第五章《分式与分式方程》单元测试卷(含答案)

合集下载

分式与分式方程单元测试题(带答案)知识讲解

分式与分式方程单元测试题(带答案)知识讲解

只供学习与交流分式与分式方程单元测试题 (满分 150分 时间 120分钟)一、选择题(每小题3分,满分30分) 1.若分式x-32有意义,则x 的取值范围是………………………………………( )A .x ≠3B .x =3C .x <3D .x >32.当a 为任何实数时,下列分式中一定有意义的一个是………………………( )A .21aa +B .11+aC .112++a aD .112++a a 3.下列各分式中,最简分式是……………………………………………………( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值……………………( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍 5.分式方程313-=+-x mx x 有增根,则m 为……………………………………( )A .0B .1C .3D .66.若xy y x =+,则yx11+的值为…………………………………………………( )A .0B .1C .-1D .27.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是………( ) A .448020480=--xx B .204480480=+-x x只供学习与交流C .420480480=+-x xD .204804480=--xx8.下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有……………()A .1个B .2个C .3个D .4个9.下列各式的约分运算中,正确的是…………………………………………( )A .326x xx = B .b ac b c a =++ C .0=++b a b a D .1=++b a b a10.把分式2222-+-+-x x x x 化简的正确结果为……………………………………( )A .482--x xB .482+-x xC .482-x xD .48222-+x x二、填空题(每小题3分,满分24分) 1.当x = 3± 时,分式35-x 没有意义. 2.已知432z y x ==,则=+--+z y x z y x 232 43. 3.xyzx y xy 61,4,13-的最简公分母是 yz x 312 .4.分式392--x x 当x 3-= 时分式的值为零.5.若关于x 的分式方程3232-=--x m x x 有增根,则m 为 3± .6.已知2+x a 与2-x b 的和等于442-x x,则a = 2 ,b = 2 .只供学习与交流7.要使15-x 与24-x 的值相等,则x = 6 .8.化简=-+-a b bb a a 1 . 三、解答题:(每题8分,共48分)1.22221106532xy x y y x ÷⋅ 2.mn nn m m m n n m -+-+--23.(22+--x x x x )24-÷x x 4.2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-a b a b a b只供学习与交流5.231341651222+-++--+-x x x x x x6.xx x x x x +-÷-+-2221112四、解方程:(每题8分,共32分)1.141-22-=x x只供学习与交流2.13132=-+--xx x3.5221332-=-x xx4.71618151+++=+++x x x x五、应用题(每题8分,共16分)1.八年级(11)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.5倍,求慢车的速度.只供学习与交流2.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.只供学习与交流只供学习与交流分式与分式方程单元测试题参考答案一、选择题(每小题3分,满分30分) 1-5 ADCBC 6-10 BCBDA二、填空题(每小题3分,满分24分)1.3±; 2.43; 3.yz x 312; 4.3-=; 5.3±. 6.2,2 . 7.6 8.1三、解答题:(每题8分,共48分)1..67102165323222yx y x x y y x =⋅⋅=解:原式只供学习与交流2..22m n m m n n m n m m n n m n m m n n m -=-+--=-+----=解:原式 3..2142)2)(2(442)2)(2()2()2(+=-⋅-+=-⋅-+--+=x x x x x x x x x x x x x x 解:原式 4..4164642233ab b a a b a b =⋅⋅-=解:原式.)3)(1(1)3)(2)(1(2)3)(2)(1()3()2()1()2)(1(1)3)(1(1)3)(2(1--=----=----+---=--+-----=x x x x x x x x x x x x x x x x x x 解:原式5.6..1)1()1)(1()1(2x x x x x x x =-+⋅-+-=解:原式 四、解方程:(每题8分,共32分)1.解:方程两边同时乘以最简公分母12-x 得4)1(2=+x①解①得1=x经检验:1=x 为原分式方程的增根. 2.解:方程两边同乘以3-x 得312-=--x x①解①得2=x经检验:2=x 为原分式方程的解.3.解:原方程可化为整式方程只供学习与交流)13(2)52(32-=-x x x解之得215=x 经检验:215=x 为原分式方程的解. 4.解:原方程可化为51617181+-+=+-+x x x x 整理后得)5)(6()6(5)7)(8()8(7+++-+=+++-+x x x x x x x x 即)5)(6(1)7)(8(1++-=++-x x x x 即)5)(6()7)(8(++=++x x x x即3011561522++=++x x x x解之得213-=x 经检验:213-=x 为原分式方程的解. 五、应用题(每题8分,共16分)1.解:设慢车的速度为x km/h ,则快车的速度为x 5.1km/h.依题意可得分式方程此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流 x x 5.11201120=-解之得40=x经检验:40=x 为所列分式方程的解. 答:慢车的速度为40km/h 。

