确界原理的数学分析证明

合集下载

用确界原理证明柯西收敛准则

用确界原理证明柯西收敛准则

用确界原理证明柯西收敛准则柯西收敛准则是数列收敛的一个重要准则,它是由法国数学家柯西所提出的。

它的表述是:如果数列 ${a_n}$ 满足对于任意$varepsilon>0$,存在正整数 $N$,当 $n,m>N$ 时,有 $|a_n-a_m|<varepsilon$,则称数列 ${a_n}$ 是柯西收敛的,或者称其为基本收敛的。

柯西收敛准则是收敛概念的一种等价表述,其证明可以通过极限的定义或确界原理等多种方式进行。

本文将以确界原理为基础,详细阐述柯西收敛准则的证明过程。

二、确界原理在证明柯西收敛准则之前,我们先来介绍一下确界原理。

确界原理是数学分析中的一个基本原理,它是指:非空有上界的实数集合必有上确界,非空有下界的实数集合必有下确界。

具体来说,如果实数集合 $S$ 非空且有上界,则存在一个实数$M$,使得对于所有 $xin S$,都有 $xleq M$;这个实数 $M$ 被称为 $S$ 的上确界。

类似地,如果实数集合 $S$ 非空且有下界,则存在一个实数 $m$,使得对于所有 $xin S$,都有 $xgeq m$;这个实数 $m$ 被称为 $S$ 的下确界。

在数学证明中,确界原理常常被用来证明一些重要定理,例如最大值定理、中值定理等。

三、柯西收敛准则的证明在进行柯西收敛准则的证明之前,我们先来说明一个引理:引理1:若数列 ${a_n}$ 满足对于任意 $nin mathbb{N}$,都有 $a_nleq a_{n+1}$,则 ${a_n}$ 收敛当且仅当 ${a_n}$ 有上界。

证明:设 ${a_n}$ 收敛于 $a$,则对于任意$varepsilon>0$,存在正整数 $N$,当 $n>N$ 时,有 $|a_n-a|<varepsilon$。

