立体几何中的向量方法空间角度问题
2019-2020年高考数学 7.8 立体几何中的向量方法(二)——求空间角和距离练习

2019-2020年高考数学 7.8 立体几何中的向量方法(二)——求空间角和距离练习——求空间角和距离(25分钟60分)一、选择题(每小题5分,共25分)1.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为()A. B. C. D.【解析】选B.建立空间直角坐标系如图.则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2).=(-1,0,2),=(-1,2,1),cos<,>==.所以异面直线BC1与AE所成角的余弦值为.2.(xx·宁波模拟)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A. B. C. D.【解析】选A.以D为原点,建立如图所示的空间直角坐标系,设AB=1,则=(1,1,0),=(0,1,2),=(0,1,0),设平面DBC1的法向量为n=(x,y,z),则取z=1,则y=-2,x=2,所以n=(2,-2,1),所以sinθ====.【一题多解】本题还可以采用如下方法解答.方法一:选A.设AB=1,则AA1=2.设AC∩BD=O,连接C1O,过C作CH⊥C1O于H,连接DH,显然△C1DB是等腰三角形,所以C1O⊥BD,又C1C⊥BD,因为C1O∩C1C=C1,所以BD⊥平面C1CO,CH⊂平面C1CO,所以BD⊥CH,而CH⊥C1O,BD∩C1O=O,所以CH⊥平面C1BD,所以∠CDH是CD与平面C1BD所成的角,在Rt△C1OC中,OC=,C1C=2,所以C1O==,由C1C·OC=C1O·CH知CH==,在Rt△CDH中,sin∠CDH==.方法二:选A.设点C到平面C1BD的距离为h,CD与平面C1BD所成的角为θ,由=知·h=S△CBD·C1C,所以h=,所以sinθ==.3.已知长方体ABCD-A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A. B.C. D.【解题提示】以A为原点建立空间直角坐标系,分别求出直线BC1的方向向量与平面DBB1D1的法向量,用空间向量的直线与平面所成角的夹角公式计算得解.【解析】选C.如图建立空间直角坐标系,则B(4,0,0),C(4,4,0),C1(4,4,2),显然AC⊥平面BB1D1D,所以=(4,4,0)为平面BB1D1D的一个法向量.又=(0,4,2).所以cos<,>===.即直线BC1和平面DBB1D1所成角的正弦值为.4.(xx·厦门模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,则该二面角的大小为()A.150°B.45°C.60°D.120°【解析】选C.由条件知·=0,·=0,因为=++.所以||2=||2+||2+||2+2·+2·+2·=62+42+82+2×6×8cos<,>=(2)2.所以cos<,>=-,则<,>=120°,即<,>=60°.所以二面角的大小为60°.5.(xx·北京模拟)在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为()A. B.a C. D.a【解题提示】以P为原点建立空间直角坐标系,利用空间向量法求解.【解析】选B.根据题意,可建立如图所示的空间直角坐标系Pxyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).所以=(-a,a,0),=(-a,0,a),=(a,0,0).设平面ABC的法向量为n=(x,y,z).由得得令x=1,所以n=(1,1,1),所以P到平面ABC的距离d===a.二、填空题(每小题5分,共15分)6.如图,在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为.【解析】以C1为原点,C1A1,C1B1,C1C所在直线分别为x,y,z轴建立空间直角坐标系,则平面AA1C1C的法向量为n=(0,1,0),AM=-(1,0,)=,则直线AM与平面AA1C1C所成角θ的正弦值为sinθ=|cos<,n>|==,所以tanθ=.答案:7.已知点E,F分别在正方体ABCD -A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC 所成的二面角的正切值为.【解析】如图,建立空间直角坐标系Dxyz,设DA=1,由已知条件得A(1,0,0),E,F,=,=,设平面AEF的法向量为n=(x,y,z),面AEF与面ABC所成的二面角为θ,由图知θ为锐角,由得令y=1,z=-3,x=-1,则n=(-1,1,-3),平面ABC的法向量为m=(0,0,-1),cosθ=|cos<n,m>|=,tanθ=.