神经网络工具箱操作
第3章基于Simulink的神经网络

这三种神经网络结构分别是: .神经网络模型预测控制(NN Predictive Controller) .反馈线性化控制(NARMA-L2 Controller) .模型参考控制(Model Reference Controller) 使用神经网络进行控制时,通常有两个步骤:系统辨识和控制设计。
*
3.2 基于Simulink的神经网络控制系统 神经网络在系统辨识和动态系统控制中已经得到了非常成功的使用。由于神经网络具有全局逼近能力,使得其在对非线性系统建模和对一般情况下的非线性控制器的实现等方而应用的比较普遍。本节将介绍三种在神经网络工具箱的控制系统模块(Control Systems)中利用Simulink实现的比较普遍的神经网络结构,它们常用于预测和控制,并已在MATLAB对应的神经网络工具箱中给出了实现。
*
在系统辨识阶段,主要任务是对需要控制的系统建立神经网络模型;在控制设计阶段,主要使用神经网络模型来设计(训练)控制器。在本节将要介绍的三种控制网络结构中,系统辨识阶段是相同的,而控制设计阶段则各不相同。 对于模型预测控制,系统模型用于预测系统未来的行为,并且找到最优的算法,用于选择控制输入,以优化未来的性能。 对于NARMA-L2(反馈线性化)控制,控制器仅仅是将系统模型进行重整。 对于模型参考控制,控制器是一个神经网络,它被训练以用于控制系统,使得系统跟踪一个参考模型,这个神经网络系统模型在控制器训练中起辅助作用。
*
1. 传输函数模块库(Transfer Functions) 用鼠标的左键双击Transfer Functions模块库的图标,便可打开如图3-2所示的传输函数模块库窗口。传输函数模块库中的任意一个模块都能够接受一个网络输入向量,并且相应地产生一个输出向量,这个输出向量的组数和输入向量相同。 图3-2 传输函数模块库窗口
matlab神经网络工具箱简介和函数及示例

目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本
第六章 神经网络工具箱的应用

n 个不同的投入组合
m 项 投 入
x11 x1 j x1n x 21 x2 j x 2 n x m 1 xmj xmn
输入层矩阵
49
在下拉菜单中选择输入层 数据矩阵向量
在下拉菜单中选择输出层 数据矩阵向量
27
在输入数据栏中出现了 u
28
点击“Simulate”选项 卡
仿真测试
在Inputs一栏中导入新的需要测试的 数据 u
点击“Simulate Network”按 钮
点击“OK”按钮
29
仿真测试结果
在“Output Data”中选 择仿真输出的网络
单击“Export”按钮
30
选择“network1_outputs”
58
如果拟合效果差可以再重 新训练神经网络模型。
调整隐藏层的神经元个数 点击下一步
59
函数拟合第七步
变量名。数据存储在变量中,在Matlab的命 令窗口中输入变量名即可显示出数据。
单击,保存结果。
60
输出权值:在command窗口敲入命令net.iw{1,1},获得当前输入层的权值。
61
输出阈值:在command窗口敲入命令net.b{1},获得当前输入层的阈值。
点击下拉菜单进行选取
默认为LEARNGDM算法 (最速下降法)
隐藏层所使用的转移函数类型
所有参数设置完成后, 单击“View”预览一下创 建的模型。
13
预览后没有问题,单击“Create”按钮,创建网络。
单击“OK”按钮,返回神经网络数据管理窗 口。
选中“Network1”选项,单击“Open”按钮, 打开神经网络框图。
神经网络工具箱nntool的使用方法(详细)

