8.ABD [金属棒向下运动时,切割磁感线,由右手定则可知,流过电阻R 的电流方向为b →a ,选项A 正确;金属棒在切割磁感线的过程中,将金属棒的机械能转化为焦耳热,最终停下,处于静止状态,其合力为零,即弹簧的弹力与金属棒的重力平衡,选项B 正确;当金属棒的速度为v 时,产生的电动势E =BL v ,I =E 2R =BL v2R ,则金属棒所受的安培力大小F =BIL =B 2L 2v 2R ,选项C 错误;由欧姆定律可得,金属棒两端的电势差U =IR =BL v2,选项D 正确.] 9.解析 (1)根据法拉第电磁感应定律有E =n ΔΦΔt =ΔB Δt ·S =0.5×0.22 V =0.02 V, 由闭合电路欧姆定律有 I =E R +r =0.021.5+0.5A =0.01 A, 故金属棒在t =0时刻所受的安培力为 F A =B 0IL =2×0.01×0.2=0.004 N, 根据牛顿第二定律有mg -F A =ma ,故a =mg -F A m =5×10-3×10-0.0045×10-3m/s 2=9.2 m/s 2, 要想使金属棒不下落,释放时必须满足F A ≥mg ,即BIL ≥mg , 将B =0.5t +2代入有:(0.5t +2)IL ≥mg , 代入数据解得:t ≥46 s即金属棒至少要延时46 s 释放才不会下落.(2)因为t =0时,磁感应强度B 0=2 T,金属棒距离顶部L =0.2 m,为了不产生感应电流,任意时刻磁通量与刚开始时相同,设t 时间内金属棒的位移为x ,有 21+0.5t 2×0.2×(0.2+x )=2×0.22解得x =0.1t 2,即金属棒必须由静止开始向下做加速度为0.2 m/s 2的匀加速直线运动. 答案 (1)9.2 m/s 2 46 s (2)见解析10.解析 (1)线框进入磁场前,仅受到细线的拉力F ,斜面的支持力和线框的重力,重物受到自身的重力和细线的拉力F ′,对线框由牛顿第二定律得 F -mg sin α=ma对重物由牛顿第二定律得Mg -F ′=Ma 又F =F ′联立解得线框进入磁场前重物的加速度 a =Mg -mg sin αM +m=5 m/s 2.(2)因为线框进入磁场的最初一段时间做匀速运动,则重物受力平衡:Mg =F 1 线框abcd 受力平衡:F 1′=mg sin α+F 安又F 1=F 1′ab 边进入磁场切割磁感线,产生的感应电动势 E =Bl 1v回路中的感应电流为I =E R =Bl 1vR ab 边受到的安培力为F 安=BIl 1 联立解得Mg =mg sin α+B 2l 21vR 代入数据解得v =6 m/s.(3)线框abcd 进入磁场前,做匀加速直线运动;进磁场的过程中,做匀速直线运动;进入磁场后到运动至gh 处,仍做匀加速直线运动.进磁场前线框的加速度大小与重物的加速度大小相同,为a =5 m/s 2,该阶段的运动时间为t 1=va =1.2 s进入磁场过程中匀速运动的时间t 2=l 2v =0.1 s线框完全进入磁场后的受力情况同进入磁场前的受力情况相同,所以该阶段的加速度仍为a =5 m/s 2由匀变速直线运动的规律得s -l 2=v t 3+12at 23 解得t 3=1.2 s因此ab 边由静止开始运动到gh 处所用的时间 t =t 1+t 2+t 3=2.5 s.(4)线框ab 边运动到gh 处的速度 v ′=v +at 3=6 m/s +5×1.2 m/s =12 m/s 整个运动过程产生的焦耳热 Q =F 安l =(Mg -mg sin α)l 2=9 J. 答案 (1)5 m/s 2 (2)6 m/s (3)2.5 s (4)12 m/s 9 J1.解决电磁感应图象问题的“三点关注”(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程分为几个阶段,这几个阶段是否和图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲、直是否和物理过程对应. 2.解决电磁感应图象问题的一般步骤:(1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等.(2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式.(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等.(6)画图象或判断图象.。
新教材2024高考物理二轮专题复习第一编专题复习攻略专题四电路与电磁感应第11讲电磁感应规律及其应用
第11讲电磁感应规律及其应用知识网络构建命题分类剖析命题点一楞次定律和法拉第电磁感应定律的应用1.感应电流方向的判断方法情境图3.感应电荷量的计算磁通量变化迁移的电荷量:q=IΔt=ERΔt=nΔΦRΔtΔt=nΔΦR,q仅由回路电阻R和磁通量的变化量ΔΦ决定.考向1 楞次定律的应用例 1[2023·海南卷]汽车测速利用了电磁感应现象,汽车可简化为一个矩形线圈abcd,埋在地下的线圈分别为1、2,通上顺时针(俯视)方向电流,当汽车经过线圈时( )A.线圈1、2产生的磁场方向竖直向上B.汽车进入线圈1过程产生感应电流方向为abcdC.汽车离开线圈1过程产生感应电流方向为abcdD.汽车进入线圈2过程受到的安培力方向与速度方向相同考向2 法拉第电磁感应定律的应用例 2[2023·天津卷]如图,有一正方形线框静止悬挂着,其质量为m、电阻为R、边长为l.空间中有一个三角形磁场区域,其磁感应强度大小为B=kt(k>0),方向垂直于线框所在平面向里,且线框中磁场区域的面积为线框面积的一半,已知重力加速度为g,求:(1)感应电动势E;(2)线框开始向上运动的时刻t0.例 3[2023·山东卷](多选)足够长U形导轨平置在光滑水平绝缘桌面上,宽为1 m,电阻不计.