第5章 分式与分式方程 2022-2023学年北师大版数学八年级下册综合测试(含答案)

第5章 分式与分式方程 2022-2023学年北师大版数学八年级下册综合测试(含答案)

2022-2023学年北师大版数学八年级下册第五章分式与分式方程综合测试一、单选题(共8题;共32分)1.(4分)下列等式一定成立的是( )A.=﹣B.=C.=D.=2.(4分)下列从左到右的恒等变形中,变形依据与其它三项不同的是( )A.B.2(x﹣y)=2x﹣2yC.D.a(b﹣1)=ab﹣a3.(4分)若式子有意义,则的取值范围为( )A.B.C.且D.且4.(4分)下列运算正确的是( )A.(a﹣2b)2=a2﹣4b2B.(﹣x2y)2÷(2x2y)=x2yC.÷ ×()2=﹣mD.5.(4分)关于x的方程=2+有增根,则k的值是( )A.3B.2C.-2D.﹣36.(4分)已知三个数满足,,,则的值是( )A.B.C.D.7.(4分)如果关于x的分式方程=1+ 有正整数解,且关于y的一元一次不等式组的解集为y≤a,则所有满足条件的整数a的和为( )A.8B.7C.3D.28.(4分)已知实数x、y、z满足,则的值( )A.-1B.0C.1D.2二、填空题(共4题;共16分)9.(4分)函数表达式y= 自变量x取值范围是 .10.(4分)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 (注:销售利润率=(售价—进价)÷进价)11.(4分)观察下列等式:,,将以上三个等式两边分别相加得:= + += =猜想并得出:=根据以上推理,求出分式方程的解是 .12.(4分)已知实数a,b,c满足,则 .三、解答题(共8题;共52分)13.(5分)先化简,再求值:,其中.14.(8分)解下列分式方程:(1)(4分);(2)(4分).15.(5分)解分式方程1- 晨晨的解答如下:解:去分母,得2x+2-x-3=6x化简得x= ,经检验x= 是原方程的解。

