奥氏体、马氏体、珠光体

合集下载

奥氏体珠光体铁素体贝氏体马氏体

奥氏体珠光体铁素体贝氏体马氏体

结构奥氏体的面心立方点阵具有多个滑移系,使其容易塑性变形,牛产中利用上述性质进行钢的热变形。

又因面心立方点阵是一种最密排的点阵结构,致密度高,所以奥氏体的比热容最小,奥氏体在与其他组织发生相互转变时,会产生体积变化,引起残余内应力和一系列的相变。

密排六方、面心立方致密度0.74,体心致密度0.68,性能奥氏体的面心立方结构使其具有良好的塑性、低的屈服强度和硬度。

奥氏体中铁原子激活能大,扩散系数小,因此奥氏体钢的热强性好。

线膨胀系数大导热性能差奥氏体晶粒度实际生产中习惯用晶粒度来表示奥氏体晶粒大小。

奥氏体晶粒通常分为8级标准评定,1级最粗,8级最纫,超过8级以上者称为超细晶粒。

晶粒度级别N与晶粒大小的关系为:式中,n为放大100倍的视野中每平方英寸(6.45cm2)所含的平均奥氏体晶粒数目。

奥氏体晶粒越细小爪就越大,N也就越大。

1.起始晶粒度:起始晶粒度是指在临界温度以上,奥氏体形成刚刚完成,其晶粒边界刚刚相互接触时的品粒大小,取决于奥氏体的形核率N和长大速度G。

2.实际晶粒度:实际生产中,各式各样热处理工艺处理后得到的奥氏体晶粒大小。

3.本质晶粒度:钢在规定加热条件下奥氏体晶粒长大的倾向性。

1-4级为本质细晶粒,5-8为本质粗晶粒。

种类颗粒状奥氏体:奥氏体的组织形态与原始组织、加热速度、加热转变的程度有关,一般由多边形等轴晶粒组成,这种形态也称为颗粒状,在晶粒内部经常可以看到相变孪品。

针状奥氏体:非平衡态时低碳钢以适当的速度加热到(a十r)两相区可得到针状奥氏体。

一般热处理手册上列出的实际临界点数据,多是在30-50度/小时的加热或冷却速度下测定的。

奥氏体等温形成动力学曲线时间-温度-奥氏体化图,简称TTA图奥氏体等温形成动力学油线指在一定温度下,奥氏体形成量与等温时间的关系曲线,常用金相法进行测定。

将一纽厚度为1—2MM的薄片共析碳钢试样,在盐浴中迅速加热至AC1点以上某一指定温度,保温不同时间后在盐水中急冷至室温,然后制取金相试样进行观察。

金相培训- 名词解释-珠光体,索氏体,屈氏体,马氏体,贝氏体,魏氏组织

金相培训- 名词解释-珠光体,索氏体,屈氏体,马氏体,贝氏体,魏氏组织

在亚共析钢或过共析钢中,奥氏体晶粒较粗大,由高温以较快的速度冷却时,先 共析的铁素体或渗碳体从奥氏体晶界上沿着奥氏体的一定界面向晶内生长,呈针 状析出。
在光学显微镜下可以观察到,从奥氏体晶界上生长出来的铁素体或渗碳体近似平 行,呈羽毛状或三角形,其间存在着珠光体的组织。这种组织称为魏氏组织。
转变产物是碳过饱和的Fe和碳化物组成的机械混合 物。
根据形成温度的不同,分上贝氏体和下贝氏体。下 贝氏体具有优良的综合力学性能,工业应用广泛。
ቤተ መጻሕፍቲ ባይዱ
珠光体是奥氏体 发生共析转变所形成的铁素体与渗 碳体的机械混合物
得名自其珍珠般(pearl-like)的光泽
按珠光体中渗碳体的形态,可把珠光体分成片状珠 光体和粒状珠光体两类。
片状珠光体由片层相间的铁素体和渗碳体片组成, 若干大致平行的铁素体和渗碳体片组成一个珠光体 领域或珠光体团
TTT图,如右图所示。
① 等温冷却C曲线分析(共析碳钢)
最上水平虚线为钢的临界点A1。 水平线Ms和Mf为马氏体转变开始
温度和终了温度。 中间有两条C曲线,分别是过冷奥
氏体转变开始和终了线。 Ms和Mf之间是马氏体转变区。 C曲线区域是奥氏体向珠光体或贝
氏体转变区。
① 影响C曲线的因素
碳含量的影响
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠 光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分 辨的片层,称为索氏体。
在600~550℃形成的珠光体用金相显微镜放大500倍,不能 分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显 微镜放大10000倍才能分辨的片层称为屈氏体。也叫托氏体
马氏体在Fe-C相图中没有出现,因为它不是一种平 衡组织。平衡组织的形成需要很慢的冷却速度和足 够时间的扩散,而马氏体是在非常快的冷却速度下 形成的。由于化学反应(向平衡态转变)温度高时 会加快,马氏体在加热情况下很容易分解。