质量为1 kg、长为1 m、电阻为1 Ω的导体棒MN放置在导轨上,与导轨形成矩形回路并始终接触良好,Ⅰ和Ⅱ区域内分别存在竖直方向的匀强磁场,磁感应强度分别为B1和B2,其中B1=2 T,方向向下.用不可伸长的轻绳跨过固定轻滑轮将导轨CD段中点与质量为0.1 kg的重物相连,绳与CD垂直且平行于桌面.如图所示,某时刻MN、CD同时分别进入磁场区域Ⅰ和Ⅱ并做匀速直线运动,MN、CD与磁场边界平行.MN的速度v1=2 m/s,CD 的速度为v2且v2>v1,MN和导轨间的动摩擦因数为0.2.重力加速度大小取10 m/s2,下列说法正确的是( )A.B2的方向向上 B.B2的方向向下C.v2=5 m/s D.v2=3 m/s提升训练1.[2023·全国甲卷](多选)一有机玻璃管竖直放在水平地面上,管上有漆包线绕成的线圈,线圈的两端与电流传感器相连,线圈在玻璃管上部的5匝均匀分布,下部的3匝也均匀分布,下部相邻两匝间的距离大于上部相邻两匝间的距离.如图(a)所示.现让一个很小的强磁体在玻璃管内沿轴线从上端口由静止下落,电流传感器测得线圈中电流I随时间t的变化如图(b)所示.则( )A.小磁体在玻璃管内下降速度越来越快B.下落过程中,小磁体的N极、S极上下颠倒了8次C.下落过程中,小磁体受到的电磁阻力始终保持不变D.与上部相比,小磁体通过线圈下部的过程中,磁通量变化率的最大值更大2.[2023·浙江1月]如图甲所示,一导体杆用两条等长细导线悬挂于水平轴OO′,接入电阻R构成回路.导体杆处于竖直向上的匀强磁场中,将导体杆从竖直位置拉开小角度θ静止释放,导体杆开始下摆.当R=R0时,导体杆振动图像如图乙所示.若横纵坐标皆采用图乙标度,则当R=2R0时,导体杆振动图像是( )3.[2023·辽宁省沈阳市监测一](多选)有界匀强磁场磁感应强度为B ,有一半径为R 的线圈,其单位长度上的电阻为r ,线圈直径MN 垂直磁场边界于M 点,现以M 点为轴在纸面内,沿顺时针方向匀速旋转90°,角速度为ω,则( )A .感应电流方向为顺时针方向B .感应电动势的最大值为BR 2ωC .感应电流的最大值为2BR 2ωrD .通过导体任意横截面的电量为BR 4r命题点二 电磁感应中图像或电路问题1.掌握两个技法,快速解答图像问题2.三个关注考向1 电磁感应中的图像例 1[2023·山东省菏泽市三模]如图所示,MNQP是边长为L和2L的矩形,在其由对角线划分的两个三角形区域内充满磁感应强度大小相等、方向相反的匀强磁场.边长为L的正方形导线框,在外力作用下水平向左匀速运动,线框左边始终与MN平行.设导线框中感应电流i逆时针流向为正.若t=0时左边框与PQ重合,则左边框由PQ运动到MN的过程中,下列i-t图像正确的是( )例 2[2023·上海卷] 如图所示,有一光滑导轨处于匀强磁场中,一金属棒垂直置于导轨上,对其施加外力,安培力变化如图所示,取向右为正方向,则外力随时间变化图像为( )考向2 电磁感应中图像与电路问题的数型结合例 3 (多选)如图甲所示,足够长的两平行金属导轨ab、cd固定在同一水平面上,导体间距为0.5 m,导轨左边接有定值电阻R0和电阻箱R;导轨间存在磁感应强度大小为0.8 T、方向垂直纸面向里的匀强磁场.一质量为0.5 kg、长为0.5 m、内阻不计的金属棒MN放置在导轨上,在水平向右的恒力F作用下金属棒由静止开始运动,金属棒始终与导轨垂直且接−触良好.多次改变电阻箱的阻值R,测得金属棒对应的最大速度v m,绘制出如图乙所示的1v m1图像.已知金属棒与导轨间的动摩擦因数为0.2,取g=10 m/s2.下列说法正确的是( ) RA.R0中感应电流方向由c指向aB.R0=2 ΩC.恒力F=1.4 ND.若R=2 Ω,则R0在1 s内产生的最大焦耳热为1 J思维提升图例[提醒] 分析磁通量时,一是注意回路中的有效面积;二是注意有效面积内磁场方向是否单一.图例提升训练1.[2023·江苏省八市训练]如图所示,两根光滑平行金属长导轨MN、PQ水平固定放置,导轨间存在竖直向上的匀强磁场,两根完全相同的金属棒ab、cd垂直放置在导轨上,两金属棒的长度恰好等于金属导轨的间距,t=0时刻对金属棒cd施加一个水平向右的恒力F,此后两金属棒由静止开始运动,金属棒在运动过程中始终与导轨接触良好,两金属棒的速度大小分别记为v a、v c,加速度大小分别记为v a、v c,金属棒cd两端电压记为U cd,闭合回路消耗的电功率记为P,电路中除金属棒以外的电阻均不计,下列关于图像错误的是( )2.[2023·珠海模拟]匝数N=1 000、面积S=20 cm2、电阻r=1 Ω的线圈水平放置,匀强磁场B1竖直向下穿过线圈,其磁感应强度B1按如图所示的规律变化,线圈两端分别连接两根完全相同的劲度系数为k=100 N/m、电阻为R=1.5 Ω的金属弹簧,两金属弹簧上端固定在水平天花板上,下端悬挂一根水平金属棒,另有一水平匀强磁场B2垂直金属棒分布(如图所示).其磁场宽度为L=10 cm.闭合开关后,两弹簧的长度均变化了Δx=0.5 cm.导线和金属棒的电阻不计,求:(1)闭合开关后,通过金属棒的电流大小;(2)磁感应强度B2的大小.命题点三电磁感应规律的综合应用1.电磁感应综合问题的解题思路2.与动量定理结合在电磁感应中可用动量定理求变力的作用时间、速度、位移和电荷量(一般应用于单杆切割磁感线运动).(1)求速度或电荷量:-B I lΔt=mv2-mv1,q=IΔt.(2)求时间:FΔt+I A=mv2-mv1,I A=-B I lΔt=-BlΔΦR总.(3)求位移:-B I lΔt=-B 2l2v̅ΔtR总=mv2-mv1,即-B 2l2R总x=m(v2-v1).3.与动量守恒定律的结合相互平行的水平轨道间的双棒做切割磁感线运动问题,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒,解决此类问题往往要应用动量守恒定律.