所以原方程的解是x= 。

晨晨的解答正确吗?如果不正确,写出正确的解答。

第5章 分式与分式方程 单元测试卷 2021-2022学年北师大版八年级下册数学

第5章 分式与分式方程 单元测试卷 2021-2022学年北师大版八年级下册数学

2021-2022学年北师大新版八年级下册数学《第5章分式与分式方程》单元测试卷一.选择题(共10小题,满分30分)1.把中的x与y都扩大为原来的3倍,这个代数式的值()A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍2.在代数式a+,,,,中,分式的个数是()A.2B.3C.4D.53.若分式的值为0,则x的值为()A.﹣2021B.2021C.0D.±20214.下列各分式中,是最简分式的是()A.B.C.D.5.某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.(+1)分钟D.分钟6.用换元法解方程时,若设,则原方程可化为关于y的方程是()A.2y2﹣3y+1=0B.2y2+3y+1=0C.y2﹣3y+2=0D.y2+3y+2=0 7.如果a=﹣3,b=,那么代数式的值是()A.B.C.D.8.已知﹣=3,则分式的值为()A.1B.﹣1C.D.﹣9.若关于x的分式方程的解为正数,则m的取值范围是()A.m<﹣2且m≠﹣3B.m<2且m≠﹣3C.m>﹣3且m≠﹣2D.m>﹣3且m≠210.规定一种新的运算“JQx→+∞”,其中A和B是关于x的多项式.当A的次数小于B的次数时,JQx→+∞=0;当A的次数等于B的次数时,JQx→+∞的值为A、B的最高次项的系数的商.当A的次数大于B的次数时,JQx→+∞不存在.例:JQx→+∞=0,JQx→+∞.若,则JQx→+∞的值为()A.0B.C.D.不存在二.填空题(共10小题,满分30分)11.将通分后的结果分别为.12.计算:=.13.计算:=.14.要使分式有意义,则字母x的取值范围是.15.用换元法解分式方程:,若设,则原方程可化成关于y的整式方程是.16.关于x的方程有正数解,则m取值范围是.17.一艘轮船顺水航行60km所用的时间与逆水航行40km所用时间相同,若水流速度为3km/h,则轮船在静水中的速度为km/h.18.甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,根据题意,可列方程.19.若关于x的分式方程+=有增根x=﹣2,则k的值为.20.给出下列分式:①、②、③、④,其中最简分式是(填序号).三.解答题(共7小题,满分90分)21.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x 的增大,的值(增大或减小);(2)当x>1时,随着x 的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.22.若分式有意义,求x的取值范围.23.解方程:(1)﹣=1;(2)﹣=.24.阳春三月,草长莺飞,春花烂漫,为让学生们近距离接触大自然,积累写作素材,提高写作能力.永州某中学文学社组织学生到距离学校40千米的永州植物园参观,共租用了一辆大客车和一辆小汽车,两车同时从学校出发,已知小汽车速度是大客车的1.5倍,小汽车司机小李因不留神从植物园的大门驶过,后发现路况不对,只好停下车来向路人询问,方知已经驶过植物园7千米,于是立即调头,恰好在植物园的大门口与大客车相遇,已知小李因问路而耽误了6分钟,求两车的速度分别是多少?25.(1)若A=,化简A;(2)若a满足a2﹣a=0,求A值.26.(1)计算:(﹣2)2+()0+|1−|;(2)先化简,再求值:(1﹣m+)÷,其中m=2﹣.27.已知分式,.若a是这两个分式分母的公因式,b是这两个分式的最简公分母,且,试求这两个分式的值.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:由题意,得===,∴把中的x与y都扩大为原来的3倍,这个代数式的值缩小为原来的.