答案:8.(xx·石家庄模拟)如图所示,正方体ABCD-A1B1C1D1的棱长为1,E是A1B1上的点,则点E到平面ABC1D1的距离是.【解析】以点D为坐标原点,DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,设点E(1,a,1)(0≤a≤1),连接D1E,则=(1,a,0).连接A1D,易知A1D⊥平面ABC1D1,则=(1,0,1)为平面ABC1D1的一个法向量.所以点E到平面ABC1D1的距离是d==.答案:三、解答题(每小题10分,共20分)9.(xx·湖南高考)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD.(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.【解题提示】(1)利用矩形的邻边垂直,及线线平行证明OO1⊥AC,OO1⊥BD.(2)由二面角的定义或者向量法求二面角的余弦值.【解析】(1)因为四边形ACC1A1和四边形BDD1B1均为矩形,所以CC1⊥AC,DD1⊥BD,又CC1∥DD1∥OO1,所以OO1⊥AC,OO1⊥BD,因为AC∩BD=O,所以O1O⊥底面ABCD.(2)方法一:如图,过O1作O1H⊥B1O,垂足为H,连接C1H,由(1)可得OO1⊥A1C1,由于A1B1C1D1是菱形,所以B1D1⊥A1C1,所以A1C1⊥平面B1D1DB,所以由三垂线定理得HC1⊥B1O,所以∠O1HC1就是二面角C1-OB1-D的平面角.设棱柱的棱长为2,因为∠CBA=60°,所以OB=,OC=1,OB1=,在直角三角形O1OB1中,O1H==,因为O1C1=1,所以C1H===,所以cos∠C1HO1==,即二面角C1-OB1-D的余弦值为.方法二:因为四棱柱的所有棱长都相等,所以四边形ABCD为菱形,AC⊥BD,又O1O⊥底面ABCD,所以OB,OC,OO1两两垂直.如图,以O为原点,OB,OC,OO1所在直线分别为x,y,z轴,建立空间直角坐标系.设棱长为2,因为∠CBA=60°,所以OB=,OC=1,所以O,B1,C1,平面BDD1B1的一个法向量为n=,设平面OC1B1的法向量为m=,则由m⊥,m⊥,所以x+2z=0,y+2z=0,取z=-,则x=2,y=2,所以m=,所以cos<m,n>===.由图形可知二面角C1-OB1-D为锐二面角,所以二面角C1-OB1-D的余弦值为.10.(xx·杭州模拟)如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a,(1)若a=2,求证:AB∥平面CDE.(2)求实数a的值,使得二面角A-EC-D的大小为60°.【解析】(1)如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,2),=(2,0,0),=(0,-2,2),=(1,-1,),设平面CDE的一个法向量为n1=(x,y,z),则有-2y+2z=0,x-y+z=0,取z=时,n1=(0,2,),所以·n1=0,又AB不在平面CDE内,所以AB∥平面CDE.(2)如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,a),=(0,-2,a),=(1,-1,),设平面CDE的一个法向量为n2=(x,y,z),则有-2y+az=0,x-y+z=0,取z=2时,n2=(a-2,a,2),又平面AEC的一个法向量为n3=(-1,1,0),因为二面角A-EC-D的大小为60°,所以=,即a2-2a-2=0, 解得a=±2.(20分钟40分)1.(5分)如图,在四面体ABCD中,AB=1,AD=2,BC=3,CD=2,∠ABC=∠DCB=,则二面角A-BC-D的大小为()A. B.C. D.【解析】选 B.二面角A-BC-D的大小等于AB与CD所成角的大小.=++.而=+++2||||·cos<,>,即12=1+9+4+2×1×2cos<,>,所以cos<,>=-,所以AB与CD所成角为,即二面角A-BC-D的大小为.2.(5分)(xx·北京模拟)已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到平面AB1D1的距离是.【解析】如图所示建立空间直角坐标系Dxyz,则A1(2,0,4),A(2,0,0),B1(2,2,4),D1(0,0,4),=(-2,0,4),=(0,2,4),=(0,0,4),设平面AB1D1的法向量为n=(x,y,z),则即解得x=2z且y=-2z,不妨设n=(2,-2,1),设点A1到平面AB1D1的距离为d,则d==.