考向1 电磁感应中的动力学问题例 1[2023·上海卷]如图(a),线框cdef位于倾斜角θ=30°的斜面上,斜面上有一长度为D的单匝矩形磁场区域,磁场方向垂直于斜面向上,大小为0.5 T,已知线框边长cd =D=0.4 m,m=0.1 kg,总电阻R=0.25 Ω,现对线框施加一沿斜面向上的力F使之运动.斜面上动摩擦因数μ=√33,线框速度随时间变化如图(b)所示.(重力加速度g取9.8 m/s2)(1)求外力F大小;(2)求cf长度L;(3)求回路产生的焦耳热Q.考向2 电磁感应中的能量问题例 2 如图所示,光滑绝缘斜面的倾角为θ=30°,斜面上有两个匀强磁场区域Ⅰ和Ⅱ,其宽度均为l=0.2 m,磁感应强度大小均为B=1 T,磁场方向分别为垂直斜面向上和垂直斜面向下.斜面上放一质量为M=0.6 kg、电阻为R=0.5 Ω的矩形导线框abcd,其ab边长为d=0.4 m、bc边长为l=0.2 m,通过细绳绕过光滑的定滑轮与一质量为m=0.2 kg的重物相连,连接线框的细绳与线框共面,滑轮和绳的质量均不计,ab边距磁场区域Ⅰ的上边界为2l,开始时各段绳都处于伸直状态,现将它们由静止释放,线框沿斜面向下运动,ab边刚穿过两磁场的分界线OO′进入磁场区域Ⅱ时,线框恰好做匀速运动(细绳始终处于拉紧状态),不计摩擦,忽略磁场边界效应,重力加速度g=10 m/s2.求:(计算结果保留2位小数)(1)ab边刚进入磁场区域Ⅰ时线框的加速度大小;(2)线框ab边在磁场区域Ⅱ中运动的过程中,线框重力的功率P;(3)从开始释放到ab边刚穿过磁场区域Ⅱ的过程中,线框中产生的焦耳热Q.考向3 电磁感应中的动量问题例 3[2023·全国甲卷]如图,水平桌面上固定一光滑U型金属导轨,其平行部分的间距为l,导轨的最右端与桌子右边缘对齐,导轨的电阻忽略不计.导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为B.一质量为m、电阻为R、长度也为l的金属棒P静止在导轨上.导轨上质量为3m的绝缘棒Q位于P的左侧,以大小为v0的速度向P运动并与P发生弹性碰撞,碰撞时间很短.碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点.P在导轨上运动时,两端与导轨接触良好,P与Q始终平行.不计空气阻力.求(1)金属棒P滑出导轨时的速度大小;(2)金属棒P在导轨上运动过程中产生的热量;(3)与P碰撞后,绝缘棒Q在导轨上运动的时间.提升训练1.[2023·湖南卷]如图,两根足够长的光滑金属直导轨平行放置,导轨间距为L,两导轨及其所构成的平面均与水平面成θ角,整个装置处于垂直于导轨平面斜向上的匀强磁场中,磁感应强度大小为B.现将质量均为m的金属棒a、b垂直导轨放置,每根金属棒接入导轨之间的电阻均为R.运动过程中金属棒与导轨始终垂直且接触良好,金属棒始终未滑出导轨,导轨电阻忽略不计,重力加速度为g.(1)先保持棒b静止,将棒a由静止释放,求棒a匀速运动时的速度大小v0;(2)在(1)问中,当棒a匀速运动时,再将棒b由静止释放,求释放瞬间棒b的加速度大小a0;(3)在(2)问中,从棒b释放瞬间开始计时,经过时间t0,两棒恰好达到相同的速度v,求速度v的大小,以及时间t0内棒a相对于棒b运动的距离Δx.2.[2023·广东模拟预测]如图甲所示,水平面内固定两根平行的足够长的光滑轨道,轨道间距L=0.4 m,其中在E、F、G、H四点附近的轨道由绝缘材料制成,这四段绝缘轨道的长度非常短,其余轨道由金属材料制成,金属轨道的电阻不计,在右侧两轨道之间连接一个阻值R=1.5 Ω的定值电阻.在矩形区域MNQP中存在竖直向上的磁场,记M点所在位置为坐标原点,沿MP方向建立x坐标轴,磁感应强度的大小随位置的变化如图乙所示,图中B0=2.5 T.现有一总质量m=0.1 kg的“工”字形“联动双棒”(由两根长度略长于L的平行金属棒ab和cd,用长度为L的刚性绝缘棒连接构成,棒的电阻均为r=0.5 Ω),以初速度v0=8 m/s沿x轴正方向运动,运动过程中棒与导轨保持垂直,最终静止于轨道上,忽略磁场边界效应.求(1)棒ab刚进入磁场时,流经棒ab的电流的大小和方向;(2)棒ab在EF处的速度大小v1和在GH处时的速度大小v2;(3)电阻R上产生的焦耳热.素养培优·情境命题电磁感应规律在生活、生产和科技中的应用情境1 “自发电”门铃开关[典例1] [2023·广东茂名统考二模]市场上某款“自发电”门铃开关的原理如图所示.在按下门铃按钮过程中,夹着永磁铁的铁块向下移动,改变了与“E”形铁芯接触的位置,使得通过线圈的磁场发生改变.松开门铃按钮后,弹簧可使之复位(与a、b连接的外电路未画出).由此可判断( )A.未按下按钮时,线圈a、b两点间存在电势差B.按下按钮过程中,线圈中感应电流始终由b经线圈流向aC.按钮复位过程中,线圈中的磁通量一直减小D.按下按钮过程与松开复位过程中,a点的电势始终高于b点情境2 磁力刹车系统[典例2](多选)高速铁路列车通常使用磁力刹车系统.磁力刹车工作原理可简述如下:将磁铁的N极靠近一块正在以逆时针方向旋转的圆形铝盘,使磁感线垂直铝盘向内,铝盘随即减速,如图所示.图中磁铁左方铝盘的甲区域(虚线区域)朝磁铁方向运动,磁铁右方铝盘的乙区域(虚线区域)朝离开磁铁方向运动.下列有关铝盘刹车的说法正确的是( ) A.铝盘甲区域的感应电流产生垂直铝盘向外的磁场B.铝盘乙区域的感应电流产生垂直铝盘向外的磁场C.磁铁与感应电流之间的作用力,会使铝盘减速D.若将实心铝盘换成布满小空洞的铝盘,则磁铁对空洞铝盘所产生的减速效果与实心铝盘相同情境3 磁悬浮列车[典例3] (多选)2022年9月20日在德国柏林国际轨道交通技术展览会上中国具有完全自主知识产权的时速600公里高速磁浮交通系统首次在欧洲亮相,引起了世界各国广泛关注.