故选:C.2.解:在式子a+,,的分母中含有字母,都是分式,共有3个.故选:B.3.解:由题意得:x﹣2021=0且x+2021≠0,∴x=2021且x≠﹣2021,∴x的值为2021,故选:B.4.解:A、原式=,不符合题意;B、原式==x+1,不符合题意;C、原式为最简分式,符合题意;D、原式==,不符合题意.故选:C.5.解:8﹣a是1分钟后的钱,则(﹣1)为打长途电话的时间;故选:C.6.解:设,可化为2y+=3,∴2y2+1=3y,∴2y2﹣3y+1=0,故选:A.7.解:原式=(﹣)•=•=a﹣b,当a=﹣3,b=时,原式=﹣3+=﹣2,故选:D.8.解:∵﹣=3,∴y﹣x=3xy,∴原式==﹣1,故选:B.9.解:去分母得:2x﹣3(x﹣1)=﹣m,解得:x=m+3,∵关于x的分式方程的解为正数,且x≠1,∴m+3>0且m+3≠1,解得:m>﹣3且m≠﹣2,故选:C.10.解:=÷=•=,∴A的次数等于B的次数,∴JQx→+∞=,故选:C.二.填空题(共10小题,满分30分)11.解:(1)的最简公分母为12xy2,故;;.故答案为:.12.解:原式===.故答案为:.13.解:原式=•=,故答案为:.14.解:由题意得:x+4≠0,解得:x≠﹣4,故答案为:x≠﹣4.15.解:,则=,代入原方程得:+2y+3=0,方程两边同乘以y整理得:2y2+3y+1=0.故答案为:2y2+3y+1=0.16.解:去分母得:x﹣1=m+2x﹣6,解得:x=5﹣m,∵分式方程的解为正数解,∴5﹣m>0且5﹣m≠3,解得:m<5且m≠2.故答案为:m<5且m≠2.17.解:设船在静水中的速度是x千米/时.由题意得:=.解得:x=15.经检验:x=15是原方程的解.即船在静水中的速度是15千米/时.故答案为:15.18.解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:,故答案是:.19.解:+=,x+2+k(x﹣2)=6,把x=﹣2代入x+2+k(x﹣2)=6中得:﹣2+2+(﹣4k)=6,∴k=,故答案为:.20.解:,原分式不是最简分式;②,是最简分式;,原分式不是最简分式;④,是最简分式;故答案为:②④.三.解答题(共7小题,满分90分)21.解:(1)∵当x>0时随着x的增大而减小,∴随着x的增大,1+的值减小;∵当x<0时随着x的增大而减小,∵=1+,∴随着x的增大,的值减小,故答案为:减小,减小;(2)∵==2+,∵当x>1时,的值无限接近0,∴的值无限接近2;(3)∵==5+,又∵0≤x≤2,∴﹣13≤≤﹣,∴﹣8≤≤.22.解:∵,∴x+2≠0且x+4≠0且x+3≠0解得x≠﹣2、﹣3、﹣4.23.解:(1)去分母得:(x+1)2﹣4=x2﹣1,解得:x=1,检验:把x=1代入得:(x+1)(x﹣1)=0,∴x=1是增根,分式方程无解;(2)去分母得:(1﹣3x)2+(3x+1)2=12,解得:x=±,检验:把x=±分别代入得:(1+3x)(1﹣3x)≠0,∴分式方程的解为x=±.24.解:设大客车的速度为x千米/小时,则小汽车的速度为1.5x千米/小时,由题意可知:,解得x=40,经检验:x=40是原方程的根.答:大客车的速度为40千米/小时,则小汽车的速度为60千米/小时.25.解:(1)A==a﹣2;(2)∵a2﹣a=a(a﹣1)=0,∴a=0或a=1,而要使得A有意义,则a+2≠0,a2﹣2a+1=(a﹣1)2≠0,a﹣1≠0,∴a≠﹣2,1,∴a=0,将a=0代入a﹣2,得A=a﹣2=0﹣2=﹣2.26.解:(1)(﹣2)2+()0+|1−|=4+1+﹣1=4+;(2)(1﹣m+)÷=•=•=•=2﹣m,当m=2﹣时,原式=2﹣(2﹣)=2﹣2+=.27.解:两分式分母的公因式为a=x﹣1,最简公分母为b=3(x+1)(x﹣1),∴==3(x+1)=﹣6,即x=﹣3.则==.==﹣.。