因为 $a_nleq a_{n+1}$,所以 $a_Nleqa_{N+1}leq cdots leq a_nleq a$。

六大定理互相证明总结

六大定理互相证明总结

六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。

确界不等式的证明方法

确界不等式的证明方法

确界不等式的证明方法
确界不等式是数学分析中一种重要的不等式,它影响着许多重要分析问题。

证明确界
不等式时,需要应用下列六个步骤:
一、明确涉及的函数
要证明确界不等式,首先要明确该确界不等式中涉及的函数。

二、估计函数的界限
估计函数的界限时,需要讨论有关的条件空间和最大最小值。

从空间的角度考虑,
通过合理估计其定义域、值域,选取函数的有效区域又该空间的连续性来估计该函数的界,其中,积分定理也可以用于估计函数的界限。

三、定义变量和函数
在证明确界不等式时,需要定义变量和函数,用来描述该不等式。

四、建立数学模型
建立数学模型时,可以通过熟悉的方法建立简单的模型,并加以修正和完善,使得模
型能够更好地反映不等式中的实际情况。

从模型的思想出发,运用数学变量,将不等式的结果表示成凸组合形式的一个数学函
数形式。

六、证明不等式
最后,通过合理的变换、矩阵乘法,建立数学关系,就可以证明确界不等式成立。

以上是证明确界不等式的具体步骤,要想证明成功还需对函数的特性及边界处理等细
节进行正确把握,因此,证明确界不等式是一个需要不断深入思考的过程。

《数学分析》实数完备性七大定理证明与七大定理相互证明

《数学分析》实数完备性七大定理证明与七大定理相互证明

《数学分析》实数完备性七大定理证明与七大定理相互证明在数学分析中,实数完备性是一个非常重要的概念。

实数完备性是指实数轴上不存在任何空缺的性质,即任何实数序列都有收敛的子序列。

实数完备性可由七大定理进行证明,并且这七个定理之间也可以相互证明。

下面将对这七大定理进行证明,并且展示它们之间的相互证明。

第一个定理是确界定理(或称上确界定理)。

它的表述是:有上界的非空实数集必有上确界。

证明如下:先证明存在性,假设S是有上界的非空实数集,令M为S的一个上界,那么对于S中的任意元素x,都有x≤M。

接下来我们来证明M是S的上确界。

首先,我们要证明M是S的一个上界,即对于任意x∈S,x≤M。

其次,我们要证明对于任意ε>0,存在一个元素s∈S,使得M-ε<s≤M。

这两点都可以使用导致上确界的性质来证明。

因此,我们证明了确界定理。

第二个定理是区间套定理。

它的表述是:若{[an,bn]}是一个递减的闭区间序列,并且满足an≤bn,则存在一个唯一的实数x同时含于所有闭区间[an,bn]中。

证明如下:首先,我们证明了区间套的任意两个闭区间之间的交集不为空。

其次,我们证明了{an}是一个递增有上界的实数序列,{bn}是一个递减有下界的实数序列。

因此,根据实数完备性的定义,存在唯一的实数x满足an≤x≤bn,即x属于所有闭区间的交集。

第三个定理是柯西收敛准则。

它的表述是:一个实数序列是收敛的充分必要条件是它满足柯西收敛准则,即对于任意ε>0,存在自然数N,使得当m,n≥N时,有,am-an,<ε。

证明如下:首先,我们证明了柯西收敛准则蕴含了实数序列的有界性。

其次,我们证明了柯西收敛准则蕴含了实数序列的单调性。

因此,根据实数完备性的定义,实数序列的柯西收敛准则是实数序列收敛的充分必要条件。

第四个定理是实数域的离散性。

它的表述是:任意两个实数之间必存在有理数和无理数。

证明如下:假设a和b是两个实数,并且a<b。

数集确界原理

数集确界原理

数集确界原理数集确界原理是数学中一个非常重要的概念,它在实际问题中具有广泛的应用。

在数学分析中,确界原理是指对于有上(下)界的非空实数集合必存在最小(大)上(下)确界。

这一原理在实际问题中有着重要的意义,下面我们将深入探讨数集确界原理及其应用。

首先,我们来了解一下数集的上确界和下确界。

对于一个实数集合A,如果存在一个实数M,使得对于A中的任意元素x,都有x≤M,那么M就是A的上确界,记作supA。

类似地,如果存在一个实数m,使得对于A中的任意元素x,都有x≥m,那么m就是A的下确界,记作infA。

上确界和下确界是数学分析中非常重要的概念,它们在实际问题中的应用非常广泛。

数集确界原理指出,对于有上(下)界的非空实数集合,必存在最小(大)上(下)确界。

这一原理在实际问题中有着广泛的应用。

例如,在经济学中,对于某种商品的价格集合,我们可以通过确界原理得到最低价和最高价,这对于市场分析和决策具有重要意义。

在工程学中,对于某种材料的强度集合,我们可以通过确界原理得到最小强度和最大强度,这对于设计和生产具有重要意义。

在物理学中,对于某种物理量的测量结果集合,我们可以通过确界原理得到最小值和最大值,这对于实验结果的分析具有重要意义。

除了在实际问题中的应用,数集确界原理在数学分析中也有着重要的理论意义。

它为实数集合的性质和运算提供了重要的基础。

通过确界原理,我们可以证明实数集合的某些性质,例如实数集合的稠密性、实数集合的有界性等。

这些性质对于实数集合的理论研究和应用具有重要意义。

总之,数集确界原理是数学分析中一个非常重要的概念,它在实际问题中具有广泛的应用,并且为实数集合的性质和运算提供了重要的基础。

通过对数集确界原理的深入理解和应用,我们可以更好地理解和运用实数集合的性质,为实际问题的分析和解决提供重要的理论支持。

希望本文对读者对数集确界原理有所帮助,谢谢阅读。

确界原理的证明

确界原理的证明

确界原理的证明确界原理是指在一定条件下,一个有上界的非空实数集必有上确界。

这一原理在数学分析中具有重要的地位,对于实数的性质有着深远的影响。

下面,我们将从数学的角度出发,对确界原理进行证明。

首先,我们来定义一下确界的概念。

对于一个实数集合A,如果存在一个实数M,使得对于A中的任意元素x,都有x≤M成立,那么M就是A的上界。

而A的上确界,是指A的上界中最小的那个实数,即如果存在一个实数M,对于A中的任意元素x,都有x≤M成立,并且对于任意小于M的正实数ε,都存在A中的元素a,使得M-ε<a≤M成立,那么M就是A的上确界。