超导磁悬浮列车的原理可以简化为如图所示模式:在水平面上相距L的两根固定平行直导轨间,有大小为B、宽都是L的匀强磁场,相邻磁场区域的磁场方向相反.整个磁场以速度v 水平向右匀速运动,跨在两导轨间的边长为L 的正方形n 匝线圈abcd 悬浮在导轨上方,在磁场力作用下向右运动,并逐渐达到最大速度v m .当超导磁悬浮列车制动时,所有磁场立即停止,线圈继续运动NL 停下来(N 为整数).设线圈的总电阻为R ,总质量为m ,运动中所受到的阻力大小恒为f .则( )A .线圈最大速度v m =v -fRn 2B 2L 2 B .制动过程受到的安培力为4nB 2L 2(v−v m )RC .制动过程线圈产生的焦耳热为12mv m 2-fNLD .制动过程通过线圈横截面的电荷量可能为2nBL 23R情境4 电磁缓冲装置[典例4] 随着航空领域的发展,实现火箭回收利用,成为了各国都在重点突破的技术.其中有一技术难题是回收时如何减缓对地的碰撞,为此设计师在返回火箭的底盘安装了电磁缓冲装置.该装置的主要部件有两部分:①缓冲滑块,由高强绝缘材料制成,其内部边缘绕有闭合单匝矩形线圈abdc ;②火箭主体,包括绝缘光滑缓冲轨道MN 、PQ 和超导线圈(图中未画出),超导线圈能产生方向为垂直于整个缓冲轨道平面的匀强磁场.当缓冲滑块接触地面时,滑块立即停止运动,此后线圈与火箭主体中的磁场相互作用,火箭主体一直做减速运动直至达到软着陆要求的速度,从而实现缓冲.现已知缓冲滑块竖直向下撞向地面时,火箭主体的速度大小为v 0,经过时间t 火箭着陆,速度恰好为零;线圈abdc 的电阻为R ,其余电阻忽略不计;ab 边长为l ,火箭主体质量为m ,匀强磁场的磁感应强度大小为B ,重力加速度为g ,一切摩擦阻力不计,求:(1)缓冲滑块刚停止运动时,线圈产生的电动势;(2)缓冲滑块刚停止运动时,火箭主体的加速度大小;(3)火箭主体的速度从v 0减到零的过程中系统产生的电能.第11讲 电磁感应规律及其应用命题分类剖析命题点一[例1] 解析:由右手螺旋定则可知,线圈1、2形成的磁场方向都是竖直向下的,A 错;汽车进入线圈1时,线圈abcd 中向下的磁通量增大,由楞次定律可判断,线圈abcd 中的感应电流方向与线圈1反向,是逆时针,即感应电流方向为adcb ,同理,汽车离开线圈1时,线圈abcd 中向下的磁通量减小,线圈abcd 中的感应电流方向是顺时针,即感应电流方向为abcd ,故B 错,C 对;安培力为阻力,与速度方向相反,D 错.答案:C[例2] 解析:(1)根据法拉第电磁感应定律有E =n ΔΦΔt又n =1,ΔΦΔt=ΔB Δt·S =kS ,S =l 22解得E =kl 22(2)根据闭合电路欧姆定律可知线框中的感应电流为I =ER结合安培力的公式和题图可知线框受到的安培力为F A =BIl 又B =kt (k >0)联立可得线框受到的安培力为F A =k 2l 3t 2R当线框开始向上运动时,有k 2l 3t 02R=mg解得t 0=2mgRk 2l 3 答案:(1)kl 22 (2)2mgRk 2l 3[例3] 解析:导轨的速度v 2>v 1,因此对导体棒受力分析可知导体棒受到向右的摩擦力以及向左的安培力,摩擦力大小为f =μmg =2 N导体棒的安培力大小为F 1=f =2 N由左手定则可知导体棒的电流方向为N →M →D →C →N ,导体框受到向左的摩擦力,向右的拉力和向右的安培力,安培力大小为F 2=f -m 0g =1 N由左手定则可知B 2的方向为垂直纸面向里,A 错误,B 正确; 对导体棒分析F 1=B 1IL 对导体框分析F 2=B 2IL电路中的电流为I =B 1Lv 1−B 2Lv 2r联立解得v 2=3 m/sC 错误,D 正确;故选BD. 答案:BD [提升训练]1.解析:电流的峰值越来越大,即小磁体在依次穿过每个线圈的过程中磁通量的变化率越来越快,因此小磁体的速度越来越大,A 正确;下落过程中,小磁体在水平方向受的合力为零,故小磁体的N 极、S 极上下没有颠倒,B 错误;线圈可等效为条形磁铁,线圈的电流越大则磁性越强,因此电流的大小是变化的.小磁体受到的电磁阻力是变化的,不是一直不变的,C 错误;由图(b)可知,与上部相比,小磁体通过线圈下部的过程中,感应电流的最大值更大,故磁通量变化率的最大值更大,D 正确.故选AD. 答案:AD2.解析:导体杆摆动时切割磁感线,产生感应电流,受安培力,安培力起阻力作用,故导体杆的振动为阻尼振动.由垂直于磁感线方向的速度大小相同时电阻变大→电流变小→安培力(阻力)变小可知,当R 从R 0变为2R 0时,导体杆振幅的衰减速度变慢,B 正确,ACD 错误.答案:B3.解析:根据楞次定律,感应电流产生的磁场总要阻碍原磁通量的变化,可知在线圈转动的过程中通过线圈的磁通量减小,由此可知感应电流应为顺时针方向,故A 正确;当转过90°时的瞬间感应电动势最大,此时切割磁感线的有效长度最大,为圆形线圈的直径,由此可得感应电动势的最大值为E m =12B (2R )2ω=2BR 2ω,根据闭合电路的欧姆定律可知感应电流的最大值为I m =E mR 总=2BR 2ω2πRr =BR ωπr,故BC 错误; 通过导体任意横截面的电量为q =ΔΦR 总=12πR 2B 2πRr=RB4r ,故D 正确.答案:AD 命题点二[例1] 解析:0~t 1内是线框的左边框由PQ 向左进入磁场,根据右手定则知感应电流为顺时针(负),而切割磁感线的有效长度随着水平位移的增大而均匀减小,则感应电流的大小均匀减小;t 1~2t 1内,线框的前后双边同向同速切割相反的磁场,双源相加为总电动势,电流方向为逆时针(正),两边的有效长度之和等于L ,则电流大小恒定.故选D. 