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。

1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。

新北师大版八年级数学下册第五章《分式与分式方程》单元练习题含答案解析 (27)

新北师大版八年级数学下册第五章《分式与分式方程》单元练习题含答案解析 (27)

(共25题)一、选择题(共10题)1.若分式x2−4x+2的值为0,则x的值为( )A.±2B.2C.−2D.02.在方程:x+32−5=0,4x=6,x2+x−3=0,x3−4x=1中,是分式方程的有( )A.2个B.3个C.4个D.0个3.使分式3xx+2有意义的x的取值范围为( )A.x≠−2B.x≠2C.x≠0D.x≠±24.若代数式1x−9有意义,则实数x的取值范围是( )A.x≠0B.x≥0C.x≠9D.x≥95.使分式13−x有意义的x的取值范围是( )A.x≠3B.x=3C.x≠0D.x=06.计算2x+3x+1−2xx+1的结果为( )A.1B.3x+1C.3D.x+3x+17.下列方程是分式方程的是( )A.x−32+x+13=4B.xπ+1−x+1π−1=2C.√x−1x−12=1D.2xx+x−22=48.计算(1+1x )÷x2+2x+1x的结果是( )A.x+1B.1x+1C.xx+1D.x+1x9.若分式xx−3有意义,则x的取值范围是( )A . x >3B . x <3C . x ≠3D . x =310. 要使分式 3x−1有意义,则 x 的取值范围是 ( )A . x ≠1B . x >1C . x <1D . x ≠−1二、填空题(共7题) 11. 化简:4xy 220x 2y = . 12. 若 a b=23,则a−b b= .13. 要使分式 x−1x+1 有意义,x 的取值应满足 .14. 要使分式 x 2−1(x+1)(x−2) 有意义,则 x 应满足的条件是 .15. 当 x 时,分式 1x+3 有意义.16. 当 x 时,分式 1x 的值为正数.17. 用换元法解方程1x 2−2x+2x 2−4x =3 时,如果设 x 2−2x =y ,那么原方程可以化为关于 y 的整式方程是 .三、解答题(共8题) 18. 按要求计算:(1) 计算:√12−∣2√3−1∣+(π−2√3)0÷(12)−2.(2) 因式分解:① 4a 2−25b 2;② −3x 3y 2+6x 2y 3−3xy 4. (3) 解方程:x−1x−2+2=32−x .19. 已知 1x −1y =2,求 3x+4xy−3y2x−5xy−2y 的值.20.解下列方程:2x−2−1x=0.21.计算:11+x +x1−x.22.化简:x4−16x3+2x2+4x+8.23.从不同角度谈谈你对等式x(x+4)=5的理解.24.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?25.解方程:5x−4=14−x+2.答案一、选择题(共10题)1. 【答案】B【解析】根据题意得x2−4=0且x+2≠0,解得x=2.【知识点】分式值为正,为负,为零的条件2. 【答案】B【解析】由分式方程的定义,知4x =6,x2+x−3=0,x3−4x=1是分式方程.【知识点】分式方程的概念3. 【答案】A【解析】x+2≠0,∴x≠−2.【知识点】分式有无意义的条件4. 【答案】C【知识点】分式有无意义的条件5. 【答案】A【解析】分式13−x有意义,则3−x≠0,解得:x≠3.【知识点】分式有无意义的条件6. 【答案】B【解析】2x+3x+1−2xx+1=2x+3−2xx+1=3x+1.【知识点】分式的加减7. 【答案】D【知识点】分式方程的概念8. 【答案】B【解析】原式=(xx+1x)÷(x+1)2x=x+1x⋅x(x+1)2=1x+1.【知识点】分式的混合运算9. 【答案】C【解析】∵分式xx−3有意义,∴x−3≠0,∴x的取值范围是x≠3.【知识点】分式有无意义的条件10. 【答案】A【解析】由题意得,x−1≠0,解得x≠1.【知识点】分式有无意义的条件二、填空题(共7题)11. 【答案】y5x【解析】原式=4xy⋅y4xy⋅5x =y5x.故答案为:y5x.【知识点】约分12. 【答案】−13【知识点】分式的基本性质13. 【答案】x≠−1【解析】∵分式x−1x+1有意义,∴x+1≠0,解得x≠−1.【知识点】分式有无意义的条件14. 【答案】x≠−1且x≠2【知识点】分式有无意义的条件15. 【答案】≠−3【解析】由题意得:x+3≠0,解得x≠−3.【知识点】分式有无意义的条件16. 【答案】 >0【解析】由题意得:1x >0,即 x >0.【知识点】分式值为正,为负,为零的条件17. 【答案】 2y 2−3y +1=0【知识点】分式方程的解法三、解答题(共8题) 18. 【答案】(1)√12−∣2√3−1∣+(π−2√3)0÷(12)−2=2√3−2√3+1+1+4= 6.(2) ① 原式=(2a +5b )(2a −5b );② 原式=−3xy 2(x 2−2xy +y 2)=−3xy 2(x −y )2.(3) 去分母得,x −1+2(x −2)=−3.3x −5=−3.解得x =23.检验:把 x =23 代入 x −2≠0,所以 x =23 是原方程的解.【知识点】提公因式法、算术平方根的运算、平方差、负指数幂运算、完全平方式、零指数幂运算、绝对值、分式方程的解法19. 【答案】 29.【知识点】约分、简单的代数式求值20. 【答案】去分母得:2x −x +2=0.解得:x =−2.经检验,x =−2 是原方程的解.【知识点】分式方程的解法21. 【答案】 1+x 21−x 2.【知识点】分式的加减22. 【答案】 x −2.【知识点】约分23. 【答案】①方程:一元二次方程 x 2+4x −5=0,两根分别为 x 1=1,x 2=−5;或分式方程 x +4−5x =0,两根分别为 x 1=1,x 2=−5; ②函数:二次函数 y =x 2+4x 与直线 y =5 的交点,或一次函数y=x+4与反比例函数y=5x的交点;③图形:边长为x和x+4,面积为5的矩形.【知识点】一元二次方程的解法、矩形的面积、分式方程的解法24. 【答案】设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,根据题意,得15001.2x −1200x=10,变形为:1500−1440=12x,解得:x=5.经检验,x=5是原方程的解.则该老板这两次购买玩具一共盈利为:15001.2×5×(8−1.2×5)+12005×(7−5)=980(元).答:该老板两次一共赚了980元.【知识点】分式方程的应用25. 【答案】去分母得:5=−1+2(x−4).整理得:2x=14.解得:x=7.经检验x=7是分式方程的解.【知识点】分式方程的解法。