答案:3.(5分)(xx·郑州模拟)正四棱锥S -ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角的大小为.【解析】如图所示,以O为原点建立空间直角坐标系Oxyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),P.则=(2a,0,0),=,=(a,a,0).设平面PAC的法向量为n,可求得n=(0,1,1),则cos<,n>===.所以<,n>=60°,所以直线BC与平面PAC的夹角为90°-60°=30°.答案:30°4.(12分)(能力挑战题)如图,在平行四边形ABCD中,AB=2BC=2,∠ABC=120°,M,N分别为线段AB,CD的中点,连接AN,DM交于点O,将△ADM沿直线DM翻折成△A′DM.使平面A′DM⊥平面BCD,F为线段A′C的中点.(1)求证:ON⊥平面A′DM.(2)求证:BF∥平面A′DM.(3)求直线FO与平面A′DM所成的角.【解析】(1)连接MN,由平面几何知四边形AMND是菱形.所以AN⊥DM.因为平面A′DM⊥平面ABCD,DM是交线,AN⊂平面ABCD,所以AN⊥平面A′DM,即ON⊥平面A′DM.(2)取A′D的中点E,连接EF,EM,因为F是A′C中点,所以EFCD.又M是AB中点,所以在平行四边形ABCD中,BMCD,所以EF BM,所以四边形EFBM是平行四边形.所以BF∥EM,因为EM⊂平面A′DM,BF⊄平面A′DM,所以BF∥平面A′DM.(3)因为AB=2BC=2,M是AB中点,所以A′D=A′M=1.因为菱形ADNM中O是DM中点,所以A′O⊥DM,因为平面A′DM⊥平面ABCD,所以A′O⊥平面ABCD.以ON为x轴,OM为y轴,OA′为z轴建立空间直角坐标系,∠ADN=∠ABC=120°,在△ADN中,AD=DN=1,所以AN==.同理求得DM=AD=AM=1,所以N,D,A′,因为N是CD的中点,所以C.因为F是A′C的中点,所以F.因为NO⊥平面A′DM,所以平面A′DM的一个法向量=.因为=,所以||==1.设OF与平面A′DM所成的角为θ,0<θ<,则sinθ=|cos<,>|===,所以θ=.所以直线FO与平面A′DM所成的角为.5.(13分)(xx·江西高考)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD.(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC 夹角的余弦值.【解题提示】(1)利用面面垂直的性质定理证明AB⊥平面PAD即可.(2)借助两平面垂直的性质,作PO⊥AD,即四棱锥的高找到,过点O作OM⊥BC于点M,连接PM.则四棱锥的体积能用AB的长度表示,即可建立体积与AB的函数,借助二次函数知识求最值;此时可建立空间直角坐标系,利用坐标法求解.【解析】(1)因为ABCD为矩形,所以AB⊥AD,又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,又PD⊂平面PAD,所以AB⊥PD.(2)过点P作PO⊥AD于点O,则PO⊥平面ABCD,过点O作OM⊥BC于点M,连接PM.则PM⊥BC,因为∠BPC=90°,PB=,PC=2,所以BC=,PM=,设AB=t,则在Rt△POM中,PO=,所以VP-ABCD=·t··=,所以当t2=,即t=时,VP-ABCD最大为.此时PO=AB=,且PO,OA,OM两两垂直,以OA,OM,OP所在直线为x,y,z轴建立空间直角坐标系Oxyz, 则P,D,C,B.所以=,=,=.设平面PCD的一个法向量m=(x1,y1,z1),则即令x1=1,则m=(1,0,-2),|m|=;同理设平面PBC的一个法向量n=(x2,y2,z2),即令y2=1,则n=(0,1,1),|n|=,设平面PBC与平面DPC夹角为θ,显然θ为锐角,且cosθ===..。
空间向量求角

空间的角常见的有:线线角、线面角、面面角
一、复习引入
用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间向 量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
再次演示课件
法向量法
n1,n2
n2
n1,n2 n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
结论:cos cos n1, n2
注意法向量的方向:同进 同出,二面角等于法向量
夹角的补角;
关键:观察二面角的范围
一进一出,二面角等于法 向量夹角
四3 、实教践学操过作程的设计与实施
问题1:
二面角的平面角AOB 能否转化成向量的夹角?