各种氏体比较

各种氏体比较

各种氏体比较(奥氏体、马氏体、屈氏体、莱氏体、珠光体、贝氏体、索氏体、铁素体)屈氏体or托氏体多数文献称之为托氏体。

通过奥氏体等温转变所得到的由铁素体与渗碳体组成的极弥散的混合物。

是一种最细的珠光体类型组织,其组织比索氏体组织还细。

钢经淬火后在300~450℃回火所得到的屈氏体称为回火屈氏体。

600-550℃范围内奥氏体等温转变形成,片层间距平均小于0.1μm,即使在高倍光学显微镜下也无法分辨出片层,只有在电子显微镜下才能分辨出层片,与珠光体、索氏体只有粗细之分,并无本之分。

在一般光学显微镜下,只能看到如墨菊装的黑色形态。

当其少量析出时,沿晶界分布,呈黑色网状;当其大量析出时,成大块黑状。

索氏体的耐蚀性较差。

莱氏体(ledeburite)莱氏体是液态铁碳合金发生共晶转变形成的奥氏体和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。

当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用符号Ld表示。

在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表示,称为变态莱氏体。

因莱氏体的基体是硬而脆的渗碳体,所以硬度高,塑性很差分为高温莱氏体和低温莱氏体两种。

奥氏体和渗碳体组成的机械混合物称高温莱氏体,用符号Ld或(A+Fe3C)表示。

由于其中的奥氏体属高温组织,因此高温莱氏体仅存于727℃以上。

高温莱氏体冷却到727℃以下时,将转变为珠光体和渗碳体机械混合物(P+Fe3C),称低温莱氏体,用Ld'表示。

莱氏体含碳量为4.3%。

由于莱氏体中含有的渗碳体较多,故性能与渗碳体相近,即极为硬脆。

莱氏体的命名得自Adolf Ledebur (1837-1916)。

关于他,我们只知道他是Bergakademie Freiberg的第一个"Eisenhüttenkunde"教授,并因在1882年发现了铁碳"Mischkristalle" 而闻名。