分式及分式方程测试题及答案

分式及分式方程测试题及答案

第五章 分式与分式方程检测题(本试卷满分:100分,时间:60分钟)一、选择题(每小题3分,共30分)1.下列分式是最简分式的是( ) A.11m m -- B.3xy y xy - C.22x y x y -+ D.6132mm- 2.将分式2x x y+中的x 、y 的值同时扩大2倍,则分式的值( )A.扩大2倍B.缩小到原来的21C.保持不变D.无法确定 3.若分式112+-x x 的值为零,则的值为( )A.或B. C.D.4.对于下列说法,错误的个数是( ) ①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-. A.6 B.5 C.4 D.3 5.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( ) A.1 B.C.1x x + D.1x x + 6.设一项工程的工程量为1,甲单独做需要天完成,乙单独做需要天完成,则甲、乙两人合做一天的工作量为( ) A.B.1a b + C.2a b + D.11a b+7.分式方程131x x x x +=--的解为( ) A.1x =B.1x =-C.3x =D.3x =-8.下列关于分式方程增根的说法正确的是( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根 9.某人生产一种零件,计划在天内完成,若每天多生产个,则天完成且还多生产个,问原计划每天生产多少个零件?设原计划每天生产个零件,列方程得( ) A.3010256x x -=+ B.3010256x x +=+ C.3025106x x =++ D.301025106x x +=-+10.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为天,下面所列方程中错误的是( ) A.213x x x +=+ B.233x x =+ C.1122133x x x x -⎛⎫+⨯+=⎪++⎝⎭D.113x x x +=+ 二、填空题(每小题3分,共24分)11.若分式33x x --的值为零,则x = . 12.将下列分式约分:(1)258xx ;(2)22357mn nm - ;(3)22)()(a b b a -- .13.计算:2223362cab b c b a ÷= .14.已知,则222n m m n m n n m m ---++________.15.当=x ________时,分式13-x 无意义;当=x ______时,分式392--x x 的值为.16.若方程255x mx x =---有增根5x =,则m =_________. 17.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.18.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10 km/h ,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2 km 所用时间,与以最大速度逆流航行1.2 km 所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .三、解答题(共46分)19.(8分)计算与化简: (1)222x y y x ⋅; (2)22211444a a a a a --÷-+-;(3)22142a a a ---; (4)211a a a ---.20.(6分)先化简,再求值:222693b ab a ab a +--,其中8-=a ,21-=b .21.(6分)若x1y 1,求y xy x yxy x ---+2232的值.22.(6分)当x =3时,求2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭的值.23.(6分)已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭ 的值.24.(8分)解下列分式方程: (1)730100+=x x ; (2)132543297=-----xx x x .25.(6分)某人骑自行车比步行每小时快8 km ,坐汽车比骑自行车每小时快16 km ,此人从地出发,先步行4 km ,然后乘坐汽车10 km 就到达地,他又骑自行车从地返回地,结果往返所用的时间相等,求此人步行的速度.第五章 分式与分式方程检测题参考答案1.C 解析:()11111-=---=--m m m m ,故A 不是最简分式;x x xy x y xy y xy 313)1(3-=-=-,故B 不是最简分式;32613261-=-m m ,故D 不是最简分式;C 是最简分式. 2.A 解析:因为()()yx x y x x y x x y x x +⨯=+=+=+22222224222,所以分式的值扩大2倍.3.C 解析:若分式112+-x x 的值为零,则所以4.B 解析:不是分式,故①不正确;当1x ≠时,2111x x x -=+-成立,故②正确;当 时,分式33x x +-的分母,分式无意义,故③不正确;,故④不正确;,故⑤不正确;,故⑥不正确.5.C 解析:2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭.6.D 解析:因为一项工程,甲单独做需要天完成,乙单独做需要天完成,所以甲一天的工作量为,乙一天的工作量为,所以甲、乙两人合做一天的工作量为11a b+,故选D.7.D 解析:方程两边同时乘,得,化简得.