B
O l
A
AOB OA,OB
二面角 OA,OB
四、教学过程的设计与实施
2 探究方法
二面角 n1, n2
要点梳理
②方向向量法:
将二面角转化为二面角的两个面的方向向量(在 二面角的面内且垂直于二面角的棱)的夹角.
设二面角α-l-β的大小为θ,其中
z
S
O
Cy
B
sin cos OS, n OS n 2 6
OS n 1 6 3
C(0,1,0); O(0,0,0);
S(0,0,1), 于是我们有
SA =(2,0,-1);AB =(-1,1,0);
OB =(1,1,0);OS =(0,0,1);
用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。
利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。
立体几何中的向量方法(2)——求空间角和距离

立体几何中的向量方法(二)——求空间角和距离【基础检测】1.思维辨析(在括号内打“√”或“×”).(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π].( )2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°3.正三棱柱(如右图,底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为__ __.4.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__ __.5.P 是二面角α-AB -β棱上一点,分别在平面α,β上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为__ __.【例题精讲】题型一求异面直线所成的角用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.【例1】(2017·江苏卷)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=3,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.题型二求直线与平面所成的角利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所成的锐角,取其余角就是斜线和平面所成的角.【例2】如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的底面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.题型三求二面角求二面角最常用的方法就是分别求出二面角的两个半平面所在面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.【例3】(2017·浙江卷)如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,BQQC=CRRA=2.分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α,β,γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【例4】(2017·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角为B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.【例5】 (2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.题型四 求空间距离求点面距一般有以下三种方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.【例6】 如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离.。
向量法解决立体几何中的夹角问题
N 0, 2 , 2 故
向量法
求空间直角坐标下点的坐标的方法:
一、投影法 将空间点P分别投影到 x轴、 y轴、z 轴所 得投影点为A(a,0,0) ,B(0,b,0),C(0,0,c)则点 P 坐标为(a,b,c) 。 二、公式法 利用线段的中点坐标公式三角形的重心坐 标公式、距离公式、夹角公式等求出点的坐 标。 三、向量法 利用向量相等、垂直、共线等运算求出 点坐标。
B1 B x 2, y 2, z , D1 D 0, 2, 2 3
向量法 (3)设B ( x, y, z ), 则
D
C B O B1
A
又∵ B1 B D1 D , 比较得 x 2, y 4, z 2 3 ∴点B坐标为 2, 4, 2 3
D1 A1 x
C1
第四关:夹角关
C
D
1.异面直线所成角: cos |cos CD, AB |
A
B
D1
A
O
2.直线与平面所成角: sin | cos n, AB |
n
3.二面角:
cos | cos n1 , n2 | cos | cos n1, n2 |
关键:观察二面角的范围
B
n2
n1
例 正三棱柱 ABC A1 B1C1中,D是AC的中 点,当 AB1 BC1 时,求二面角 D BC1 C 的余弦值。
C1
A1
B1
C D A
高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角
C
D CA, DB
进行向量运算
d2
2
AB
( AC
CD
DB)2
A
图3
2
2
2
AB CD BD 2(AC CD AC DB CD DB)
a2 c2 b2 2AC DB
a2 c2 b2 2CA DB
于是,得 2CA DB a2 b2 c2 d 2
3.2立体几何的向量方法(3)
• 空间向量与空间角
例 1、如图,在正方体 ABCD A1B1C1D1中,M、N 分别是
棱 CD、CC1的中点,则异面直线 A1M 与 DN 所成的角
的大小是
.
法二 以 D 为原点,DA、DC、DD1所在直线为坐标轴建立 空间直角坐标系,设 AB=1,
则 D(0,0,0),N0,1, 1 ,
15
例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B
处。从A,B到直线 l(库底与水坝的交线)的距离AC和BD分别为
a 和 b ,CD的长为 c, AB的长为d。求库底与水坝所成二面角的余弦值。
解:如图,AC a,BD b,CD c,AB d.