奥氏体奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。

铁素体奥氏体渗碳体珠光体马氏体

铁素体奥氏体渗碳体珠光体马氏体

铁素体奥氏体渗碳体珠光体马氏体【知识文章】探索金属微观结构:铁素体、奥氏体、渗碳体、珠光体和马氏体1. 引言金属的微观结构是决定该金属性能和性质的关键因素之一。

在金属材料中,铁和其合金是应用最广泛的金属之一。

铁的微观结构包括铁素体、奥氏体、渗碳体、珠光体和马氏体等不同相。

在本文中,我们将探索这些微观结构,并讨论它们对金属材料性能的影响。

2. 铁素体铁素体是铁和碳在一定温度下的稳定相。

它具有面心立方结构,并且碳的溶解度相对较低,通常不超过0.02%。

铁素体具有良好的韧性和可塑性,但它的硬度和强度较低。

在许多应用中,需要对铁素体进行热处理,以提高其硬度和强度。

3. 奥氏体奥氏体是铁和碳在高温下的稳定相。

它具有面心立方结构,并且碳的溶解度相对较高,可达到2.11%。

奥氏体具有良好的塑性和可塑性,但它的硬度和强度相对较低。

奥氏体的材料通常需要通过淬火等方法进行热处理,以获得更高的硬度和强度。

4. 渗碳体渗碳体是一种在铁素体中形成的碳化物相。

它具有高硬度和高强度,同时保持了一定的韧性。

渗碳体的形成通常通过在高温下将钢件浸泡在碳含量较高的环境中,以实现碳的扩散。

渗碳体可以显著提高材料的耐磨性和抗腐蚀性能,因此在制造机械零件和工具等领域中得到广泛应用。

5. 珠光体珠光体是一种在铁素体中形成的细小的球状结构相。

它由铁和少量的碳组成,通常在0.02%以下。

珠光体具有高强度和较高的韧性,因此在一些高强度要求的应用中得到广泛应用。

珠光体的形成主要通过在适当温度下快速冷却铁素体来实现。

6. 马氏体马氏体是一种在快速冷却过程中形成的细小的板状结构相。

它具有高硬度和高强度,但韧性相对较低。

马氏体的形成通常通过在高温下将奥氏体淬火到室温,使其发生相变而形成。

马氏体的形成可以显著提高材料的硬度和强度,因此在刀具、弹簧和汽车零件等领域中得到广泛应用。

7. 深入理解微观结构的意义金属的微观结构对其性能和性质具有重要影响。

不同的微观结构可以使金属材料具有不同的硬度、强度、韧性和可塑性等特性。

铁素体奥氏体渗碳体珠光体马氏体

铁素体奥氏体渗碳体珠光体马氏体

深入探讨金属学中的重要概念一、介绍在金属学中,铁素体、奥氏体、渗碳体、珠光体和马氏体是极为重要的概念,它们对于金属材料的性能和应用有着重要的影响。

本文将深入探讨这些概念,并对其进行全面评估,以便读者能够更好地理解它们。

二、铁素体铁素体是指铁和碳组成的固溶体,是一种具有面心立方结构的金属组织。

在铁碳合金中,当温度高于A3点时,铁的组织结构为铁素体。

铁素体的性质稳定,具有较好的塑性和韧性,是一些重要金属材料的基本组织形式。

三、奥氏体奥氏体是另一种铁碳合金的组织形式,其结构为面心立方。

当温度低于A1点时,铁的组织结构为奥氏体。

奥氏体具有较高的硬度和强度,但塑性和韧性较差。

在一些要求高强度的金属材料中,奥氏体是重要的组织形式。

四、渗碳体渗碳体是指在铁素体或奥氏体内部溶解了一定量的碳,形成固溶体的金相。

渗碳体的形成可以显著提高金属材料的硬度和强度,但会降低其塑性和韧性。

在热处理过程中,渗碳体的形成可以有效改善金属材料的性能。

五、珠光体珠光体是一种由铁素体和渗碳体相互交替排列形成的组织形式,具有条纹状的外观。

珠光体在金属材料中起着重要的强化作用,可以显著提高材料的硬度和强度。

在一些对耐磨性要求较高的金属制品中,珠光体是重要的组织形式。

六、马氏体马氏体是一种在金属材料中由奥氏体或铁素体经过相变而形成的组织形式,具有高硬度和弹性,是一些高强度金属材料的重要组织形式。

马氏体的形成可以显著提高金属材料的强度和耐磨性。

七、总结与回顾通过对铁素体、奥氏体、渗碳体、珠光体和马氏体的全面评估,我们可以更好地理解这些重要的金属学概念。

铁素体和奥氏体是金属材料的两种基本组织形式,渗碳体、珠光体和马氏体则是在热处理过程中形成的重要组织形式,它们对于金属材料的性能和应用有着重要的影响。

八、个人观点与理解在我看来,对于金属学中的这些重要概念,我们需要深入学习和理解其形成的原理、性质和应用,这对于提高金属材料的设计、加工和应用水平具有重要意义。

奥氏体马氏体贝氏体珠光体相互转变

奥氏体马氏体贝氏体珠光体相互转变

奥氏体马氏体贝氏体珠光体相互转变哎呀,这可是个有意思的话题啊!奥氏体马氏体贝氏体珠光体,这些家伙可是钢材界的大佬啊!它们之间的关系错综复杂,相互转变的过程也是相当精彩纷呈。