神经网络工具箱nnto ol的使用方法这是根据我个人经验整理出来的关于如何使用n n tool神经网络工具箱进行“数据训练”的方法:1. 在命令窗口键入nnto ol命令打开神经网络工具箱;2. 点击Impo rt按钮两次,分别把输入向量和目标输出加入到对应的窗口([Inputs]和[Targets])中,有两种可供选择的加入对象(点击Impo rt后可以看见),一种是把当前工作区中的某个矩阵加入,另一种是通过.mat文件读入;3. 点击[New Networ k]按钮,填入各参数:(以最常用的带一个隐层的3层神经网络为例说明,下面没有列出的参数表示使用默认值就可以了,例如Netw ork Type为默认的BP神经网络);1) InputRange――这个通过点击G et From Input下拉框选择你加入的输入向量便可自动完成。
2) Training Function——最好使用TRAINSC G,即共轭梯度法,其好处是当训练不收敛时,它会自动停止训练,而且耗时较其他算法(TRAINL M,TRAING D)少,也就是收敛很快(如果收敛的话),而且T rain Parame ters输入不多,也不用太多的技巧调整,一般指定迭代次数、结果显示频率和目标误差就可以了(详见下文)。
3) Layer 1 Number of Neurons——隐层的神经元个数,这是需要经验慢慢尝试并调整的,大致上由输入向量的维数、样本的数量和输出层(Layer2)的神经元个数决定。
4) Layer 1 T ransf er Function——一般用TAN SIG(当然也可以L OGSIG),即表示隐层输出是[-1,1]之间的实数,与LOGSIG相比范围更大。
MATLABANN工具箱实用指南

这个简洁的网络符号每一次都会被用到,向量的大小会显示在矩阵变量名字的下面。我 们希望这个符号会让你理解神经网络的结构以及与之相关的矩阵数学。
正如前面所讨论的,当特定的转移函数在一张图中被使用时,转移函数将用上面所示的 符号代替。下面是几个例子:
输入和层 我们将要讨论多层网络,所以我们需要拓展我们的符号来描述这样的网络。特别是我们 要弄清连接输入的权重矩阵和连接层的权重矩阵之间的区别。我们也要分清权重矩阵的目的 和源。 我们将把连接输入的权重矩阵成为输入权重,把来自层输出的权重矩阵称为层矩阵。进 一步说,我们在各个权重和其他网络元素中将用上标区分源(第二个标号)和目的(第一个 标号)。作为示例,我们用简化的形式重画了上面所画的单层多输入网络。 你可以看到,我们把连接输入向量 p 的权重矩阵标记为输入权重矩阵(IW1,1),第二个 标号 1 是源,第二个标号 1 是目的。同样,第一层的元素,比如偏置、网络输入和输出都有 上标 1 来表示它们属于第一层。 在下一章节,我们将用 LW 表示层权重矩阵,用 IW 表示输入权重矩阵。 你可以复习以下这一章开始的符号那一节,它把特定的网络 net 中用数学符号表示的层 权重矩阵转换成代码,如下所示: IW1,1 net. IW{1,1} 这样,你就可以写代码来得到对转移函数的网络输入了: n{1}=net.IW{1,1}*p+net.b{1} 多层神经元网络 一个网络可以有几层,每一层都有权重矩阵 W,偏置向量 b 和输出向量 a。为了区分这 些权重矩阵、输出矩阵等等,在图中的每一层,我们都为感兴趣的变量以上标的形式增加了 层数。你能够看到在下面所示的三层网络图和等式中使用层符号。
得到加权值输入求和节点。它们的和是 Wp,单行矩阵 W 和向量 p 的点乘。
【整理】Matlab神经网络工具箱介绍_2022年学习资料

Network/Data Manager-▣回X-Input Data:-零Network:-Output Data:-1输入向量X-3网络的输出向量-Target Data:-Error Data:-5神经网络模 -2目标输出向量Y-4网络的训练误差-Input Delay States:-Layer Delay St tes:-新建数据或网络-导入数据或网络-&Import.…-New...-□0pen…-◆Export. Delete-⑨Help-Close-图1图形用户界面-4/18/2019
·<step.3>建立网络-Network/Data-Create Network or Data-Man ger窗口中New.-Network Data-打开Create Network or-Name-netw rk1-Data,如右图。--Network Properties-Name:定义网络名为-Netwark Type:-Feed-forward backprop-networkl-Input data:-trai -Target data:-trainY-选择Input,/Target-Training functio :-TRAINLM-Data,设置训练函数等参-Adaption learning function:-L ARNGDM-Performance function:-MSE-数。-Number of layers: Properties for:Layer 1-·View:查看模型-Number of neurons:0-Transfer Function:-TANSIG-□View-Restore Defaults-4/ 8/2019-⑨Help-☆Create-☒Close
MATLAB神经网络工具箱的使用指南