经检验,是分式方程的解.8.D 解析:如果求出的根使原方程的一个分母的值是,那么这个根就是方程的增根. 9.B 解析:原计划生产个零件,若每天多生产个,则天共生产个零件,根据题意列分式方程,得3010256x x +=+,故选B. 10.A 解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为.由题意可知,1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭,整理,得213x x x +=+,所以312+-=x x x ,即233x x =+,所以A 、B 、C 选项均正确,选项D 不正确.11.解析:若分式33x x --的值为零,则所以.12.(1)83x (2)n m5- (3)1解析:(1)258x x 83x ;(2)22357mn n m -n m 5-;(3)22)()(a b b a --()()122=--b a b a .13. c b a 323 解析:.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷ 14.79解析:因为,所以n m 34=, 所以()()()()()()()()n m n m m n m n m n m n n m n m n m m nm m n m n n m m -+--+++-+-=---++2222 ()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m15.1 -3 解析:由得,所以当时,分式13-x 无意义; 由时,分式392--x x 的值为.16.5- 解析:方程两边都乘5x -,得()25x x m =--. ∵ 原方程有增根,∴ 最简公分母50x -=,解得5x =. 把5x =代入()25x x m =--,得50m =-,解得5m =-.17.420960960=+-x x解析:根据原计划完成任务的天数实际完成任务的天数,列方程即可,依题意可列方程为420960960=+-x x . 18.40 km/h 解析:设该冲锋舟在静水中的最大航速为 km/h ,则,解得.19.解:(1)原式2224x y .y x y•=• (2)原式()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-. (3)原式()()()()()()2222222222a a a a a a a a a a +---=-+-+-+=()()21222a a a a -=-++. (4)原式2111a a a +--=()()2111a a a a -+--=2211a a a -+-=11a -. 20.解:()().3336932222b a ab a b a a b ab a ab a -=--=+--当,时,原式.49162498212483==---=-b a a 21.解:因为x1y1所以所以().41422342)(322232=--=--+-=--+-=---+xy xy xy xy xy xy xy y x xy y x y xy x y xy x22.解:()222112222x x x xx ⎡⎤-÷⎢⎥---⎢⎥⎣⎦()()22221212222x x x x x x x --⋅-⋅-- 1224x x --224x --1122x x=-=--.当时,1123=-- 23.解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ()()22[][]a a b a a b a b a b a b a b----÷⋅+--22b a b ab ab a b b a b a b--⋅⋅=-+-+.当14,12b =时,21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭-=-+.24.解:(1)方程两边都乘,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.(2)方程两边都乘,得整理,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.25.解:设此人步行的速度是 km/h , 依题意可列方程814168104+=+++x x x ,解这个方程,得.检验可知,是这个方程的根.答:此人步行的速度为6 km/h.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章《分式与分式方程》单元测试卷
(全卷满分100分 限时90分钟)
一.选择题:(每小题3分共36分) 1.若把分式
x
x y
+中的x .y 都扩大2倍,则分式的值 ( ) A.扩大为原来的2倍 B.不变 C.缩小为原来的2倍 D.缩小为原来的4倍
2.分式242
x x -+的值为0,则( ).
A.2x =-
B.2x =±
C.2x =
D.0x = 3.下列各式正确的是( )
A.c c a b a b =----;
B.c c
a b a b =-
--+; C.c c a b a b =--++; D.c c a b a b
-=---- 4.已知a 是方程x 2+x ﹣1=0的一个根,则a
a a ---2
21
12的值为( ) A.
2
51+-
B.
2
51--
C.﹣1
D.1 5.下列各式成立的是( )
A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