答案:D[例2] 解析:由部分导线切割磁感线产生感应电动势:E =BLv 可知金属棒所受安培力为:F A =BIL =B 2L 2R+rv, 再由F A - t 图像可知,安培力与时间为线性关系可知:金属棒先做向右的匀减速,再做向左的匀加速直线运动,由牛顿第二定律:安培力与外力的合力为定值,即外力随时间线性变化,由F A -t 图像可知:在0~t 0时间安培力为负值,方向向左,由左手定则和右手定则可知,金属棒向右做减速运动,在t 0~2t 0时间内安培力为正值从零逐渐增加,方向向右,同理可知,金属棒向左做初速度为零的匀加速直线运动,加速度不变,则在t 0时刻,合力向左,但F A =0,所以外力为负值不等于零,方向向左.故ABD 错误,C 正确.答案:C[例3] 解析:由右手定则判断可知,金属棒中感应电流方向由N 指向M ,R 0中感应电流方向由a 指向c ,选项A 错误;金属棒受到的滑动摩擦力方向水平向左,大小为f =μmg =1 N ,由左手定则判断可知,金属棒所受的安培力方向向左,金属棒速度达到最大后开始做匀速直线运动,由受力平衡有F -f =BIL ,根据闭合电路欧姆定律有I =BLv m R 总,R 总=RRR+R 0,整理得F -f =B 2L 2(1R+1R 0)v m ,变形得1v m=B 2L 2F−f ·1R +B 2L 2(F−f )R 0,则B 2L 2F−f =0.4−0.20.5(Ω·s·m -1),B 2L 2(F−f )R 0=0.2(s·m -1),代入数据解得F =1.4 N ,R 0=2 Ω,选项B 、C 正确;由图乙知,R=2 Ω时,v m =2.5 m/s ,R 总=RR 0R+R 0=1 Ω,I =BLv m R 总=1 A ,R 0在1 s 内产生的最大焦耳热为(12I )2R 0t =0.5 J ,选项D 错误.答案:BC [提升训练] 1.解析:金属棒cd 在恒力F 作用下由静止开始加速,此时金属棒ab ,cd 加速度a a =0,a c =Fm ,之后回路中出现感应电流,金属棒cd 受到的安培力与恒力F 反向,金属棒cd 的加速度减小,金属棒ab 在安培力作用下开始加速,金属棒cd 与金属棒ab 的速度差逐渐增大,回路中的电动势逐渐增大,安培力F 安=B 2L 2(v c −v a )2R逐渐增大,金属棒cd 加速度减小,金属棒ab 加速度增大,当a a =a c 时,v c -v a 不再变化,回路中的电流不再变化,但是两金属棒的速度仍在增大,故A 正确,与题意不符;B 错误,与题意相符;设两金属棒电阻均为R ,系统达到稳定之前U cd =BLv a +IR ,随时间逐渐增大,系统达到稳定后,因回路中电流不变,则U cd =BLv c -IR ,U cd 随着v c 的增加而均匀增加,故C 正确,与题意不符;闭合回路消耗的电功率P =2I 2R ,在开始阶段随回路中电流的增大,电功率逐渐增大,当系统稳定后回路中电流不变,电功率不再变化,故D 正确,与题意不符.故选B.答案:B2.解析:(1)根据法拉第电磁感应定律可得E =NΔΦΔt=N ΔB1Δt ·S其中,由图可知ΔB 1Δt=5 T/s代入得E =10 V由闭合电路欧姆定律可得I =E r+2R代入数据得I =2.5 A ; (2)安培力为F 安=B 2IL 弹簧弹力F 弹=k Δx对金属棒受力分析,由受力平衡得B 2IL =2k Δx 代入数据,得B 2=4 T. 答案:(1)2.5 A (2)4 T 命题点三[例1] 解析:(1)由v -t 图像可得:a =ΔvΔt =2.0 m0.4 s 2=5 m/s 2对导线框受力分析可得:F -mg sin θ-μmg cos θ=ma 代入数据联立解得:F =1.48 N(2)由v -t 图像可知线框cf 边进磁场时开始匀速直线运动,可得:F =mg sin θ+μmg cos θ+BIL由法拉第电磁感应定律,得线框产生的感应电动势为E =BLv由闭合电路欧姆定律,得线框产生的感应电流为I =ER ,得:I =BLv R代入数据联立解得:L =0.5 m ,I =2 A(3)线框匀速切割穿过磁场,产生的焦耳热就等于克服安培力所做的功:Q =W 克安=F 安·2D =BIL ·2D =0.5×2×0.5×2×0.4 J=0.4 J答案:(1)1.48 N (2)0.5 m (3)0.4 J[例2] 解析:(1)线框的ab 边刚进入磁场区域Ⅰ时,根据机械能守恒定律有2Mgl sinθ-2mgl =12(M +m )v 12线框的ab 边刚进入区域Ⅰ时,感应电流I =Bdv 1R由牛顿第二定律有Mg sin θ-BId -T =Ma ,T -mg =ma联立解得a =0.85 m/s 2(2)设ab 边刚进入磁场区域Ⅱ时线框的速度为v 2,则对应的感应电流I ′=2Bdv 2R对线框有Mg sin θ=2BI ′d +T ′,又T ′=mg 线框重力的功率P =Mg sin θ·v 2 联立解得P =2.34 W(3)从线框开始释放到ab 边刚穿过磁场区域Ⅱ的过程中,根据能量守恒定律有4Mgl sin θ-4mgl =Q +12(M +m )v 22,解得Q =0.56 J.答案:(1)0.85 m/s 2(2)2.34 W (3)0.56 J[例3] 解析:(1)由于绝缘棒Q 与金属棒P 发生弹性碰撞,根据动量守恒和机械能守恒可得3mv 0=3mv Q +mv P12×3mv 02=12×3mv Q 2+12mv P 2联立解得v P =32v 0,v Q =12v 0由题知,碰撞一次后,P 和Q 先后从导轨的最右端滑出导轨,并落在地面上同一地点,则金属棒P 滑出导轨时的速度大小为v ′P =v Q =12v 0(2)根据能量守恒有12mv P 2=12mv P ′2+Q 解得Q =mv 02(3)P 、Q 碰撞后,对金属棒P 分析,根据动量定理得-B I lΔt =mv ′P -mv P 又q =I Δt ,I =E ̅R=ΔΦR Δt=Blx R Δt联立可得x =mv 0RB 2l 2由于Q 为绝缘棒,无电流通过,做匀速直线运动,故Q 运动的时间为t =xv Q=2mRB 2l 2答案:(1)12v 0 (2)mv 02(3)2mR B 2l 2[提升训练]1.