MATLAB神经网络工具箱的使用指南引言:在当今信息时代的浪潮中,神经网络作为一种模仿人类神经系统运行方式的数学计算模型,被广泛应用于各个领域。
而MATLAB神经网络工具箱作为一款功能强大、易于使用的软件工具,成为许多科学家和工程师进行神经网络研究和应用实践的首选。
本文旨在为读者提供MATLAB神经网络工具箱的全面介绍,并指导读者如何利用其进行神经网络的搭建、训练和应用。
一、神经网络基础知识在正式介绍MATLAB神经网络工具箱之前,我们先来了解一些神经网络的基础知识。
神经网络由输入层、隐藏层和输出层组成,其中输入层接收外部输入,隐藏层进行数据转换和处理,输出层输出最终结果。
神经网络模拟人类大脑的工作原理,通过调整神经元之间的连接权重来实现对输入数据的学习和对未知数据的预测。
二、MATLAB神经网络工具箱的使用1. 环境准备在使用MATLAB神经网络工具箱之前,我们需要先安装MATLAB软件,并确保已经安装了神经网络工具箱。
安装完成后,可以通过在命令窗口输入“nntool”命令来打开神经网络工具箱界面。
2. 神经网络搭建在神经网络工具箱中,可以通过图形用户界面进行神经网络的搭建。
点击界面左上角的“New”按钮,选择“Feedforwardnet”或“Patternnet”等网络类型,并设置输入层、隐藏层和输出层的节点数。
接下来,可以通过拖拽节点和连接来构建网络。
此外,还可以使用“Layer”和“Connection”选项卡来对网络的结构和参数进行进一步设置。
3. 数据准备成功搭建神经网络后,我们需要准备用于训练和测试的数据。
MATLAB提供了丰富的数据处理函数,可以将数据从不同格式的文件中导入,或者通过代码生成。
导入数据后,可以使用数据处理工具对数据进行清洗、归一化等预处理操作,以提高神经网络的训练效果。
4. 神经网络训练数据准备完毕后,可以通过神经网络工具箱提供的训练函数对神经网络进行训练。
常用的训练函数包括“trainlm”、“traingd”、“trainrp”等,它们采用不同的优化算法来调整网络中的连接权重。
Matlab中的神经网络工具箱介绍与使用