6.化简
a 1
a 11a
+
--的结果为( ) A.﹣1 B.1 C.a 1a 1+- D.a 1
1a
+- 7.函数1
2
y x =
- 中,自变量x 的取值范围是( ) A.2x > B. 2x < C.2x ≠ D. 2x ≠- 8.化简分式
2221x 1x 1x 1⎛⎫÷+ ⎪--+⎝⎭
的结果是( ) A.2 B.
2x 1+ C.2x 1
- D.-2 9.汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划
多修5米,结果提前4天开通了列车.问原计划每天修多少米?设原计划每天修x 米,所列方程正确的是( )
A.
12012045x x -=+ B.120120
45x x -=+ C.12012045x x -=- D.12012045
x x -=- 10. 已知的值是:则,且都不为k k b c a a c b c b a c b a ,0,,=+=+=+ ( )
A 2
B -1
C 2或-1
D 3 11.. 若关于x 的方程
0414=----x
x x m 无解,则m 的值是( ) A.-2 B.2 C.-3 D. 3 12.若关于x 的方程111
m x
x x --
--=0有增根,则m 的值是( ) A.3
B.2
C.1
D.-1
二.填空题:(每小题3分共12分) 13.已知34
=y x , 则_____=-y
y x . 14.若
x
k
x -=
--3231有增根,则增根是___________,k =___________. 15.若关于x 的分式方程x m x +-=-2102
的解为非负数,那么m 的取值范围是 . 16.已知实数a .b .c 满足a +b =ab =c ,有下列结论: ①若c ≠0,则
11
1a b
+=;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a .b .c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 三.解答题:(共52分)
17.(6分)化简:(1)x x x x -+-112; (2)÷
⎪⎭
⎫ ⎝⎛-+4412a 2-a a .
18.(7分)先化简分式2
3()111
x x x
x x x -÷-+-,再在﹣3<x ≤2中取一个合适的x ,求出此时分式的值
19.(7分)解分式方程:452
51=+-++x
x x .
20.(8分)化简求值:
(1)若2x-y=2009,求代数式x2-xy+
4
1y2的值.
(2)先化简
2
239
(1)
x x
x x
--
-÷,然后选择一个你喜欢的x值求出该代数式的值.
21.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设
120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?
22.(8分)北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由
自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用
时间是自驾车所用时间的3
7
,问李明自驾车上班平均每小时行驶多少千米?
23.(8分)华联商场预测某品牌衬衫能畅销市场,先用了8万元购入这种衬衫,面市后果然供
不应求,于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.试求:
(1)第一次购买这种衬衫的单价是多少?
(2)在这两笔生意中,华联商场共赢利多少元?
参考答案
一.选择题:(每小题3分 共36分)
二.填空题:(每小题3分 共12分)
三.解答题:(共52分)
17.(1)原式112---=
x x x x 12--=x x x x x x x =--=1
)
1(; (2)原式a a a a 24442
2-⋅-+-==-⋅-+=a a a a a 2)2)(2(22+a a
. 18.解:原式=2222
3311x x x x x x x +-⨯+-- =()22241
1x x x x
x +--⨯
=2x +4,
根据-3<x ≤2,得到x =2时,原式=8.
19.解:方程两边同乘(5)x +,得 20421+=-+x x .
解得 7-=x . 检验:7-=x 时50x +≠,7-=x 是原分式方程的解.
20.(1)解:原式=
41(4x 2-4xy +y 2)=4
1
(2x -y )2
当2x -y =4
2009
(2)解:原式=
9
322
-⨯--x x
x x x =
)3)(3(3-+⨯-x x x x x =
3
1
+x 当x = -2时,原式=1 (注:只要x ≠0,±3均可)
21.解:设原计划每天铺设管道x 米, 则
()
27%201120
300123=+-+x x , 解得x =10,
经检验,x =10是原方程的解. 答:原计划每天铺设管道10米
22.解:设李明自驾车上班平均每小时行使x 千米. 依题意,得
x
x 18
739218⨯=+ 解得 27=x . 经检验,27=x 是原方程的解,且符合题意. 答:李明自驾车上班平均每小时行使27千米. 23.解:(1)设第一批购入的衬衫单价为x 元/件,根据题意得,
4
176000
280000+=
⨯x x . 解得:x =40,经检验x =40是方程的解, 答:第一批购入衬衫的单价为每件40元.
(2)由(1)知,第一批购入了80000÷40=2000件.
在这两笔生意中,华联商场共赢利为:2000×(58﹣40)+(2000×2-150)×(58﹣44)+150×(58×0.8﹣44)=90260元.
答:两笔生意中华联商场共赢利90260元.。

相关文档
最新文档