解析:(1)a 导体棒在运动过程中重力沿斜面的分力和a 棒的安培力相等时做匀速运动,由法拉第电磁感应定律可得E =BLv 0由闭合电路欧姆定律及安培力公式可得I =E2R ,F =BILa 棒受力平衡可得mg sin θ=BIL联立解得v 0=2mgR sin θB 2L 2(2)由右手定则可知导体棒b 中电流向里,b 棒受沿斜面向下的安培力,此时电路中电流不变,则对b 棒,根据牛顿第二定律可得mg sin θ+BIL =ma 0解得a 0=2g sin θ(3)释放b 棒后a 棒受到沿斜面向上的安培力,在到达共速时对a 棒,由动量定理得mgsin θt 0-B I Lt 0=mv -mv 0 b 棒受到向下的安培力,对b 棒,由动量定理得mg sin θt 0+B I Lt 0=mv 联立解得v =g sin θ·t 0+v02此过程流过b 棒的电荷量为q ,则有q =I t0 由法拉第电磁感应定律可得 I =E2R =12RBL Δxt 0联立b 棒动量定理可得Δx =mv 0R B 2L 2答案:(1)2mgR sin θB 2L 2(2)2g sin θ (3)g sin θt 0+v02mv 0R B 2L 22.解析:(1)当ab 棒刚进入磁场时产生的感应电动势为E =B 0Lv 由欧姆定律I =E2r解得I =8 A由右手定则可知,电流方向为acdba ;(2)当ab 棒进入磁场后,到ab 棒到达EF 处的过程中,由动量定理可得-F ̅安t =mv 1-。
高三物理新课标电磁感应规律及其应用复习题(含答案)
高三物理新课标电磁感应规律及其应用复习题(含答案)电磁感应现象是指放在变化磁通量中的导体,会发生电动势,以下是电磁感应规律及其运用温习题,请考生练习。
一、选择题(共8小题,每题5分,共40分。
在每题给出的四个选项中,第1~5题只要一项契合6~8题有多项契合标题要求,全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.有一个磁悬浮玩具,其原理是应用电磁铁发生磁性,让具有磁性的玩偶动摇地飘浮起来,其结构如下图。
假定图中电源的电压恒定,可变电阻为一可随意改动电阻大小的装置,那么以下表达正确的选项是()A.电路中的电源必需是交流电源B.电路中的a端须衔接直流电源的负极C.假定添加盘绕软铁的线圈匝数,可添加玩偶飘浮的最大高度D.假定将可变电阻的电阻值调大,可添加玩偶飘浮的最大高度2.如下图,一导线弯成直径为d的半圆形闭合回路。
虚线MN 右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面。
回路以速度v向右匀速进入磁场,直径CD一直与MN 垂直。
从D点抵达边界末尾到C点进入磁场为止,以下说法中正确的选项是()A.感应电流方向为顺时针方向B.CD段直导线一直不受安培力C.感应电动势的最大值E = BdvD.感应电动势的平均值=Bdv3. (2021唐山一模)如下图,一呈半正弦外形的闭合线框abc,ac=l,匀速穿过边界宽度也为l的相邻磁感应强度大小相反的匀强磁场区域,整个进程中线框中感应电流图象为(取顺时针方向为正方向)()4.如下图,有一闭合的等腰直角三角形导线ABC。
假定让它沿BA的方向匀速经过有清楚边界的匀强磁场(场区宽度大于直角边长),以逆时针方向为正,从图示位置末尾计时,在整个进程中,线框内的感应电流随时间变化的图象是图中的()5.(2021长春质量监测)如下图,用一根横截面积为S的粗细平均的硬导线R的圆环,把圆环一半置于平均变化的磁场中,磁场方向垂直纸面向外,磁感应强度大小随时间的变化率=k(k0),ab为圆环的一条直径,导线的电阻率为,那么以下说法中正确的选项是()A.圆环具有扩张的趋向B.圆环中发生逆时针方向的感应电流C.图中ab两点间的电压大小为kR2D.圆环中感应电流的大小为6.如下图的正方形导线框abcd,电阻为R,现维持线框以恒定速度v沿x轴运动,并穿过图中所示的匀强磁场区域。
2022年高考物理二轮复习专题六电路和电磁感应 第11讲 电磁感应规律及其应用
【解析】选B。当左侧线圈中通有不断增大的顺时针方向的电流时,穿过右侧线圈的磁通量向 右,且增大,根据楞次定律,右侧线圈中产生逆时针方向的电流,即使有金属片通过时,接收线 圈中的感应电流方向仍然为逆时针,故A、C错误;通电线圈中存在顺时针方向均匀增大的电流, 则通电线圈中的磁通量均匀增大,所以穿过右侧线圈中的磁通量均匀增大,则磁通量的变化率是 定值,由法拉第电磁感应定律可知,接收线圈中的感应电流不变,故B正确;有金属片通过时, 则穿过金属片中的磁通量发生变化时,金属片中也会产生感应电流,感应电流的方向与接收线圈 中的感应电流的方向相同,所以也会将该空间中的磁场的变化削弱一些,引起接收线圈中的感应 电流大小发生变化,故D错误。
2.(多选)(2021·济南一模)如图所示,足够长的水平金属导轨MN、PQ放在竖直向上 的匀强磁场中,金属杆ab在水平恒力F作用下由静止开始向右运动,水平导轨光滑, 除电阻R外,其他电阻不计。运动过程中,金属杆加速度大小a、速度大小v、力F的 冲量I随时间变化的规律正确的是( )
高频考向二 电磁感应的图像问题
一、“感生”类的两类图像
分类
图例
分析
B-t 图像
(1)可得到各时刻磁感应强度的大小和方向。 (2)根据斜率ΔΔBt 可分析感应电动势的大小和方 向。
分类
图例
分析
Φ-t 图像
(1)可得到各时刻磁通量的大小和方向。 (2)根据斜率ΔΔBt 可分析感应电动势的大小和方 向。
【典例1】中,若磁场B=8 T且保持恒定不变,以速度v=0.5 m/s将电路从磁场中 匀速拉出时,求感应电流随时间变化的关系式。 【解析】将电路从磁场中匀速拉出需要的时间t=vr =1 s。 有效切割长度l=2 r2-(vt)2 = 1-t2 (m) 所以E′=Blv=4 1-t2 (V) 根据楞次定律判断可得,感应电动势的方向与电源E的方向相反。