Matlab中的神经网络工具箱介绍与使用神经网络是一种模拟人脑思维方式的计算模型,它通过由多个神经元组成的网络,学习数据的特征和规律。
在计算机科学领域,神经网络被广泛应用于模式识别、数据挖掘、图像处理等诸多领域。
Matlab作为一种功能强大的科学计算软件,提供了专门用于神经网络设计和实现的工具箱。
本文将介绍Matlab中的神经网络工具箱,并探讨其使用方法。
一、神经网络工具箱的概述Matlab中的神经网络工具箱(Neural Network Toolbox)是一款用于构建和训练神经网络的软件包。
它提供了丰富的函数和工具,可用于创建不同类型的神经网络结构,如前向神经网络、反向传播神经网络、径向基函数神经网络等。
神经网络工具箱还包括了各种训练算法和性能函数,帮助用户对神经网络进行优化和评估。
二、神经网络的构建与训练在使用神经网络工具箱前,我们需要先了解神经网络的基本结构和原理。
神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元。
输入层接受外部输入数据,通过权重和偏置项传递给隐藏层,最终输出到输出层,形成网络的输出结果。
构建神经网络的第一步是定义网络的结构,可以使用神经网络工具箱中的函数创建不同层和神经元的结构。
例如,使用feedforwardnet函数可以创建一个前向神经网络,输入参数指定了每个隐藏层的神经元数量。
然后,可以使用train函数对神经网络进行训练。
train函数可以选择不同的训练算法,如标准反向传播算法、Levenberg-Marquardt算法等。
通过设置训练参数,例如训练迭代次数和学习速率等,可以对网络进行优化。
三、神经网络的应用案例神经网络在许多领域都有广泛的应用,下面以图像分类为例,介绍如何使用神经网络工具箱来训练一个图像分类器。
首先,我们需要准备训练数据和测试数据。
训练数据通常包含一组已经标记好的图像和相应的标签。
为了方便处理,我们可以将图像转化为一维向量,并将标签转化为二进制编码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 打开MATLAB,在命令行输入nntool,将出现如下界面:
图1 神经网络工具箱主界面
其中最主要的分为6个部分:第1部分中显示的是系统的输入数据;第2部分是系统的期望输出;第3部分是网络的计算输出;第4部分是网络的误差,即2
和3之间的差异;第5部分呈现的是已经建立的神经网络实例;第6部分的两个按钮分别负责数据的导入和网络模型的建立。
2. 点击“Import”按钮,分别导入输入数据与目标输出数据(数据可从工作区导入,也可从文件导入):
图2 导入输入数据集
图3 导入期望输出数据集
导入数据后主界面的情况如下:
图4 导入数据后的情况
重要说明:神经网络的数据是以列为基本单位的,即输入与输出数据的列数必须相同,否则将报错!如果原先数据是以行为单位组织的话,可以先在MATLAB 中实现转置然后再导入,即B = A’。
3.现在需要的数据已经有了,下一步就是建立一个神经网络模型对数据集进行学习。
以下步骤以BP网络为例,首先点击“New”按钮,出现如下界面:
几个重要部分已在上图中框出:1处用于定义该神经网络的名称;2处用于选择神经网络的类型;3处用于选择网络的输入数据;4处用于确定网络的期望输出数据;5、6、7处分别对神经网络的主要机制函数进行设置;8处设置网络层数;9处用于选择各网络层(需要说明的是:第1层指的是隐含层而不是输入层),从而在10和11处可以对该层的神经元个数和传递函数进行设置;12处按钮可以用于查看当前所设置的神经网络的结构图(下附图);点击13处按钮即可生成对应的神经网络模型。
前面只是简单地介绍了各个部分的作用,具体参数应该如何设置就只有各位自行去学习相关的文献了,此处不再多言。
图6 神经网络结构预览
4.现在模型和数据都有了,下一步该进行模型的训练了。
回到主界面如下:
图7 回到主界面
选中我们刚才建立的神经网络模型,然后点击“Open”按钮,将会出现如下界面:
图8 神经网络界面
在这里主要介绍两个选项卡中的内容,一个是“Train”,另一个是“Adapt”。
点击“T rain”选项卡后做相应的设置即可进行神经网络的训练:
图9 模型主要信息设置
图10 模型具体参数设置
设置完所有信息后点击“TrainNetwork”按钮即可进行网络的训练了。
训练完成后会有一个结果信息界面,如下:
图11 训练结果反馈
5.OK,现在模型训练也结束了,那么下一步自然是要来验证我们训练的模型。
先导入验证输入和验证输出,这一步不再重提。
然后来到模型验证界面:
图12 验证数据导入后
图13 验证参数设置
红框1中设置网络的输入和验证输出;2中设置网络输出和误差情况的存储名;这些都完成之后点击“Adapt Network”后即可。
此后会出现如下的提示界面:
图14 提示界面
接下来再回到神经网络主界面如下:
图15 网络验证结果
此时界面中会多出红框所框出的两组数据,它们分别是网络的输出与对应的输出误差。
具体的数据可以通过双击它们来打开查看。
重要说明:
神经网络的输入和输出数据要求每列为一个样本,按平常的习惯可能需要转置一下。
否则可能汇报输入/输出样本数量不同的错误。
如果出现“input data size does not match net.inputs{1}.size”错误,那是因为创建神经网络是设定的输入个数与样本数据的输入个数不同而引起的,重新创建合适的神经网络即可。