化为向量问题
B
根据向量的加法法则 AB AC CD DB
a, b), 1 a2 b2
2
0
C1(0, 0, b),
z C1
2
∵ CC1B在坐标平面yoz中
C
∴ 可取 n=(1,0,0)为面CC1B的法向量 x
D
设面 C1BD 的一个法向量为 m ( x, y, z)
向量法求空间角(含解析)
高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。
高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc
3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面ABC的法向量平移到A1B1C1位置,已知
求BD1与AF1所成的角的余弦值.
F1
取A1B1、AC BC CA CC1, 1 1的中点D 1、F 1,
C1
C
B1
D1
A1
A
B
解:以点C为坐标原点建立空间直角坐标系 C xyz 如图所示,设 CC1 1 则: z
A(1,0,0), B(0,1,0),
L
注意法向量的方向:同进 同出,二面角等于法向量 夹角的补角;一进一出, 二面角等于法向量夹角
例2 正三棱柱 ABC A1 B1C1 中,D是AC的 中点,当 AB1 BC1时,求二面角 D BC1 C 的余弦值。
C1
A1
B1
C D A
B
金手指考试网 / 金手指驾驶员考试 金手指考试网 /shiti/km1/ 金手指驾驶员考试2016科目一 金手指考试网 /shiti/km4/ 金手指驾驶员考试2016科目四 金手指考试网 /shiti/jxedt/ 金手指驾校一点通 金手指考试网 /shiti/tiku/ 金手指最新题库 金手指考试网 / 金手指驾驶员考试2016
D1 A1 M B1 C1
D O A B
C
空间“角度”问题
ZPZ
空间“夹角”问题
1.异面直线所成角
设直线 l , m 的方向向量分别为a , b
2 ), 则
若两直线 l , m 所成的角为 (0 ≤ ≤
ab cos a b
l
l
a
m
a b
m
例2 Rt ABC中,BCA 90 , 现将 ABC沿着
1 1 1 F1 ( , 0, a), D1 ( , ,1) 2 2 2 1 所以: AF1 ( , 0,1), 2
F1
C1
C
B1
A1
D1
1 1 AF1 BD1 30 4 cos AF1 , BD1 . 10 5 3 | AF1 || BD1 | 4 2
30 所以 BD1与 AF1 所成角的余弦值为 10
1 1 BD1 ( , ,1) 2 2
A x
By
2、二面角
①方向向量法 将二面角转化为二面角的两个面的 方向向量(在二面角的面内且垂直于二面角的棱) 的夹角。如图(2),设二面角 l 的大小为 其中AB l , AB , CD l , CD
cos cos AB, CD
B
AB CD AB CD
C
L
D
A
2、二面角
②法向量法 将二面角转化为二面角的两个面的法向量的夹角。 如图,向量 n ,m ,
则二面角 l 的大小 =〈m, n 〉
m, n
m
n
uv 若二面角 l 的大小为 (0 ,) 则 cos . u v
∴二面角 D BC1 C的大小等于〈
m, n 〉
mn 3 2 x ∴ cos〈 m, n〉= 2 mn 3 2
即二面角 D BC1 C 的余弦值为
2 2
C D A
B
y
巩固练习
1. 已知正方体 ABCD A1 B1C1 D1 的边长为2, O为AC和BD的交点,MDD 为 1 的中点 B1O 面MAC (1) 求证: 直线 (2)求二面角B1 MA C 的余弦值
解法二:同法一,以C为原点建立空间直角坐标系 C-xyz
CC1B 在坐标平面yoz中
∴可取 n =(1,0,0)为面 CC B 的法向量
1
设面 C1 BD 的一个法向量为 m ( x, y, z) 同法一,可求 B(0,1,0)
3 1 2 3 3 2 3 1 C D ( , , ) D( , ,0) C1 (0,0, ) ∴ 1 DB ( , ,0) 4 4 2 2 4 4 4 4 z 由 C1 D m, DB m 得 C1 B1 A1 3 1 3 3 2 C1D m x y z 0, DB m x y 0 4 4 4 4 2 6 解得 x 3 y z 所以,可取 m (3, 3, 6 ) 2