今天,咱就来聊聊这个话题,看看这些大佬们是如何相互转变的吧!咱们来认识一下这几位大佬。

奥氏体、马氏体、贝氏体和珠光体都是钢材中的组织结构。

奥氏体是钢材中最常见的一种组织结构,它具有较高的硬度和强度。

马氏体则是在高温下形成的,它的硬度比奥氏体更高。

贝氏体则介于奥氏体和马氏体之间,具有一定的韧性。

而珠光体则是一种特殊的组织结构,它在钢材中的比例较少,但具有很好的韧性和塑性。

那么,这几位大佬是如何相互转变的呢?其实,它们的转变过程就像是一场精彩的武术比赛,每个选手都有自己的特长和弱点,但最终都要为了胜利而努力。

我们来看看奥氏体。

奥氏体的形成需要经过一个叫做“回火”的过程。

这个过程就像是一个武术比赛前的热身运动,通过回火,奥氏体的晶粒会变得更加细小,从而提高钢材的韧性和塑性。

如果回火的时间不够或者温度不够,奥氏体的硬度和强度就会受到影响。

接下来,轮到马氏体上场了。

马氏体的生成需要在一个非常高的温度下进行,这个过程就像是一个武术比赛前的冲刺。

在这个过程中,钢材中的碳原子会形成一种叫做“马氏体网”的结构,从而使得钢材的硬度和强度大大提高。

但是,过高的温度也会导致钢材的其他性能受到影响,所以在实际应用中,我们需要找到一个合适的温度来生成马氏体。

然后,我们来看看贝氏体的表演。

贝氏体的生成需要在适当的温度下进行,这个过程就像是一个武术比赛中的防守。

在这个过程中,钢材中的碳原子会形成一种叫做“贝氏体网”的结构,从而使得钢材具有一定的韧性。

而且,贝氏体的生成还会影响到钢材的断面形状,使得钢材在受力时更加稳定。

珠光体的登场让人眼前一亮。

珠光体的生成需要在非常低的温度下进行,这个过程就像是一个武术比赛中的蓄势待发。

在这个过程中,钢材中的位错会在一定程度上被抑制,从而使得钢材具有很好的韧性和塑性。

奥氏体马氏体贝氏体珠光体相互转变

奥氏体马氏体贝氏体珠光体相互转变

奥氏体马氏体贝氏体珠光体相互转变哎呀,这可是个有意思的话题啊!咱们今天就来聊聊奥氏体马氏体贝氏体珠光体相互转变,看看这些家伙是怎么在钢铁世界里搞怪的吧!咱们得了解一下这些家伙都是啥玩意儿。