高考物理专题特训-电磁感应规律及其应用
所以选项 A 错误,B 正确;根据法拉第电磁感应定律
得 E=ΔΔΦt =12πr2·Bt00=B20πt0r2,根据电阻定律可得 R=
ρ2Sπr,根据欧姆定律可得 I=RE=B4t00rρS,所以选项 C 正
确,D 错误。
答案 BC
2.(多选)(2019·全国卷Ⅱ)如图 5-2-2,两条光 滑平行金属导轨固定,所在平面与水平面夹角为 θ,导 轨电阻忽略不计。虚线 ab、cd 均与导轨垂直,在 ab 与 cd 之间的区域存在垂直于导轨所在平面的匀强磁场。 将两根相同的导体棒 PQ、MN 先后自导轨上同一位置 由静止释放,两者始终与导轨垂直且接触良好。已知 PQ 进入磁场时加速度恰好为零。从 PQ 进入磁场开始 计时,到 MN 离开磁场区域为止,流过 PQ 的电流随 时间变化的图象可能正确的是
3.感应电动势大小的计算 (1)法拉第电磁感应定律:E=nΔΔΦt ,适用于普遍 情况。 (2)E=Blv,适用于导体棒平动切割磁感线的情况。 (3)E=12Bl2ω,适用于导体棒旋转切割磁感线的情 况。
[针对训练]
[楞次定律的应用] 1.(2017·全国卷Ⅲ)如图 5-2-8,在方向垂直于 纸面向里的匀强磁场中有一 U 形金属导轨,导轨平面 与磁场垂直,金属杆 PQ 置于导轨上并与导轨形成闭 合回路 PQRS,一圆环形金属线框 T 位于回路围成的 区域内,线框与导轨共面。现让金属杆 PQ 突然向右 运动,在运动开始的瞬间,关于感应电流的方向,下 列说法正确的是
ห้องสมุดไป่ตู้
2.求感应电动势的两种方法 (1)E=nΔΔΦt ,用来计算感应电动势的平均值。 (2)E=BLv,用来计算感应电动势的瞬时值或平均值。 3.楞次定律中“阻碍”的主要表现形式 (1)阻碍原磁通量的变化——“增反减同”。 (2)阻碍相对运动——“来拒去留”。 (3)使线圈面积有扩大或缩小的趋势 ——“增缩减 扩”。 (4)阻碍原电流的变化(自感现象)——“增反减同”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理能力梯级提升思维高效练习5.11电磁感应规律及其应
用
一、单项选择题
1.如下图,一长直导线右侧放一矩形线框abcd,直导线中通有稳恒电流I,现将线框由位置1移到位置2,第一次是平移,第二次是以bc为轴翻转180°,且两次经历的时间相同,若两次线框中产生的感应电荷量分别为Q和Q′,则
()
A.Q>Q′ B.Q=Q′ C.Q<Q′ D.不能确定
2.(2017·江苏高考)如下图,固定的水平长直
导线中通有电流I,矩形线框与导线在同一竖直平面
内,且一边与导线平行,线框由静止释放,在下落
过程中()
A.穿过线框的磁通量保持不变
B.线框中感应电流方向保持不变
C.线框所受安培力的合力为零
D.线框的机械能不断增大
3.(2018·淄博模拟)如下图,等腰三角形内
分布有垂直于纸面向外的匀强磁场,它的底边在
x轴上且长为2L,高为L.纸面内一边长为L的
正方形导线框沿x轴正方向做匀速直线运动穿过匀强磁场区域,在
t=0时刻恰好位于图中所示的位置.以顺时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流—位移(I-x)关系的是()
二、多项选择题
4.如下图,E为电池,L是电阻可忽略不计、
自感系数足够大的线圈,D1、D2是两个规格
相同且额定电压足够大的灯泡,S是控制电路
的开关.对于这个电路,以下说法正确的是()
A.刚闭合开关S的瞬间,通过D1、D2的电流大小相等
B.刚闭合开关S的瞬间,通过D1、D2的电流大小不相等
C.闭合开关S待电路达到稳定,D1熄灭,D2比原来更亮
D.闭合开关S待电路达到稳定,再将S断开瞬间,D2立即熄灭,D1闪亮一下再熄灭
5.一空间有垂直纸面向里的匀强磁场B,两条电阻不计的平行光滑导轨竖直放置在磁场内,如下图,磁感应强度B=0.5 T,导体棒ab、cd长度均为0.2 m,电阻均为0.1 Ω,
重力均为0.1 N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨
接触
良好),此时cd静止不动,则ab上升时,以下说法正确的选项是()
A.ab受到的拉力大小为2 N
B.ab向上运动的速度为2 m/s
C.在2 s内,拉力做功,有0.4 J的机械能转化为电能
D.在2 s内,拉力做功为0.6 J
6.在光滑的水平地面上方,有两个磁感应强度
大小均为B、方向相反的水平匀强磁场,如图所
示,PQ为两个磁场的边界,磁场范围足够大.一
个半径为a,质量为m,电阻为R的金属圆环垂直
磁场方向,以速度v从如下图位置运动,当圆环运动到直径刚好
则以下说法正确的选项是( )
与边界线PQ重合时,圆环的速度为v
,
2
A.此时圆环中的电功率为222
4B a v
R
B.此时圆环的加速度为222
4B a v
mR
C.此过程中通过圆环截面的电量为2
Ba
R
D.此过程中回路产生的电能为2
0.75mv
三、计算题
7.(2018·南通模拟)如下图,两足够长平行
光滑的金属导轨MN、PQ相距为L,导轨平面与水
平面夹角α=30°,导轨上端跨接一定值电阻R,
导轨电阻不计.整个装置处于方向竖直向上的匀强磁场中,长为L的
金属棒cd垂直于MN、PQ放置在导轨上,且与导轨保持良好接触,金属棒的质量为m、电阻为r,重力加速度为g,现将金属棒由静止释放,当金属棒沿导轨下滑距离为s时,速度达到最大值v m.求:
(1)金属棒开始运动时的加速度大小;
(2)匀强磁场的磁感应强度大小;
(3)金属棒沿导轨下滑距离为s的过程中,电阻R上产生的电热.