接下来,我们将证明确界原理。

假设A是一个非空的实数集合,且A有上界。

我们需要证明A有上确界。

首先,我们来证明A的上确界存在。

由于A有上界,所以A的上界的集合非空。

我们可以定义B为A的上界的集合,即B={x∈R|对于A中的任意元素a,都有a≤x成立}。

由于B非空且有上界,根据实数的完备性公理,B必有上确界,我们将其记为M。

接下来,我们需要证明M是A的上确界。

首先,对于A中的任意元素a,都有a≤M成立,因此M是A的上界。

其次,对于任意小于M的正实数ε,我们需要证明存在A中的元素a,使得M-ε<a≤M成立。

假设不存在这样的元素a,即对于任意M-ε<a≤M,都有a不属于A。

这意味着M-ε是A的上界,但这与M是A的上确界相矛盾。

因此,存在A中的元素a,使得M-ε<a≤M成立。

综上所述,我们证明了A的上确界存在,并且M是A的上确界。

因此,确界原理得证。

通过以上证明,我们可以得出结论,在一定条件下,一个有上界的非空实数集必有上确界。

确界原理在实数的性质中具有重要的地位,对于数学分析有着深远的影响。

这一原理的证明,不仅在理论上具有重要意义,也为实际问题的解决提供了重要的数学工具。

在数学分析中,确界原理的应用十分广泛,例如在实数序列的收敛性证明、连续函数的最值存在性证明等方面都有着重要的作用。

六大定理互相证明总结

六大定理互相证明总结

六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。

利用确界原理证明阿基米德定理

利用确界原理证明阿基米德定理

利用确界原理证明阿基米德定理阿基米德定理,也称为浮力定律,它指出浸没在流体中的物体所受到的浮力等于物体排除的流体的重量。

阿基米德定理可以通过确界原理进行证明。

确界原理是数学分析中的一种常用方法,它基于物理学原理,通过对一个系统的性质进行界定,从而进行演绎推理。

下面我将详细说明如何利用确界原理证明阿基米德定理。

首先,我们先给出阿基米德定理的数学表达式:在流体中浸没的物体受到的浮力等于其排除流体的重量:F_b = ρfgV其中,F_b表示浸没物体的浮力,ρf表示流体的密度,g表示重力加速度,V表示浸没物体排除流体的体积。

现在,我们来利用确界原理证明这个定理。

首先,我们将物体的浸没过程划分为n个微小的堆积过程。

对于每个堆积过程,我们令M表示浸没物体与流体接触的面积,将M划分为n个微小区域Mi。

且每个微小区域的面积都可以用dA(i)表示。

假设F_c表示在上述划分中第k个微小区域Mi出现时,堆积物体受到的浮力,F_d表示在上述划分中第k个微小区域Mi离开时,堆积物体受到的浮力。

根据阿基米德定理,我们有F_c = ρfgdV(i),其中dV(i)表示第k 个微小区域Mi的体积。

因此,我们可以得到:F_c = ρf(gdV(i))。

结合堆积过程,我们可以得到堆积过程中物体所受到的浮力之和:F_d = F_c1 + F_c2 + ... + F_ck。

在每个微小区域离开时,它所受到的浮力F_dk可以表示为:F_dk = ρf(gdV(i)) = (ρf/g)(g⋅dV(i)) = (ρf/g)(g⋅Mi⋅dA(i))。

根据确界原理,对于每个堆积过程,在Mi的定界曲线C上,满足如下不等式:F_dk - F_c ≤ 0。

将以上表达式代入上述不等式,我们可以得到:(ρf/g)(g⋅Mi⋅dA(i)) - ρf(gdV(i)) ≤ 0。

化简以上不等式,我们可以得到:ρfMi⋅dA(i) - ρfdV(i) ≤ 0。

对于每个微小区域,我们可以得到:ρfMi⋅dA(i) ≤ ρfdV(i)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确界原理的数学分析证明
确界原理是数学中常用的一个概念,它有助于理解实数集的性质,并在实际问题中起到重要的作用。

在本文中,我们将对确界原理进行数学分析证明。

首先,我们需要了解什么是确界。

在实数集中,如果存在一个数a,使得集合中的每个元素都小于等于a,那么a就被称为这个集合的上界。

类似地,如果存在一个数b,使得集合中的每个元素都大于等于b,那么b被称为这个集合的下界。

在实数集中,如果一个集合既有上界,又有下界,那么我们称这个集合是有界的。

否则,如果一个集合没有上界或下界,那么我们称这个集合是无界的。

现在,我们将证明确界原理,它陈述了任何一个非空的有上界的实数集合,都必然存在一个最小的上界。

证明过程如下:
假设A是一个非空的有上界的实数集合,并且ub是A的一个上界。

根据实数集的定义,我们可以找到一个实数x,在A中至少存在一个元素a,使得a>x。

这是因为如果不存在这样的x,那么ub不是A的一个上界。

我们现在来构造一个新的实数集B,B由所有满足x≤a的实数x组成。

也就是说,
B={x∈R : a≤x,对于所有的a∈A}。

首先,我们注意到B是非空的。

因为x≤ub,ub是A的一个上界,所以ub≤x,所以x∈B。

因此B非空。

其次,我们观察到B是有上界的。

因为ub是A的一个上界,所以ub≥x,对于所有的x∈B。

这意味着ub是B的一个上界。

现在我们可以应用确界原理。

根据确界原理,B的上界存在一个最小的上界,我们将其记为supB。

我们需要证明supB是A的上界。

假设存在一个元素a∈A,使得a>supB。

那么对于任意的x∈B,我们都有a>x,因为x≤a。

这意味着a是B的上界,但a>supB,这与supB是B的上界相矛盾。

因此,我们得出结论,supB是A的一个上界。

最后,我们需要证明supB是A的最小上界。

假设存在一个实数c,使得c是A 的一个上界,并且c<supB。

那么由于c<supB,所以c不是B的一个上界。

这意味着存在一个元素b∈B,使得b>c。

但是根据B的定义,b≤x对于所有的x ∈B。

这意味着b≤c,与假设矛盾。

所以c不能是A的一个上界,并且我们得出结论supB是A的最小上界。

综上所述,我们证明了确界原理:对于任何一个非空的有上界的实数集合A,存在一个最小的上界supA。

确界原理在数学中有广泛的应用,它是实数集的基础性质之一。

它不仅可以帮助我们研究实数的性质,还可以用于证明数学定理和解决实际问题。

因此,确界原理在数学中具有极其重要的地位。

相关文档
最新文档