奥氏体、马氏体、贝氏体和珠光体都是钢铁材料中的相变现象。

简单来说,它们就像是钢铁的“心情”,时而高兴,时而郁闷,时而阳光灿烂,时而阴霾密布。

它们之间又是怎么相互转变的呢?说到这儿,我得先给大家普及一下基础知识。

钢铁是一种合金,主要成分是铁和碳。

在炼钢的过程中,铁和碳以及其他元素(如铬、锰、硅等)按照一定的比例混合在一起,经过高温熔炼、冷却凝固等一系列复杂的过程,形成了各种不同的相变现象。

现在让我们开始探索奥氏体马氏体贝氏体珠光体的奇妙世界吧!咱们来到了奥氏体的世界。

奥氏体是钢铁中最常见的一种相变现象,它是由铁和碳组成的。

在奥氏体中,铁原子和碳原子的比例适中,使得奥氏体的硬度、韧性和延展性都非常理想。

不过,奥氏体的稳定性较差,容易发生氧化反应,导致钢铁生锈。

为了提高钢铁的耐腐蚀性,人们通常会对奥氏体进行热处理,比如淬火、回火等,以改变其内部结构和性能。

我们来到了马氏体的世界。

马氏体是奥氏体经过回火处理后形成的相变现象。

在回火过程中,奥氏体会逐渐降低温度并保持一定的应力状态,使得其中的碳原子有足够的时间扩散到铁原子之间的间隙中,从而形成马氏体。

马氏体的硬度比奥氏体要高很多,但是韧性却相对较差。

因此,在实际应用中,人们通常会将马氏体与其他相变现象结合使用,以达到理想的性能。

再来说说贝氏体吧。

贝氏体是由马氏体经过回火处理后形成的另一种相变现象。

在贝氏体中,马氏体的碳原子已经扩散到了铁原子之间的间隙中,形成了一种类似于蜂窝状的结构。

贝氏体的硬度和韧性都介于奥氏体和马氏体之间,但是具有较好的耐磨性和抗疲劳性。

因此,贝氏体广泛应用于制造一些需要高强度和高耐磨性的零部件,比如齿轮、轴承等。

我们来到了珠光体的世界。

珠光体是由贝氏体经过回火处理后形成的相变现象。

公共基础知识热处理工艺基础知识概述

公共基础知识热处理工艺基础知识概述

《热处理工艺基础知识概述》一、引言热处理工艺作为材料加工领域中的一项关键技术,在提高材料性能、延长使用寿命、改善加工工艺等方面发挥着至关重要的作用。

从古代的简单金属加工到现代的高科技材料处理,热处理工艺经历了漫长的发展历程。

本文将对热处理工艺的基础知识进行全面综合的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势等方面,旨在为读者提供一个系统而深入的了解。

二、基本概念1. 定义热处理是指将材料加热到一定温度,保温一段时间,然后以适当的速度冷却,以改变材料的组织结构和性能的工艺过程。

通过热处理,可以改善材料的硬度、强度、韧性、耐磨性、耐腐蚀性等性能,满足不同工程应用的要求。

2. 分类热处理工艺主要分为普通热处理和表面热处理两大类。

普通热处理包括退火、正火、淬火和回火;表面热处理包括表面淬火和化学热处理。

(1)退火:将材料加热到适当温度,保温一段时间,然后缓慢冷却。

退火的目的是降低材料的硬度,改善切削加工性能,消除残余应力,稳定尺寸等。

(2)正火:将材料加热到临界温度以上,保温一段时间,然后在空气中冷却。

正火的目的与退火相似,但冷却速度较快,得到的组织比退火的更细,强度和硬度也较高。

(3)淬火:将材料加热到临界温度以上,保温一段时间,然后快速冷却。

淬火的目的是提高材料的硬度和强度,但淬火后材料的脆性增加,需要进行回火处理。

(4)回火:将淬火后的材料加热到适当温度,保温一段时间,然后冷却。

回火的目的是降低材料的脆性,提高韧性和塑性,稳定组织和尺寸。

(5)表面淬火:通过快速加热材料表面,使其达到淬火温度,然后迅速冷却,使表面获得高硬度,而心部仍保持较好的韧性。

(6)化学热处理:将材料置于一定的化学介质中加热,使介质中的某些元素渗入材料表面,改变材料的化学成分和组织结构,从而提高材料的表面性能。

三、核心理论1. 相变理论热处理过程中,材料的组织结构会发生相变。

相变是指物质从一种相转变为另一种相的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处
铁素体——碳与合金元素溶解在a-Fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

渗碳体——碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od 铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。

下贝氏体——同上,但渗碳体在铁素体针内。

过冷奥氏体在350℃~Ms的转变产物。

其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。

与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。

高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。

粒状贝氏体——大块状或条状的铁素体内分布着众多小岛的复相组织。

过冷奥氏体在贝氏体转变温度区的最上部的转变产物。

刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为M-A组织。

回火马氏体——马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织它由马氏体在150~250℃时回火形成。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。

回火屈氏体——碳化物和a-相的混合物。

它由马氏体在350~500℃时中温回火形成。

其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。

回火索氏体——以铁素体为基体,基体上分布着均匀碳化物颗粒。

它由马氏体在500~650℃时高温回火形成。

其组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织,马氏体片的痕迹已消失,渗碳体的外形已较清晰,但在光镜下也难分辨,在电镜下可看到的渗碳体颗粒较大。

魏氏组织——如果奥氏体晶粒比较粗大,冷却速度又比较适宜,先共析相有可能呈针状(片状)形态与片状珠光体混合存在,称为魏氏组织。

亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形,粗大铁素体呈平行或三角形分布。

它出现在奥氏体晶界,同时向晶内生长。

过共析钢中魏氏组织渗碳体的形态有针状或杆状,它出现在奥氏体晶粒的内部。

--来自金相吧。

相关文档
最新文档