8.(2017·浙江高考)如图甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的金属“U”型导轨,在“U”型导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示.在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s 的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取
g=10 m/s2).
(1)通过计算分析4 s 内导体棒的运动情况;
(2)计算4 s 内回路中电流的大小,并判断电流方向;
(3)计算4 s 内回路产生的焦耳热.
答案解析
1.【解析】选C.设线框在位置1时磁通量为Φ1,当平移到位置2时磁通量为
Φ2,则ΔΦ=Φ2-Φ1;而当翻转到位置2时,则变为框的背面向外,磁通量为
-Φ2,故ΔΦ′=-Φ2-Φ1=-(Φ2+Φ1),又E 1Q I t t t ,R t R R
∆Φ∆Φ=∆=∆=⨯⨯∆=∆ 显然|ΔΦ′|>|ΔΦ|,则Q<Q ′,C 正确.
2.【解析】选B.线框下落过程中距离直导线越来越远,磁场越来越弱,但磁场方向不变,所以磁通量越来越小,根据楞次定律可知感应电流的方向不变,A 错,B 对;线框左边和右边所受安培力总是大小相等,方向相反,但上下两边磁场强弱不同,安培力大小不同,合力不为零,C 错;下落过程中机械能越来越小,D 错.
3.【解析】选C.线框匀速穿过L 的过程中,有效长度l 均匀增加,由E=B l v 知,电动势随位移均匀变大,x=L 处电动势最大,电流I 最大;从x=L 至x=1.5L 过程中,框架两边都切割,总电动势减小,电流减小;从x=1.5L 至x=2L ,左边框切割磁感线产生感应电动势大于
右边框,故电流反向且增大;x=2L 至x=3L 过程中,只有左边框切割,有效长度l 减小,电流减小.综上所述,只有C 项符合题意.
4.【解析】选A 、C 、D.由于线圈的电阻可忽略不计、自感系数足够大,在开关闭合的瞬间线圈的阻碍作用很大,线圈中的电流为零,所以通过D 1、D 2的电流大小相等,A 正确,B 项错误;闭合开关S 待电路达到稳定时线圈短路,D 1中电流为零,回路电阻减小,D 2比原来更亮,C 项正确;闭合开关S 待电路达到稳定,再将S 断开瞬间,D 2立即熄灭,线圈和D 1形成回路,D 1闪亮一下再熄灭,故D 项正确.
5.【解析】选B 、C.对导体棒cd 分析:22B v mg BI 2R ==,l l 得v =2 m/s ,故B 正确;对导
体棒ab 分析:F =mg +BI l =0.2 N ,A 错误; 在2 s 内拉力做功转化的电能等于克服安培力做的功,即W =F 安vt=BI l vt=mgvt =0.4 J ,C 正确;在2 s 内拉力做的功为Fvt=2mgvt =0.8 J ,D 错误.
6.【解析】选A 、C.由右手定则知,当圆环运动到直径刚好与边界线PQ 重合时,两个半圆切割磁感线产生的感应电流方向都为顺时针方向,所以,回路中的感应电动势的大小E=2Bav,回路中的电流E 2Bav I ,R R ==功率2224B a v P EI ,R
==A 正确;圆环受到的安培力228B a v F 4BIa ,R ==由牛顿第二定律得22F 8B a v a ,m mR
==B 错误;圆环运动到直径刚好与
边界线PQ 重合时,通过圆环的磁通量为0,故2Ba q I t ,R R
∆Φπ=∆==
C 正确;此过程中回路产生的热量等于动能的减少量,为0.375mv 2,
D 错误.
7.【解析】(1)金属棒开始运动时的加速度大小为a ,由牛顿第二定律有
mgsin α=ma ①
解得a=gsin α=12
g
(2)设匀强磁场的磁感应强度大小为B ,则金属棒达到最大速度时产生的电动势E=BLv m cos α ②
回路中产生的感应电流E I R r
=+ ③
金属棒所受安培力F=BIL ④
cd 棒所受合外力为零时,下滑的速度达到最大,则
Fcos α=mgsin α ⑤
解得
B =
(3)设电阻R 上产生的电热为Q ,整个电路产生的电热为Q 总,则mgssin α=2m 1
mv Q 2
+总 ⑥
R Q Q R r
=+总 ⑦ 解得()
2
m mR(gs v )Q 2R r -=+ 答案:(1)1g 2
(2
(3)()2
m mR(gs v )
2R r -+
8.【解析】(1)导体棒先在无磁场区域做匀减速运动,有
-μmg=ma ,v t =v 0+at ,201x v t at 2
=+ 代入数据解得:t=1 s 时,v t =0,x=0.5 m,所以导体棒没有进入磁场区域.
导体棒在1 s 末已停止运动,以后一直保持静止,静止时离左端位置为x=0.5 m
(2)由图乙可知:前2 s 磁通量不变,回路电动势和电流分别为 E=0,I=0
后2 s 回路产生的电动势为
B E d 0.1 V
t t ∆Φ∆===∆∆l 此时回路的总长度为5 m ,因此回路的总电阻为
R=5λ=0.5 Ω
电流为E
==
I0.2 A
R
根据楞次定律,在回路中的电流方向是顺时针方向.
(3)前2 s电流为零,后2 s有恒定电流,焦耳热为
Q=I2Rt=0.04 J
答案:(1)前1 s:匀减速直线运动;后3 s:静止在离左端0.5 m的位置(2)前2 s:I=0;后2 s:I=0.2 A 电流方向是顺时针方向
(3)0.04 J。